

BRIEFINGS

When Knowledge Graph Meets TTPs: Highly Automated and Adaptive **Executable TTP Intelligence for Security Evaluation**

Jack Tang, Lorin Wu, Porot Mo

About US

Jack Tang @360 Digital Security Group

Jack, the team leader, has over 15 years of expertise in the security industry and is presently focusing on the use of MITRE ATT&CK® in security operations and threat intelligence. He is knowledgeable on kernel and virtualization vulnerability research for Android, Mac, and Windows. He ranked Top 16 on the MSRC in 2016 and Top 34 in 2015. In 2016, he was awarded the Microsoft Mitigation Bypass Bounty. Jack has lectured at security conferences such as CanSecWest, Black Hat, HITCon, and PacSec.

Lorin Wu @360 Digital Security Group

Building an offensive and defensive knowledge graph for cyber security is what Lorin is currently working on. He spent many years working at Trend Micro, where he concentrated on the creation of heuristic patterns and mobile sandbox technologies. During this period, he identified various international cyber security operations that were reported to INTERPOL and Google Security Team.

Porot Mo @360 Digital Security Group

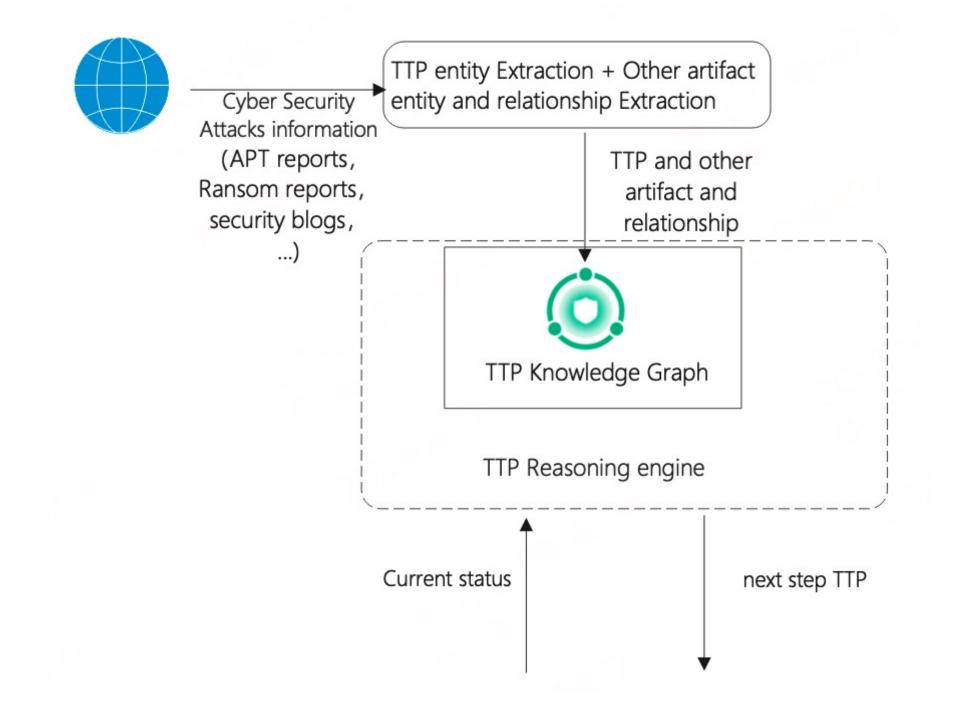
Porot received a master's degree from the University of Chinese Academy of Sciences after graduating from the University of Science and Technology of China. He is currently devoted to the study of offensive and defensive technologies and has three years of expertise in sandbox development.

Agenda

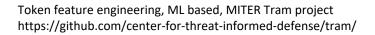
- Background
- Solution Overview
- TTP(Tactics, Techniques, Procedures) Knowledge Graph Construction
 - TTPs Extraction Automatically
- Adaptive attack path reasoning for BAS (Breach and Attack Simulation)

BAS (Breach and Attack Simulation) increasingly needs:

- Keeping up with the TTPs of attackers.
- Selecting the appropriate TTP simulation according to the actual situation of the target organization.
- Using the attack path (sequential TTP) to assess the entire defense-in-depth of the target organization.



