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About Us, Intro to the Speakers

Simon

● Cloud Vulnerability Researcher at Google
● Loves to travel
● Worked on a first version of an eBPF fuzzer in 2020 and found a privilege escalation in the latest Ubuntu version at the time

Valentina

● Vulnerability and Exploit Researcher at IBM X-Force Red
● Focused on low-level vulnerabilities, exploit development, and post-exploitation offensive security
● Wored on eBPF exploitation and vuln discovery concurrently to Simon, met and decided to work together in collaboration 

with new colleague JJ. 

JJ

● Cloud Vulnerability researcher and Software Developer at Google
● Loves to bake and learn languages
● By pure coincidence: found Simon’s article about the fuzzer and decided to create his own version of it… only to find out 

Simon was joining his team a few weeks later



eBPF - what is it?

Initially created to filter packets (classic Berkley Packet Filtering)

eBPF is a technology that allows a user mode application to run code in 
the kernel without needing to load a kernel module.

eBPF programs are used to do all types of things: tracing, 
instrumentation, hooking system calls, debugging, packet 
capturing/filtering, and even rootkits ;)



eBPF - why?

Developers don’t need to know how to develop kernel code

It’s easier than compiling and maintaining a custom modified kernel

It’s easy to write eBPF programs

Performance advantages to run directly in the kernel

Allows for asynchronous programming style, less context switches from 
user to kernel, advantageous for modern hardware.



eBPF Programs

eBPF programs are written in a high level language (C/Python) 

Program is compiled into eBPF bytecode using a toolchain. 



eBPF: How Does it Work?

Usermode application loads byte code into kernel (via eBPF syscall)

eBPF verifier performs checks on the bytecode

If verifier checks are passed, bytecode is JIT compiled into native 
instruction set (or instructions are executed by interpreter while running)

Application attaches to hook point, event-based execution

Application gives input/output with eBPF maps and helper functions





eBPF Privileges

Whether unprivileged can run eBPF programs depends on sysctl knob 
unprivileged_bpf_disabled

Unprivileged users are limited to where programs can hook (can attach to socket the 
user owns)

CONFIG_BPF_UNPRIV_DEFAULT_OFF sets the sysctl knob by default. Now set by 
default in popular distro’s kernels like Ubuntu, beginning in 2022. 

CAP_BPF Linux capability can be granted to users or containers to run eBPF programs

Fewer restrictions for programs when CAP_BPF is granted



eBPF - Applications

eBPF vulnerabilities pose a risk for applications given CAP_BPF capabilities, or 
running in containers with the the capability, even if unprivileged eBPF is not 
allowed

May see this in actual environments for:

Untrusted applications that process heavy I/O or networking activity

● Services
● Firewalls
● Security/Telemetry Applications
● Applications that run in containers, ex: Cilium



Vulnerabilities

There are 3 main places eBPF vulnerabilities can reside:

● Verifier 
● JIT Compiler
● eBPF Kernel Runtime (helper functions)

When building a fuzzer, it’s important to survey the types of vulnerabilities 
that can occur, where and how they occur, and how to detect them in order 
to automate corpus generation in a way that makes sense and gain good 
coverage in relevant parts of the target. 



Verifier Vulnerabilities - Range Calculation

Verifier keeps track of the expected range of scalar value registers used in an 
eBPF program. 

Only scalars can be added to pointers to access the memory of shared maps. 

Verifier has to ensure these scalar registers stay within the expected range and 
do not lead to out of bound access of maps.

Errors in how these ranges are calculated result in the ability to manipulate the 
verifier’s checks allow kernel memory corruption. 



Verifier Checks Map Access

The verifier must ensure that operations like the one above, 
don’t result in operating on out of bounds memory



Range Calculation: CVE-2020-27194

Discovered by the first iteration of the fuzzer we’re presenting today. 

Caused by miscalculations of 32 bit ranges that are derived from the 64 bit 
registers. The patch introduced the individual tracking of 32 bit ranges for each 
register.



Verifier Vulnerabilities - Branching Prediction

Verifier must analyze all potential code paths of the program being loaded in 
order to ensure safe behavior at runtime. 

Patches out instructions it believes to be in a branch that will never be reached or 
does not analyze branches it believes to be in the same state as already visited 
code paths.

