

BRIEFINGS

E-Meet (or Emit?) My Keystrokes How Benign Screen-sharing Meetings Could Leak Typing Behaviors

Chrisando Ryan P. Siahaan

Security Researcher & Lecturer Specialist in Cybersecurity

About

- Call me Chrisando Ryan, @chrisandoryan or Siahaan
- Lecturer Specialist in Cyber Security, BINUS University, Indonesia
- CEO of Questlabs ID, a security-centered software development agency in Indonesia.
- Driven to a T-shaped culture by extensively studying AI, Computer Vision, and Big Data domains as well, and intertwine them with Cyber Security.
- Black Hat Asia Arsenal speaker, back in 2020 (covid-era \otimes).
- CTF problem setter & judge at various competitions in Indonesia.
- Enjoy bounty hunting, building ventures, and conducting multi-disciplinary projects

- Backstage story.
- Others who have tried...
- Our approach.
- The danger behind all these.
- Is there any cure?
- Takeaways.

One ordinary day, you're in a Zoom meeting with colleagues.

6:04	(î0	III View	
		End	

You guys are doing your stuffs, discussing back and forth.

Harga .docx 🗸	♀ Search		Chrisando Ryan Pardomuan 🖙 🖉 — 🗇 🗙
t Draw Design Layout References Mailings Review	View Help		🖓 Comments 🖉 Editing 🗸 🖻 Share 🗸
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & $	No Spacing Heading 1 Heading 2	
Font Fu	Paragraph Fy	Styles	F₃ Editing Voice Editor Reuse Files ✓
· · · · · · · · · · · · · · · · · · ·	1 • • • 1 • • • 2 • • • 1 • • • 3 • • • 1 • • • •	•••••••••••••••••••••••••••••••••••••••	
Lalap. Serundeng. Total Modal: (Total Jual: 96. Total Untung: Total keru	5 320 5 100 33.435 000 32.565	1.600 500	
Accessibility: Good to go			(b), Focus

BlackHatEvents

Suddenly, while a colleague's sharing their screen, they stumbled upon a page which forces them to do a sign-in using password.

Too lazy to stop the screen-sharing temporarily, they choose to continue typing their password;

Thinking that these **black bullet-mask symbol will protect them...**

	Log in to Trello	
	fahmad.gdn@gmail.com	
Ë	•••••	
	Log in	

All those led to our attempt to test a hypothesis:

If we are to live in a world where most meetings will be conducted through online video meetings...

Then it might be possible to **leak** and **mimic** a user's typing behaviour through a screen-sharing video alone.

Backstage Story: The Basics

So, about typing behavior.

- A term coined as **keystroke biometrics**, that is: the process of measuring and analysing an individual's unique typing patterns or rhythms on a computer keyboard.
- Used for?

User authentication Fraud detection **Forensic analysis**

But, how?

Time between keystrokes (called *Inter-key Latency*) Duration of each keystroke (called *Hold Latency*) **Pressure or force applied to the keys**

Backstage Story: The Basics

The Recipe (Simplified):

How short (or long) the delay between each keypress How short (or long) you hold-press each character ┿ (**) How hard/strong you press the character keys (**) How many typos/mistakes you made Authentication/Classification. [i.e., Welcome, Bob!]

less-common metrics

Backstage Story: The Basics

Although not as widely-accepted as fingerprint, but **keystroke biometrics** are gaining attention.

Verification: Signature Track is the first program of its kind on a MOOC platform that links your online coursework to your real identity. By matching your photo and creating a biometric profile of your unique typing patterns, Coursera lets you easily participate wherever you may be in the world.

The New York State DMV and European Banking Authority approve typing biometrics as a compliant method of identity authentication.

Some major players in the **keystroke dynamics** industry.

The Idea, Originally

Create a better keystroke dynamics approach as a way to robustly authenticate legitimate users

Create a technique to extract typing key-delay out of a screenrecorded video,

 \dots and maybe use them for despicable reasons >:)

(we'll come back for this)

The Idea, Originally

We call this technique, Camstroke.