Solution Overview


TTP Knowledge Graph Construction - TTPs Extraction Automatically

The Prior Art

Take NER extraction as the task Token feature engineering, ML based, MITER Tram project

GPT3.5, GPT 4.0 based https://chat.openai.com/

TTPExtractor vs. ChatGPT

	OpenAl ChatGPT	Luwak TTPExtractor
Precision	0.2015	0.7241
Recall	0.4927	0.5769
F1 Score	0.2861	0.6422

- 1. The ChatGPT version is 3.5, the test date is 5/5/2023;
- 2. The test set consists of 5 Chinese reports and 5 English reports, and the final score is obtained after reviewing the predicted results by security experts;
- 3. Please refer to another attachment for details [Comparative data of TTPExtractor and ChatGPT], includes predicted results for each report, expert review results for each report, and prompts for using GPT.

Distinguish primary and secondary tactics and techniques, and extract them based on actual attack scenarios

November 12, Disabled antivirus (AV) programs such as Windows Defender 2022 add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiVirus /t REG DWORD /d 1 /f add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiSpyware /t REG DWORD /d 1 /f add "HKLM\Software\Policies\Microsoft\Windows Defender\MpEngine" /v MpEnablePus /t REG DWORD /d 0 /f

Primary	Tactic
True	Defense Evasion (TA0005)
False	Defense Evasion (TA0005)

Technique

Disable or Modify Tools (T1562.001)

Modify Registry (T1112)

Extract tactics and techniques involved in attacks from multiple perspectives such as command lines, tools, and code snippets

The fetched payload is supposed to be saved in %Profile%\update.dll. Eventually, the fetched file is spawned with the following commands:

- Command #1: rundll32.exe %Profile%\update.dll,#1 5pOygllrsNaAYqx8JNZSTouZNjo+j5XEFHzxqllqpQ==
- Command #2: rundll32.exe %Profile%\update.dll,#1 5oGygYVhos+lagBINdFaVJSfMiwhh4LCDn4=

Primary	Tactic
True	Defense Evasion (TA0005)

Technique

Rundll32 (T1218.011)

Key problems to improve the accuracy of TTP extraction

Extract based on the context of the attack description in the report

The first stage macro checks for the presence of a Kaspersky security solution on the victim's machine by trying the following file paths:

- C:\Windows\avp.exe # Kaspersky AV
- C:\Windows\Kavsvc.exe # Kaspersky AV
- C:\Windows\clisve.exe # Unknown

If a Kaspersky security solution is indeed installed on the system, it enables trust access for Visual Basic Application (VBA) by setting the following registry key to '1':

HKEY_CURRENT_USER\Software\Microsoft\Office\[Application.Version]\Word\Security\AccessVBOM

By doing so, Microsoft Office will trust all macros and run any code without showing a security warning or requiring the user's permission. Next, the macro creates a mutex named 'sensiblemtv16n' and opens the malicious file once more. Thanks to the "trust all macros" setting, the macro will be executed automatically.

Primary	Tactic	Technique
True	Defense Evasion (TA0005)	Modify Registry (T1112)
False	Discovery (TA0007)	Security Software Discovery (T1518.001)

- Pretrained language models
 - BERT
 - Whole Word Masking(WWM) technology
- Transfer learning
 - Finetune

https://www.javatpoint.com/transfer-learning-in-machine-learning

Layer: 10 🗸		Layer: 9 🗸 Attention: All	~
[CLS]	[CLS]		
after	after	[CLS]	[CLS]
the	the	通	通
ransom	ransom	过	过
##ware	##ware	修	修
en	en	改	改
##ume	##ume	注	注
##rates	##rates	m 🔪	册
user	user	表	表
files	files	启	启
ı	1	动	动
[SEP]	[SEP]	项	项
it	it		
starts	starts	,	, [CED]
en	en	[SEP]	[SEP]
##cr	##cr	实	实
##yp	##yp	现	现
##ting	##ting	持	持
those	those	久	久
files	files	化	化
		•	0
[SEP]	[SEP]	[SEP]	[SEP]

