
#BHASIA @BlackHatEvents

You can Run, but you can’t Hide
Finding the Footprints of Hidden Shellcode

John Uhlmann
@jdu2600



#BHASIA @BlackHatEvents

whoami
Security Research Engineer at Elastic
• Elastic Defend (“EDR”) developer
• Elastic Security Labs Blogger
• https://www.elastic.co/blog/author/john-uhlmann

https://www.elastic.co/blog/author/john-uhlmann


#BHASIA @BlackHatEvents

Agenda
1. Why do security products scan memory?
2. Memory scanning & evasion recap
3. Detection opportunities for hidden shellcode
• Detection via immutable code page principle violations
• Detection via CFG bitmap anomalies

4. Hunting via process behaviour summaries



#BHASIA @BlackHatEvents

Why do security products scan memory?
• On Windows x64, Microsoft has –
• hardened the kernel,
• claimed the hypervisor, and 
• made private executable memory an indefensible boundary for 

kernel-mode security products.

• This just leaves memory scanning.
• It’s not perfect, but it’s still a valuable defensive layer.



#BHASIA @BlackHatEvents

Overview of memory scanners
Generic Scanners
• YARA - memory content signatures
• PE-sieve - image metadata anomalies and content heuristics
• Moneta - memory metadata anomalies



#BHASIA @BlackHatEvents

Evasion recap
• Gargoyle - memory protection fluctuation via APC timer and ROP chain
• obfuscate-and-sleep - encrypted state fluctuation via post-sleep stub

• FOLIAGE - encrypted state fluctuation via APC timers and context manipulation

• Shellcode Fluctuation - memory protection fluctuation via post-sleep indirect stub

• DeepSleep - memory protection fluctuation via post-sleep ROP chain

• Ekko - encrypted state fluctuation via timer queues and context manipulation

• Scheduled Tasks ;-)



#BHASIA @BlackHatEvents

Evasion recap

Kyle Avery - Avoiding Memory Scanners: Customizing Malware to Evade YARA, PE-sieve, and More

https://forum.defcon.org/node/241824

https://forum.defcon.org/node/241824


#BHASIA @BlackHatEvents

Evasion – key concept
“a common technique for reducing computational burden is to limit analysis
on executable code pages only“ - Josh Lospinoso
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html

VirtualProtect(pShellcode, sizeof(shellcode), PAGE_READWRITE, &OldProtect);

https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html


#BHASIA @BlackHatEvents

Niche memory scanners
• Patriot - anomalous thread CONTEXT structures
• Hunt-Sleeping-Beacons - anomalous Wait call stacks
• TickTock - anomalous timer-queue timers



#BHASIA @BlackHatEvents

Immutable code page principle violations
• Once code pages are written they should never change.
• The memory protection progression for code pages should only be RW to RX.

• Microsoft-Windows-Threat-Intelligence PROTECTVM_LOCAL ETW events
• IsExecutable(LastProtectionMask) && !IsExecutable(ProtectionMask)

• (Optionally) Anomalous call stack detection



#BHASIA @BlackHatEvents

An interesting discovery



#BHASIA @BlackHatEvents

Control Flow Guard bitmap recap
• Time efficient lookup of valid indirect call targets
• One bitmap per process
• Each 2 bits corresponds to 16 virtual addresses
• x64 bitmap is 2TB – mostly shared or reserved

• PE files bring their own bitmap
• Copied to the correct offset in process bitmap during image load 

• Permissive backwards compatibility for JIT
• Memory manager simply marks all executable private addresses as valid targets



#BHASIA @BlackHatEvents

CFG bitmap anomalies
• The VAD tree only stores original protection and current protection.
• The CFG bitmap (inadvertently) records the location of all private memory 

addresses that are, or have previously been, executable during the 
lifetime of the process.

• This can be used to flag memory regions that have been changed from 
executable to non-executable.



#BHASIA @BlackHatEvents

Evasion opportunities
• Protection fluctuation approaches are actually quite noisy.

• Hide your code pages in plain sight.
• Obfuscate them against current signatures ahead of time.

• Encrypt your data pages when not in use.

• Or launch in a new process every time.
• Scheduled Tasks etc.



#BHASIA @BlackHatEvents

Hunting via process behaviour summaries



#BHASIA @BlackHatEvents

Black Hat Sound Bytes
• Threat-Intelligence ETW can be used to detect violations of the immutable 

code page principle.
• The CFG bitmap can be used to detect shellcode hidden at a point-in-time 

via changed memory protections such as Gargoyle.
• Kernel telemetry can be used to construct process behaviour summaries –

which can be used to identify behavioural outliers for more detailed 
investigation.

• But, without intervention from Microsoft, private executable memory will 
likely remain an indefensible boundary for kernel-mode security products.



#BHASIA @BlackHatEvents

Questions

Tools

• https://github.com/jdu2600/EtwTi-FluctuationMonitor

• https://github.com/jdu2600/CFG-FindHiddenShellcode

• https://github.com/jdu2600/Etw-SyscallMonitor

https://github.com/jdu2600/EtwTi-FluctuationMonitor
https://github.com/jdu2600/CFG-FindHiddenShellcode
https://github.com/jdu2600/Etw-SyscallMonitor


#BHASIA @BlackHatEvents

Detection References
• https://github.com/VirusTotal/yara
• https://github.com/hasherezade/pe-sieve
• https://github.com/forrest-orr/moneta
• https://www.elastic.co/security-labs/hunting-memory
• https://www.elastic.co/blog/detecting-cobalt-strike-with-memory-signatures
• https://github.com/joe-desimone/patriot
• https://github.com/thefLink/Hunt-Sleeping-Beacons
• https://github.com/WithSecureLabs/TickTock

https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://github.com/joe-desimone/patriot
https://github.com/thefLink/Hunt-Sleeping-Beacons
https://github.com/WithSecureLabs/TickTock


#BHASIA @BlackHatEvents

Evasion References
• https://github.com/JLospinoso/gargoyle
• https://www.cobaltstrike.com/blog/cobalt-strike-3-12-blink-and-youll-miss-it/
• https://github.com/realoriginal/foliage
• https://github.com/mgeeky/ShellcodeFluctuation
• https://github.com/thefLink/DeepSleep
• https://github.com/Cracked5pider/Ekko
• https://www.blackhillsinfosec.com/avoiding-memory-scanners/

https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/


#BHASIA @BlackHatEvents

OS References
• https://en.wikipedia.org/wiki/W%5EX
• https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-

memoryapi-virtualprotect
• https://github.com/jdu2600/Windows10EtwEvents/blame/master/manifest/M

icrosoft-Windows-Threat-Intelligence.tsv
• https://www.elastic.co/security-labs/finding-truth-in-the-shadows

https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/
https://www.blackhillsinfosec.com/avoiding-memory-scanners/

