
Leveraging Streaming-Based Outlier Detection and
Sliceline to Stop Heavily Distributed Bot Attacks

Antoine Vastel
Head of Research

antoine.vastel@datadome.co

Konstantina Kontoudi
Lead Data Scientist

konstantina.kontoudi@datadome.co

In this paper, we discuss how to leverage streaming-based outlier detection and
Sliceline to quickly and safely generate large volumes of rules/signatures that can be
used to block malicious bot traffic.

While machine learning (ML) use has becomemore and more widespread, rules are
still relevant in a security context. Indeed, companies have invested a lot in efficient
rule engines capable of quickly evaluating a significant volume of rules. Moreover,
rules are often more convenient to create, manipulate, and interpret, making them
still valuable in addition to ML approaches.

We showcase that while Sliceline was designed initially to identify subsets of data
where ML models perform badly, its use can be adapted to generate a large number
of rules linked to an attack in an unsupervised way, i.e. without using labeled data.
We also present our optimized Python open-source implementation of Sliceline and
show how it can be used in a particular, but difficult, subset of bot detection:
distributed credential stuffing attacks, in which attackers leverage thousands of
infected IP addresses to conduct their attack and bypass traditional security
mechanisms such as IP-based rate limiting.

Through a real-world example, we first explain how streaming-based detection can
be used to detect such attacks, and how we use data modeling to apply Sliceline on
server-side signals (HTTP headers, TLS fingerprints, IP address, etc.) to identify and
generate blocking signatures linked to a distributed attack. This approach enables us
to block around 2.2 million malicious login attempts per month across dozens of
customers.

Finally, we explain how this approach generalizes to other security use cases besides
bot detection, and how it can be used in different rule engines.



Introduction
Bot detection refers to the process of identifying and distinguishing between human
users and automated software programs, known as bots. The term "bot" can refer to
a wide variety of programs, including search engine crawlers and malicious bots
designed to carry out scalping or denial-of-service attacks.

Bot detection is important because bots can be used for a variety of purposes, some
of which may be harmful or unethical. For example, bots can be used to carry out
fraudulent activities such as account takeover or credential stuffing, to scrape
websites for sensitive information, or to automate the posting of spammessages on
social media platforms.

Several techniques and signals can be used for bot detection, including analyzing
user behavior patterns with ML [2], browser fingerprinting [3][4], and other forms of
fingerprinting such as TLS fingerprinting [5]. Some common indicators of bot activity
include high-frequency requests, inconsistent patterns of user behavior, and the use
of non-standard user agents or other identifying information.

Effective bot detection is an important part of maintaining the security and integrity
of online systems and platforms, and is used by a wide variety of organizations,
including e-commerce sites, social media platforms, and financial institutions.

Despite the fact that ML techniques are becoming increasingly used for bot
detection, most companies have efficient rule engines available that operate hand in
hand with ML algorithms. The advantage of rules is they can be instantaneously
deployed to mitigate attacks and are highly interpretable, making them a great
addition to ML based bot detection.

In this paper, we focus on bot detection using signals that can be collected at the
application layer, more specifically, HTTP headers and client-side signals. In
particular, we will explain how we can analyze large amounts of traffic data using
streaming algorithms, identify anomalous events or outliers, and analyze the
underlying traffic signatures to infer rules. Those techniques can be transposed to
other bot detection signals, and to other cybersecurity domains where one can
perform a behavioral analysis, to identify a portion of data that is suspect, and then
use this information to extract rules.

1



Using Sliceline for Rule Generation

Sliceline is an algorithm proposed by Sagadeeva et al.[1] that can be used for ML
model debugging. When training a MLmodel, we usually compute the average
performance of the algorithm on some holdout dataset. Sliceline allows us to find
which regions in the feature space are responsible for very high error rates. In other
words, it finds slices, i.e. subspaces of the feature space where the model performs
worse than average. Those slices are in fact expressed as a conjunction of conditions
on the features which can be easily converted to rules.

The algorithm takes as input the dataset and the error for every sample in the
dataset. It requires the features in the dataset to be categorical. This is adapted to
the bot detection problem, as data collected are mostly categorial, e.g. user-agent,
country, or information about the type of device (GPUmodel etc). Note that it does
not mean that it cannot be used with continuous features. In case of continuous
features, we need to apply pre-processing to define distinct intervals and assign
every value to an interval. This process, called binarization, turns continuous features
into categorical features.