Camstroke Private

Annotate keystroke from recorded typing video, a utility for video-based Keystroke Inference Attack

Others Who Have Tried...

- Silk-tv: Secret information leakage from keystroke timing videos (Balagani, et al., 2020)
 - Studied the leakage of user secrets (password and PIN) from typing activities.
 - Use video footage of a computer/ATM machine screen where password masking characters are displayed when users type their password/PIN.
 - Extract inter-keystroke timing information from the video and feed them to Random Forest (RF) classifier to predict the typed password/PIN.
- Cracking Android pattern lock in five attempts (Ye, et al., 2017)
 - Proposed a novel video-based attack to reconstruct Android lock patterns.
 - **Does not require** the video to capture **any content displayed on the screen**, only **fingertip movements.**
 - Use TLD (*tracking—learning—detection*) algorithm to generate movement trajectory.

S

Our Approach, Originally

Our Approach, Originally

During this study, we encountered (at least) **four** of the most pain-staking, mind-bending, and brainmelting obstacles:

- **Challenge #1:** How to **detect when a user is typing** from a mere screen-recording video data? •
- **Challenge #2:** How to **detect what character** is **typed** by the user **on each millisecond** of the video?
- **Challenge #3:** How to **reconstruct the victim's typing pattern** (extract each keystroke's timing/delay) information)?
- **Challenge #4:** How to **predict/expose a victim's password** from **the leaked typing pattern**?

- First things first. From a mere **screen-recording video**, we need to:
 - **Isolate the segment** of the video where a typing activity occurs. 1.
 - 2. **Extract what character** is being **typed** by the user **on each millisecond** of the video.

The AHA! **?** Assumption:

the most recent typing activity must be occurred to the left of a text cursor object that appears on the screen.

View	Go	Run	Terminal	Help		• Hi gu	ays to	oday we are going to lear	n abo	u • Untitle	rd-1 - Ci	amman - Vis	ual Stud	fio Code
					🕈 main.	ру		README.md	E H	i guys to	day we	are going t	o learn	abou Untitle
INSAVED					1 2	Hi guy We war	ys nt	today we are going you to do some typ	g to pi	learn	about	keystrok	e inf	erence.
			U											
			U											

blackhat Cursor Tracking and Text Detection Alg.

Challenge #1. Isolate the segment of the video where a typing activity occurs.

- Use **OpenCV** to identify a moving rectangle-shaped object (i.e., the **Text Cursor**)
 - Grayscale Conversion & Otsu's Thresholding
 - Canny Edge Detection & Bitwise XOR
- Identifies location of the **Text Cursor**, called **Cursor Bounding Box (CBB) (the red box)**

Takeaway

The occurrence of CBB marks the start of the video segment with typing activities.

View	Go	Run	Terminal	Help	• Hi guys	today we are going to I	learn abou • Untitled-1 - Camman - Visual Studio Code
				٠	main.py	README.md	F Hi guys today we are going to learn abou Untit
NSAVED			U		1 Higuys 2 Wewant	today we are go you to do some	ing to loops about keystroke inference. typir

ackHatEvents

Challenge #2. Extract what character typed by the user on each millisecond of the video.

- We generate another bounding-box, called **Isolation Bounding Box (IBB)** relatively to the left of the Cursor Bounding Box (CBB) coordinates.
- However, in a single IBB region, there might be more than one character captured \mathfrak{S} .
- Hence, we need to know, which one is the most recently-typed character?

Fig: IBB with multiple characters captured

Challenge #2. Extract what character typed by the user on each millisecond of the video.

- Use **Connected-Component Labeling (CCL)** to separate multiple characters from the IBB frame.
- Yields the following components: •
 - **Background Region**
 - Tallest Region (aka Text Cursor)
 - **Rightmost Character**
 - **Previous-typed Character**

Takeaway

The **Rightmost Character**, always located to the left of Tallest Region, indicates the most-recently typed character on the frame.