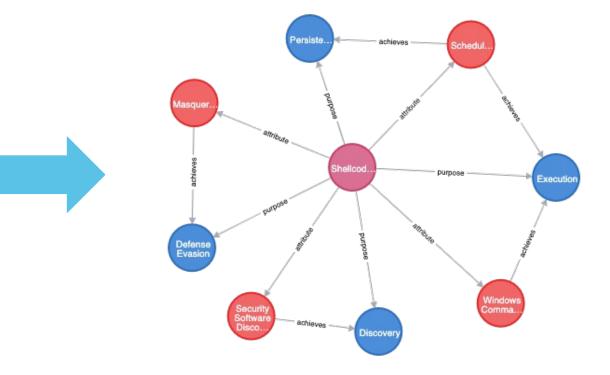
After the ransomware enumerates user files. the ransomware starts encrypting those files.

bert-base-uncased, English

通过修改注册表启动项,实现持久化。

bert-wwm-ext, Chinese

Extract TTPs using pretrained language models and transfer learning


The pipeline of extract TTPs from unstructured text

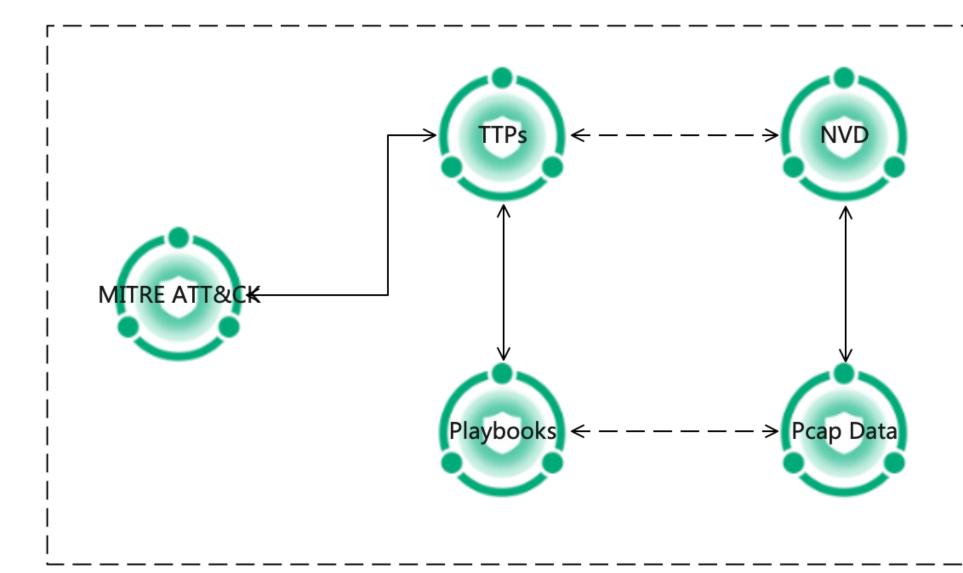
Shellcode first checks whether there is a Kaspersky main process avp.exe or Avast main process AvastSvc.exe in the current system, and if it exists, execute the shell command "/c schtasks /create /sc minute /mo 1 /tn WindowsUpdate /tr C: \\ProgramData\\OneDrive.exe".