Bugs in the verifier’s branching prediction mechanisms can lead to the ability to 
manipulate the program state to one unexpected by the verifier



Branching Prediction - CVE-2023-2163
 

Discovered by the second iteration of the fuzzer we’re presenting today



Verifier Vulnerabilities - General Logic Bugs

General logic bugs can occur when traversing and verifying the program. Not 
directly related to range/bound calculation or branching, but ultimately lead to 
the verifier generating an incorrect state for the program

CVE-2021-3490 -

Lead to the failure to update the bounds of a scalar registers after 32 bit AND, 
OR, and XOR operations. Was not an error in calculating the bounds themselves, 
though. 



JIT Compiler Vulnerabilities - Code Generation Bugs

The eBPF JIT compiler compiles the eBPF bytecode to assembly of the native 
architecture of the system



JIT Compiler Vulnerabilities - Code Generation 
Bugs Optimization->Branch Miscalculations

CVE-2021-29154 - Issue with how branch displacements were calculated for 
some architectures, could lead to arbitrary shellcode execution 

Highlights how architectural differences can manifest in this eBPF component



JIT Compiler Vulnerabilities - Code Generation 
Bugs

CVE-2021-38300 - Bug in the way classic eBPF programs 
were translated and compiled in the JIT compiler

Highlights that legacy cBPF program support can create 
issues once JIT compiled 



eBPF Runtime Vulnerabilities

eBPF has “helper functions” that can interact with the eBPF program during 
runtime. The code for these functions reside in the “unsandboxed” area of the 
kernel, meaning they are just in the normal part of the kernel code base. 

Vulnerabilities in the eBPF runtime can be triggered by a malicious eBPF 
program and be used to escalate privileges



eBPF Runtime Vulnerabilities

CVE-2021-38166 - Integer overflow and out of bounds write in hashmap lookup 
function

This vulnerability can be triggered if a shared eBPF map is of type hashmap and 
a helper function is called to retrieve a value stored in the map. 

A big portion of the eBPF Runtime code attack surface is related to operating on 
shared maps (retrieving/storing their values, etc)



What now? Automated Vulnerability Discovery

With proper context of the target, we began our automated vulnerability 
discovery process by targeting the eBPF verifier via fuzzing



Automating vulnerability discovery - Why?

Verifier code is very complex (kernel/bpf/verifier.c has > 17k LoC)

Lots of changes to the source code. CVE-2020-27194 was introduced as part of 
a patch for another security issue

eBPF is a standard. If we can automate vulnerability discovery, we can likely do it 
for more than one implementation

https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c


Automating vulnerability discovery - Fuzzing?

Pros:

● Doesn’t require a very deep technical understanding of the verifier code
● The eBPF instruction set is not very large. We can generate all opcodes
● The eBPF interface (syscalls etc.) doesn’t change much, meaning a fuzzer 

can be adapted relatively easy to various versions and implementations 



Fuzzing: Existing solutions considered

At the time, an eBPF fuzzer for the Linux implementation existed. However, it 
aimed at finding memory corruption in the verifier itself

Syzkaller is a coverage-guided and sophisticated Kernel fuzzer. However:

○ Built to trigger and detect memory corruption bugs. We are interested in hard-to-detect logic 
bugs

○ Changing Syzkaller to generate, load, execute and detect errors in eBPF programs requires 
as much work as writing an eBPF optimized fuzzer from scratch

https://github.com/iovisor/bpf-fuzzer


Fuzzing: Tailored strategy

Writing an eBPF optimized fuzzer from scratch allows us to:

● Optimize the fuzzing-input generator and tweak it for experiments
● Choose an appropriate architecture for the fuzzer
● Implement a strategy for detecting bugs



Fuzzing: Input generation

On a very high level a fuzzer just throws random stuff at a program until it crashes

The issue with this approach is that in order for our program to crash it has to pass the 
verifier first

That means a naive bitflipping approach likely won’t generate a long list of opcodes that 
are:

○ Correctly encoded
○ Specify a valid operation
○ Specify valid registers
○ Specify immediates



Fuzzing: Input generation

In the first version of the fuzzer, we generated programs by:

● Prepending a static program header that performed all necessary 
initialization

● Generating a variable length array of opcodes
● Each opcode is a correctly encoded ALU operation taking in either a register 

or an immediate as an operand
● Appending a static program footer that exited the program cleanly



Fuzzing: Input generation



Fuzzing: Input generation



Fuzzing: Error detection

We can now generate eBPF programs! Now what?