We use a simple example to illustrate the intended use case of Sliceline: to debug ML
models. In our example, we consider a dataset with only 3 features f1, f2, and f3.
Furthermore, we suppose that we trained a classification model and computed the
log loss associated with every sample in the holdout dataset.

f1 f2 f3 error

a d h 0.1

a e f 0.2

b d f 0.9

a d f 0.8

c e h 0.2

c d h 0.1

Figure 1: example dataset with 3 categorical features and associated per-sample error.

Examples of slices that Sliceline can find with this input are:

2



- f1 = b with an average error of 0.9
- f2= d∧ f3= f with an average error of 0.85

Both of those slices have a higher error than the average 0.38 of the dataset.

In principle, the slices we are looking for can be a combination of a lot of predicates,
and the space of possible slices grows exponentially with the number and the
cardinality of features. Sliceline manages to explore this space by using two
techniques:

- Enumerating and evaluating slices using sparse linear algebra that can profit
from existing efficient implementations.

- Pruning of slice candidates without accessing the data based on a score that
balances between the slice size and the average slice error.

Those techniques make the algorithm efficient and scalable, with the exact
complexity depending highly on the details of the dataset.

While, in this paper, we don’t go through the implementation details of the Sliceline
algorithm, we want to give readers some intuition on the usage of linear algebra to
evaluate and generate rules. First, we start with our toy dataset and perform a first
transformation: one-hot encoding. One-hot encoding is a method that allows
encoding categorical data as numbers by creating one column per feature value. In
the example below, the feature f1 takes on 3 values a, b, and c, so to encode it, we
create 3 binary columns as shown below.

Figure 2: Example that shows how to use matrix multiplication to find matching samples.

3



The same transformation allows us to express rules as binary vectors as well: the
vector will contain the value 1 at the position of the conditions it enforces. For
instance, for the rule f1 = b, only the second element of the binary vector will be one
as this condition is represented by the second column in the one-hot encoded space.
We can represent in this way all the candidate rules and easily compute a mask
indicating which sample is matching every rule. If we denote the one-hot encoded
feature matrix F and the matrix of rules R, then the result of the matrix multiplication
FxR gives us exactly this: a mask where the rows correspond to samples and the
columns correspond to rules. An element i,j of this matrix is equal to 1, which means
that sample i matches with the rule j.

Having this mask, denoted L at hand, we can easily compute the average error for
each slice, i.e. for the ensemble of samples matching a certain rule. This computation
is central in the Sliceline algorithm as it allows computing the score, based on which
the space of possible slices is explored. Thus, to compute the average slice error, we
start by computing the matrix product of the error vector with the mask L. This gives
us the total error in the slice. We can compute the product of L with the unit vector
as well, effectively counting the number of samples that matched each rule. Finally,
we can divide element-wise the total error and the size of the slice to obtain the
average error.
This is the main idea behind the usage of linear algebra operations to evaluate rules.

Figure 3: Example that shows how to compute mean slice error using dot product.

Even though Sliceline was proposed as a model debugging technique, we can
repurpose it and use it to generate rules that target a specific group of data. In the

4



cybersecurity context, we place ourselves in a situation where a defender gathered
data from two groups:

- Group 0: A group considered normal, constituted mostly of non-malicious
samples.

- Group 1: Another group of data that contains both malicious and normal traffic
samples.

Then, we can assign group 0 to normal data and group 1 to suspicious data. Then, if
we treat the group as the error that we give as input to the Sliceline algorithm, it will
find slices targeting the suspicious group, as it is the one with the higher error. We
show below the same toy dataset with the error replaced by the group.

f1 f2 f3 group

a d h 0

a e f 0

b d f 1

a d f 1

c e h 0

c d h 0

Figure 4: Example dataset with 3 categorical features and associated group.

This simple technique allows us to generate rules to target bot traffic, provided that
we can define two distinct groups of data.

Optimized Python Open-Source Implementation of Sliceline
The authors of the original paper [1] provided an implementation of the algorithm in
R and Apache SystemDS. We decided to implement it in Python and open-source it
as a package for the community. We started by re-implementing the logic using
Python and then implemented some performance improvements, which lead to a
1000-time speed-up compared to the R implementation.
This was possible because we used available Python libraries, such as Numpy, which
leverage underlying C++ code but also sparse matrices. On top of that, we replaced

5



some for-loop constructs with matrix multiplications which lead to further speed
improvements. The source code of the package is available on GitHub [6], it is
compatible with the pandas python library and follows the scikit-learn API
conventions.