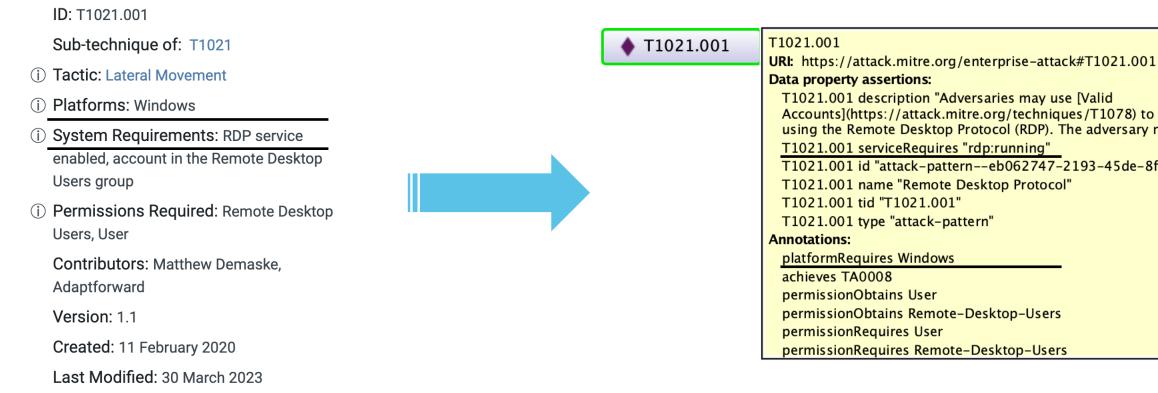
Primary	Tactic	Technique
True	Persistence (TA0003)	Scheduled Task (T1053.005)
False	Execution (TA0002)	Windows Command Shell (T1059.003)
False	Defense Evasion (TA0005)	Masquerade Task or Service (T1036.004)
False	Discovery	Security Software Discovery

(T1518.001)

(TA0007)

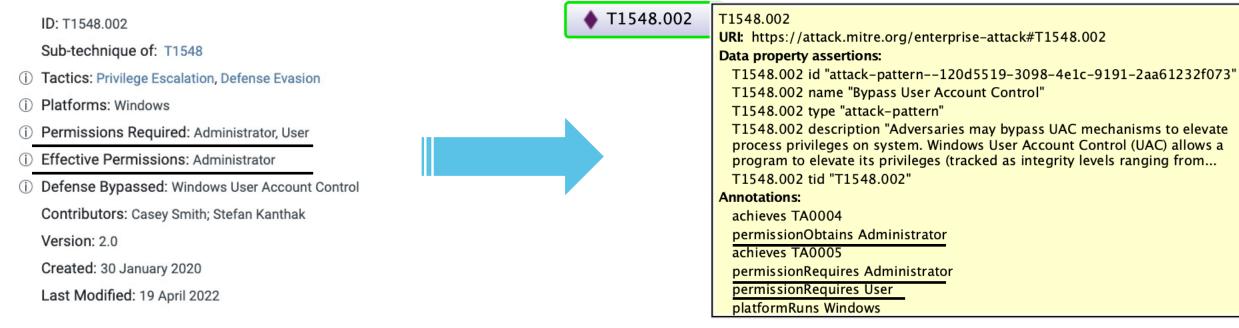
TTP Knowledge Graph Construction - Semantic Web Building





TTP Knowledge Graph Construction

- Appropriate offensive entities and relationships
 - Technique [platformRequires] –> Platform
 - Technique [serviceRequires] –> ServiceState



Accounts](https://attack.mitre.org/techniques/T1078) to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform act... T1021.001 id "attack-pattern--eb062747-2193-45de-8fa2-e62549c37ddf"

- Appropriate offensive entities and relationships
 - Technique [achieves] –> Tactic
 - Technique [permissionRequires] –> Permission
 - Technique [permissionObtains] –> Permission

- Appropriate defensive entities and relationships
 - DataSource [selects] –> DataComponent
 - DataComponent [detects] -> Technique