If a program contains pointer arithmetic and accesses and the verifier deems it 
to be valid then the verifier is confident the memory access is guaranteed to be in 
bounds

We can test this assumption at runtime by writing a magic value to an eBPF map 
during eBPF program execution

If the magic value is not in the expected position within the map, the verifier was 
wrong and we have a security issue!



Fuzzing: Performance and Scaling

The eBPF verifier runs with a global lock, meaning that the fuzzer won’t scale 
well

This is bad news because we expect most of our time to be spent within the 
verifier. Although we have an optimized input generator, most programs will still 
be invalid



Fuzzing: Architecture

At the time, decided to extract the verifier code and compile it in user-space

This had several benefits for scalability:

● No context switches
● No verifier lock
● Easier to debug where things might go wrong

The downside: Very time consuming and difficult to port to new versions



Fuzzing: Architecture



Fuzzing: Performance and Scaling

Pros:

● Very scalable and fast due to 
userspace fuzzing

● Optimized eBPF input generation
● Easy to debug issues

Cons:

● Error detection is very naive
● eBPF inputs are correctly encoded 

when generated but still an 
extremely low rate for valid 
programs (< 1%)

● Hard to adapt to new versions



Fuzzing - A New approach

● In our previous strategy the biggest issue was that only a fraction of the 
generated programs were considered valid.

What if we create a new fuzzer that generates a lot of syntactically valid 
programs

○ We look for Programs that are semantically wrong but the verifier gives them an O.K



High Level Architecture - Not A fuzzer, a Fuzzing 
framework



Fuzzing Strategies - What and Why?

● How do we detect when an error occurs?
● How do we decide how to generate a program?

Answer: Fuzing Strategies - Allow the user of the fuzzer to code their own way to 
generate eBPF Programs and detect when errors occur

E.G: Verifier Log Parser strategy 



Verifier Log Parser strategy 

● Generation of programs:
○ Random ALU operations

● How does it detect bugs?
○ At verify time: it ingests the verifier log and parses the assumptions the verifier has made 

about the registers.
○ At run time: The actual values of the registers are stored in a map, then compared with the 

verifier assumptions



Pointer Arithmetic strategy 

● Generation of programs:
○ Random ALU operations + Random JMP operations (branching)

● How does it detect bugs?
○ At the end of the program it generates a footer that:

1) Chooses a random register that received ALU operations
2) Adds the value of that register to a map pointer
3) Attempts to write to the map

○ Then read the value from user-space, if the value is not there: OOB write happened.

This is the strategy that found CVE-2023-2163



Program Generation in a nutshell

- Programs get generated in a tree-like 
structure

- Once the tree generation is complete, 
each instruction generates its 
corresponding bpf bytecode (via DFS)



Other features - coverage information and 
statistics



Some statistics

It can:

● Generate ~35k eBPF Programs per minute
● Depending on the strategy, a lot of those programs might be rejected by the 

verifier, but that’s ok. We are looking for syntactically valid programs  that 
are semantically wrong but the verifier thinks are O.K



24 hours after we set it to run for real…

● First Strike! (CVE-2023-2163)
● It was found using the pointer arithmetic strategy

○ We added generation of random JMP operations + random ALU operations and that did the 
trick…

● TL;DR we discovered that the control flow analysis of the verifier is kinda 
broken
○ Verifier tries to simulate all possible states of branching to determine if all paths are safe
○ But the verifier is lazy… and if some conditions are met… then it prunes the search
○ Welp turns out that the pruning algorithm is broken, it might decide to not traverse certain 

paths that lead to unsafe conditions 



We turned this into an LPE + Container escape

http://www.youtube.com/watch?v=0k9H9wNeXiM


So What now?

- Code of the fuzzing framework (a.k.a Buzzer) has been made open source at 
https://github.com/google/buzzer 

- There will still be some features to implement
- Execute bpf programs across multiple vms with different OS versions
- Better metrics collection
- Etc.

- We just scratched the surface on how to fuzz ebpf in depth, we can find 
more complex vulns with more complex fuzzing strategies.

https://github.com/google/buzzer


Black Hat Sound Bytes

● Granting CAP_BPF should be carefully considered as eBPF remains a 
complex attack surface

● When building a fuzzer, it’s important to survey the types of vulnerabilities 
that can occur, where and how they occur and how to detect them in order to 
automate corpus generation to cover relevant parts of the target

● There is a lot of value in contribution between security researchers: the 
lessons learned in Simon’s original fuzzer paved the way for our new Fuzzer