Frame #087

Previous-typed Character

Typing Pattern Reconstruction

Challenge #3. Reconstruct the victim's typing pattern (extract each keystroke's timing/delay information)

- From every frame in the video, we extract a character (aka the **Rightmost Character**) component) and convert them to digital data with OCR (Optical Character Recognition).
- A single character in a single video frame is called a **KUnit**.
- But we observe that the same character might **appear** in **more than one frame** consecutively.
- Why?

Challenge #3. Reconstruct the victim's typing pattern (extract each keystroke's timing/delay information)

- If the same character appears in more video frames adjacently, we can **assume the longer the** key-delay of that character.
- Hence, we group characters from different frames based on similarity of the character's coordinates relative to each other. We named it **KeystrokePoint**.

FirstSeen	1
LastSeen	3
KeyText	а

KeystrokePoint Attributes

FirstSeen	4
LastSeen	5
KeyText	n

Challenge #3. Reconstruct the victim's typing pattern (extract each keystroke's timing/delay information)

- On the image, character 'a' is displayed in 3 video frames. Hence, the key-delay is 99ms.
- Why?
- Because every video frame lasts for 33ms (30FPS). Thus, 3 video frames last for **99ms**.

Takeaway

The higher the number of KUnits (frame) are inside a KeystrokePoint (group), we assume the longer the key-delay of that character.

Attack in Action

AutoSawa 🥽 🦳 🔒 ツィ C 🖨 …			S-002 - Saving			•	Default (pytho	on)	て第1
Home insert Draw Design Layor Paste of B I U v ab X, X ³	A Aa -	Ap III + III + III + III III 21 21 + III = III + III + III 21 21 21 + III = III = III + I A + III - III = III + I A + III	Image: starting of the starti	Aa860ccDdEe Aa8bCcDr Holipathig Heading1	[INFO ccfab [INFO 13 2)] Storing KUnit to Las f75b] Current KUnit coordi	t KeystrokePoint w nates: (537.788709	ith ID: 376c52e3-0e8 2317341, 704.2, 546.	e-4aed-b42f-ead 188709231734, 7
	Ļ	Subject: S-002 Gender: Male Age: 22 Zoom: 150% Font: Calibri, 12pt Video: MacBook Pro, 1440x900, 3 Predetermined Sentence Phase Text to type: <u>hi my name is ando</u>	Project <u>Camstroke</u> Data Collection FPS ame> and i want to go	and change the world	13.2) [INF0 [INF0 09231 [INF0 Frame [INF0 Frame [INF0 XY Ra 26.50 19.40 XY Ra 83.07 61.45 XY Ra 135.2 100.4	<pre>[KUnit is a RIGHTMOST] KUnit Shape: 84 90] This KeystrokePoint 734, 713.2)] Detected Keystroke: : 100] White composition in tio (0.07291221127487 334491338435 363.49665 9 0 350 tio (0.27065436085486 152911542451 306.92847 1 0 350 tio (0.53080163172984 3152319919404 254.7684 90 0 350</pre>	candidate; Updati has coordinates: o Background: 0.93 7131, 1.0) (1.06553 550866157 180.55227 607, 1.0) (1.018186 708845755 176.57701 14, 1.0) (1.132198 7680080598 185.850	ng lastseen data (537.7887092317341, 37941176470588 3774809484, 1.0) 454110138 169.447725 9779539596, 1.0) 99573726 173.4229800 0158994676, 1.0) 1427212179 164.14985	704.2, 546.1887 45889865 426274 727878212
			ding Box (IBI	B) Frame	[INFO ['CAN [INFO [INFO] There are 3 Keystrok DIDATE', 'CANDIDATE',] KUnit Image Shape:] Frame ID: 100	te Candidates 'RIGHTMOST'] (350, 390)	, зашр се <u></u> уре, к	