Applying Sliceline to a Toy Bot Detection Dataset
In this section, we apply Sliceline to the bot detection problem on a simple toy
dataset constituted of HTTP headers and contextual information. For simplicity, we
have created a dataset of traffic data, having both human and bot characteristics. We
used data from a French e-commerce website. We collected data with old sessions
coming from French-speaking countries that we consider as human and assigned
them group 0. We also collected data from the same website coming from
non-french speaking countries, with new sessions that use datacenter IP addresses,
or IPs that were recently flagged as proxies, and assigned group 1 to the suspicious
traffic.

Figure 5: Sample of a real-world e-commerce traffic dataset constituted of human (group 0)
and potential bot (group 1) traffic.

6



Python

Python

Unset

The following Python code samples showcase how we can apply Sliceline to our
dataset. We store the dataset using a pandas data frame df:

from sliceline.slicefinder import Slicefinder

sf = Slicefinder(
alpha = 0.80,
k = 4,
max_l = df.shape[1],
min_sup = 1,
verbose = True

)

sf.fit(df.drop("group", axis=1), df["group"])

Once the algorithm is fitted on the data, we can use the slices found to produce rules
in the syntax that best suit our requirements. We can, for instance, do something
like:

for slice, stats in zip(sf.top_slices_, sf.top_slices_statistics_):
rule = None
for feat, value in zip(df.columns, slice):

if value is not None:
if rule is None:

rule = f"`{feat}`=`{value}`"
else:

rule += f" && `{feat}`=`{value}`"
print(f"{rule} | slice size: {stats['slice_size']}")

This simple piece of code gives the following rules in our case:

`Country`=`Germany` | slice size: 4149.0
`User Agent`=`Chrome` && `Country`=`Germany` | slice size: 4133.0
`Country`=`Germany` && `Accept Language`=`en-US,en;q=0.9` | slice size:
4097.0
`User Agent`=`Chrome` && `Country`=`Germany` && `Accept
Language`=`en-US,en;q=0.9` | slice size: 4097.0

7



It means that, for this particular website, attacks were coming from Germany, using
Chrome and a specific accept-language header.

Application to Distributed Attacks

Sliceline can be applied to the distributed bot attack detection problem by defining
two distinct groups of traffic:

- Traffic before the attack: this part of the traffic contains only human data
(group 0).

- Traffic during the attack: this part of the traffic contains human and bot traffic
(group 1).

Note that in a real-world context, group 0 may contain some residual bot traffic. How
it impacts the quality of the rules generated by Sliceline depends on the proportion
of bot traffic in group 0, and how similar it is to the bot traffic also present in group 1.

Figure 6: Graph of a time series illustrating the 2 groups used by Sliceline: human traffic
before the attack (green, group 0) and mixed bot and human traffic (red, group 1).

The idea is presented in the graph above where we suppose that an anomaly
detection algorithm provides the attack start time, and then a traffic analysis is
triggered a bit later. If we identify the traffic before the attack as group 0 and traffic
during the attack as group 1, then by applying Sliceline, we will find rules targeting
the bot traffic.

8



The approach we propose to detect distributed attacks does not rely on traffic
analysis by IP or session. Instead, we analyze the global traffic of each customer. To
this end, we compute several aggregations and analyze their evolution over time.
Examples of aggregations we compute are:

- the number of requests;
- the number of unique User Agents;
- the number of unique countries;
- the number of unique IP addresses;

All aggregations are computed over 10-minute windows in a streaming manner
using Apache Flink [7]. Note that the size of the time window can be parametrized
depending on the use cases:

- A small time window allows for faster detection but may increase false
positives.

- A bigger time windowmay introduce lag in the outlier detection but
decreases the risk of false positives.

Figure 7: Example of four different aggregation times series (request count, number of IPs,
number of user-agents, number of countries).

We analyze each time series independently and detect extremely high values using a
z-score-based algorithm. A rolling window allows us to estimate the distribution of
normal data and, based on this distribution, compute the z-score of new values that
arrive. If the z-score exceeds a certain threshold, then we declare that an attack
started and the traffic analysis is triggered.