🛿 typer-engine* 🕢 Python 3.7.9 64-bit ('camstroke': conda) 🛛 🛞 0 🛆

You, 2 months ago Ln 93, Col 72 Spaces: 4 UTF-8 LF Python

Convexity Defects

Final Keystroke Image

HatEvents

- At this point, **key-delay** between characters can be extracted through a video alone.
- It is permission-less. No need to insert/install keylogger into the victim's machine.
- This attack can occur when:
 - A victim makes their screen visible to the attacker (i.e., in a Zoom meeting).
 - The attacker records the victim's screen, where the victim's typing activities is visible.
 - The delays between characters is extracted from the obtained video frames.
- Thus, this attack can be conducted remotely, without the victim even realizing.
- If the victim's account is protected with keystroke dynamics authentication, we can mimic their typing pattern and replay them to bypass the authentication.

eo alone. nachine.

Before we go into the more despicable part. Let's see how good the algorithm performs.

Benchmarking the Attack

- Aspects evaluated:
 - How similar the reconstructed typing pattern of the victim? (Statistic Similarity)
 - **How effective** the attack against **KeyTrac** authentication (Evasion Rate & EER)
- We tested the attack on 14 victims (with consent), each on different Zoom meetings.
- The victims were asked to perform these **typing activities**:

No	Evaluation Group	Typed Text	Total San
1	Password Phrase	abudhabiacrossthesea	
2	Greeting Sentence	hi my name is [NAME]	210
3	Long Sentence	i want to go and change the world	-

nples

Benchmarking the Attack

We asked each victim to perform a typing activity, and record them:

C Aut	oSave 💽 🕐 📓 Data Tempiat	e.docx 🛩		,P Sear	ch				Chris	sando Ryan Pard	lomuan 😋	0	-
File	Home Insert Draw Design	Layout References	Mailir	gs Review View Help	Shape Format							01	Editing ~
9. U	Paste d I U - ab	• 12 • A* A* Aa x, x* ▲ • 🖉 •	Α. Δ.		\$1 ¶ - ⊞ - N	ormal No Spacing	Heading 1	Heading 2	1 3 8	P Find →	Dictate	Editor	Reuse
Undo	Cipboard 15	Font	15	Paragraph	15	5	tyles		5	Editing	Voice	Editor	Reuse Fé
				Η									
				Short Predetermined Phra	ise								
1				[
			×		abudh	abiacrossthesea							
						Go							
				abul		0		Č 🗖	1				
1				9				0					
				ļ		0							
3													

And, to collect actual key-delay data, we use **keylogger** installed on the victim's device.

Text typed: abudhabiacrossthesea

- Tested using Shapiro-wilk Test (Normality Test), Levene's Test (Variance Test), and Wilcoxon Signedrank Test (Mean Similarity Test).
- Both key-delays are **distributed normally** and have equal variance.
- There is **no significant mean differences** between the reconstructed key-delays and the actual keydelays; the data can be considered similar.
- Process time is **5.61FPS**, or **5.35x longer** than the actual video duration (30FPS).

Comparison of the Reconstructed Keydelay and the Actual Key-delay (averaged).

Text typed: hi my name is [NAME]

- Suffers **lower performance** compared to the **password text group**.
- There is still no significant mean differences between the reconstructed key-delays and the actual key-delays; the data can be considered similar.
- Process time is 6.78FPS, or 4.43x longer than the actual video duration (30FPS).

Comparison of the Reconstructed Key-delay and the Actual Key-delay (NOT averaged).

Text typed: i want to go and change the world

- Also suffers **lower performance** compared to lacksquarethe password text group.
- There is still no significant mean differences between the reconstructed key-delays and the actual key-delays; the data can be considered similar.
- Process time is **5.91FPS**, or **5.08x longer** than the actual video duration (30FPS).

Comparison of the Reconstructed Keydelay and the Actual Key-delay (averaged).

- KeyTrac is a AaaS (Authentication-as-a-service) platform that's widely used by global lacksquarecompanies around the world.
- KeyTrac supports two modes: **Password-hardening** mode and **Freetext** mode.
- How do we perform the attack against KeyTrac?

Performance Metrics

Evasion Rate (ER): measures the

Equal Error Rate (**EER**): measures

Attack Effectiveness: FAR-FRR-ERR

KeyTrac performance in **Password** mode, before (left) and after (right) the attack. EER increased 349.5% post-exploitation, **Optimal authentication threshold increased from 13 to 59**

High ERR indicates the decreasing accuracy of the biometric system (due to FAR is increasing).

Attack Effectiveness: FAR-FRR-ERR

KeyTrac performance in Freetext (Greeting + Longtext group) mode, before (left) and after (right) the attack. EER increased 2553.5% post-exploitation, **Optimal authentication threshold increased from 6 to 57**

High ERR indicates the decreasing accuracy of the biometric system (due to FAR is increasing)

Attack Effectiveness: Evasion Rate

- On Password mode with authentication threshold of 60%, 9 out of 14 attempts successfully spoof KeyTrac into allowing the authentication to pass through.
- That means, **Evasion Rates (ER) is 67%,** or almost 2 of 3 attacks is successful.
- Unfortunately, on **Freetext mode** with authentication threshold of 60%, only 6 out of 14 attempts successfully spoof KeyTrac into allowing the authentication to pass through.
- That means, Evasion Rates (ER) is 43%.

Evasion Rates (ER) on different authentication thresholds

The evasion rates (ER) were not able to reach beyond 70%, why?

- This is mainly affected by the typing speed of the respondent (WPM or word-per-minute). ullet
- The higher the WPM, the lower the number of captured frames.
- Hence, the delay similarity of the reconstructed typing pattern is also decreased.
- High WPM should be compensated with high video frame rates (FPS).

So, are we done here? Well, not apparently.

We believe the method is working, but perfection is still far away...

Amidst the study, we encountered **another WHAT-IF question scratching our curiosity**.

If we're able to track text cursor and extract typing pattern out of screen-recording video, then what happens if **inside the video** occur **a user typing their password**?

We're able to track them as well.

Google Welcome (fahmad.gdn@gmail.com v	Final Keystroke Image
Show password	
Forgot password? Next	

- Typing pattern extraction sensitivity drops when there is a lot of movements, e.g., video playing, heavy screen-scrolling, etc.
- The higher the WPM requires more FPS to maintain high accuracy of the extraction. Most online-meeting platforms only support 30/60FPS video recording.
- Many **keystroke biometrics** authentication also uses **hold-delay** metric. As of now, we're only able to extract the **inter-key delay** metric.

- As in many other behavior-based attacks, there are no better solution than to applies a secure user behavior to prevent the leakage.
- That means, **being mindful** on who's your audience during screen-sharing meetings.
- And **being eager** enough to stop the screen-sharing whenever we're about to input something sensitive and confidentials.
- However, we also found some projects interesting to inhibit typing pattern extraction, such as:
 - **Kloak** by Vinnie Monaco: introduces random delay to keyboard typing at the device level.
 - Keystroke Dynamics Anonymization System (Migdal, D., & Rosenberger, C., 2019)

<mark>,</mark> k	loak Pub	olic	
Keyst behav	roke-level o vior at the d	online anonymization kernel: evice level.	0
• c	☆ 406	% 32	

obfuscates typing

- 1. Should **keystroke biometrics** adoption growth consistently in the next few years, we expect that more advanced mimicry (side-channel) attack will be demonstrated from unexpected sources of data.
- 2. By using a screen-recorded video, someone can achieve a statistically staggering similarity in key-delay timings as if they used a keylogger.
- 3. Relying on videos allows for the elimination of the need for any external hardware or modifications on the victim's computer (i.e., **keylogger**).