This algorithm is lightweight and can be easily implemented in a streaming manner.
The algorithmmay suffer from 2 distinct issues:

9



- False positives: detecting an attack that is not due to bots either because the
z-score threshold is too sensitive or because there was an increase in traffic
due to some special event (breaking news, limited-edition sales, etc).

- False negatives: missing attacks that should have been detected.

To tackle the false negatives issue, one can gather example time series and label the
attacks that need to be detected. This labeled dataset can further be used to better
tune the thresholds. Regarding false positives, the rule-generation step that follows
prevents us from generating rules that target humans. If the traffic spike is due to
human traffic, then Sliceline will not find any difference between the characteristics
of the traffic before and after the attack, and will therefore generate no rules.

Results: Real-World Credential Stuffing Attack
Blocked by Sliceline
To exemplify our approach, we show a concrete example of an attack blocked using
our streaming based outlier detection combined with Sliceline on a gaming
platform. Figure 8 shows 4 different time series:

1. Blue: HTTP login traffic classified as human by detection engine (may contain
bot traffic that has not been detected yet).

2. Orange: Traffic matching the rules generated by Sliceline before it gets
deployed in the detection engine (undetected subset of the attack).

3. Green: Blue - Orange time series. Traffic considered as human after
enforcement of the Sliceline generated rules.

4. Red: HTTP login traffic matching and blocked by the rules generated by
Sliceline.

The login traffic of the gaming platform exhibited a small spike (blue line) that was
captured by our anomaly detection algorithm. Sliceline was applied and generated a
rule that subsequently blocked all the traffic denoted by the red line and totaled
more than 3 million requests in a week.

10



Figure 8: Time series related to the application of Sliceline on the login endpoint of a gaming
platform.

The same blocked traffic is shown below but instead of the request number, we
show the number of different IPs. More than 187k distinct IPs were used to distribute
this attack.

Figure 9: Distinct number of IP addresses/3h during the credential stuffing attack on a
gaming platform.

11



While we leverage Sliceline in different ML pipelines to generate rules, our approach
that combines streaming based outlier detection and Sliceline to protect login
endpoints enables us to block around 2.2 million malicious login attempts per month
across dozens of customers.

Conclusion
In order to bypass traditional bot detection techniques, such as IP based rate limiting
and signature-based blocking, bots tend to distribute their attacks across thousands
of IP addresses and frequently change their fingerprints. We proposed an approach
that combines streaming-based anomaly detection with Sliceline to detect
distributed bot attacks.

While Sliceline was originally proposed as a ML model debugging algorithm, we
showcased how it can be used to generate rules that match malicious bot traffic
activity. This approach enables us to block around 2.2Mmalicious login attempts per
month across dozens of customers.

We implemented and open-sourced an optimized Python version of Sliceline. We
rewrote part of the code to leverage matrix multiplication and sparse matrices, which
lead to a 1000-time speed-up compared to the R implementation.

In this paper, we use the distributed bot attack detection problem to showcase our
approach. However, our approach is entirely agnostic to the rules engine and can be
applied to other cybersecurity settings provided that one can define the groups of
normal and abnormal behavior.

References
[1] Sagadeeva, Svetlana, and Matthias Boehm. "Sliceline: Fast, linear-algebra-based
slice finding for ml model debugging." Proceedings of the 2021 International
Conference on Management of Data. 2021.

[2] Jacob, Gregoire, Engin Kirda, Christopher Kruegel, and Giovanni Vigna.
"PUBCRAWL: Protecting Users and Businesses from CRAWLers." In USENIX Security
Symposium, pp. 507-522. 2012.

[3] Bursztein, Elie, et al. "Picasso: Lightweight device class fingerprinting for web
clients." Proceedings of the 6th Workshop on Security and Privacy in Smartphones
and Mobile Devices. 2016.

12



[4] Vastel, Antoine, et al. "FP-Crawlers: studying the resilience of browser
fingerprinting to block crawlers." MADWeb'20-NDSSWorkshop on Measurements,
Attacks, and Defenses for the Web. 2020.

[5] Li, Xigao, et al. "Good bot, bad bot: Characterizing automated browsing activity."
2021 IEEE symposium on security and privacy (sp). IEEE, 2021.

[6] https://github.com/DataDome/sliceline

[7] https://flink.apache.org/

13

https://github.com/DataDome/sliceline
https://flink.apache.org/