ID	Data Source	Data Component	Detects		Ţ
DS0017	Command	Command Execution	Monitor executed commands and arguments that may bypass UAC mechanisms to elevate process privileges on system.		
DS0009	Process	Process Creation	Monitor newly executed processes, such as eventvwr.exe and sdclt.exe, that may bypass UAC mechanisms to elevate process privileges on system.		
		Process Metadata	Monitor contextual data about a running process, which may include information such as environment variables, image name, user/ow that may bypass UAC mechanisms to elevate process privileges on system.	ner	
DS0024	Windows Registry	Windows Registry Key Modification	Some UAC bypass methods rely on modifying specific, user-accessible Registry settings. For example:* The eventww. the [HKEY_CURRENT_USER]\Software\Classes\mscfile\shell\open\command Registry key. ^[6] * The sdclt.exe bypa [HKEY_CURRENT_USER]\Software\Microsoft\Windows\CurrentVersion\App Paths\control.exe and [HKEY_CURRENT_USER]\Software\Classes\exefile\shell\runas\command\isolatedCommand Registry keys. ^{[65][66]} A monitor these Registry settings for unauthorized changes.	vs–Registr	Windows-Registry URI: https://attack.mitre.org/enterprise-attack#Windows-Re Data property assertions: Windows-Registry id "x-mitre-data-source0f42a24c-e035-4f93-a91c-5f707 Windows-Registry dsid "DS0024" Windows-Registry type "x-mitre-data-source"

- Windows-Registry description "A Windows OS hierarchical database that stores much of the information and settings for software programs, hardware devices, user preferences, and operating-system configurations(Citation: Microsoft R...
- Annotations:

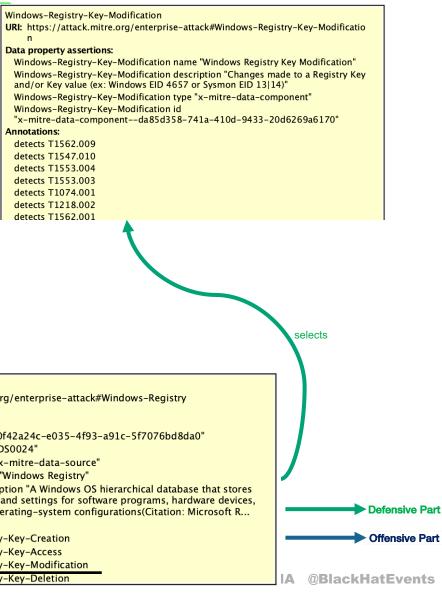
Windows-Registr

y-Key-Modificat...

n

Annotations:

detects T1562.009 detects T1547.010 detects T1553.004 detects T1553.003 detects T1074.001 detects T1218.002 detects T1562.001


Data property assertions:

- selects Windows-Registry-Key-Creation
- selects Windows-Registry-Key-Access
- selects Windows-Registry-Key-Modification

Windows-Registry name "Windows Registry"

- selects Windows-Registry-Key-Deletion

Windows-Registr

y-Key-Modificat...

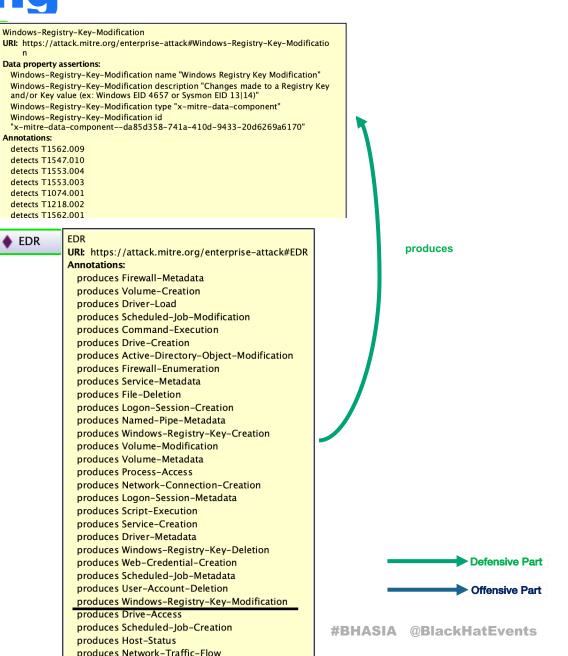
Windows-Registry-Key-Modification

Windows-Registry-Key-Modification id

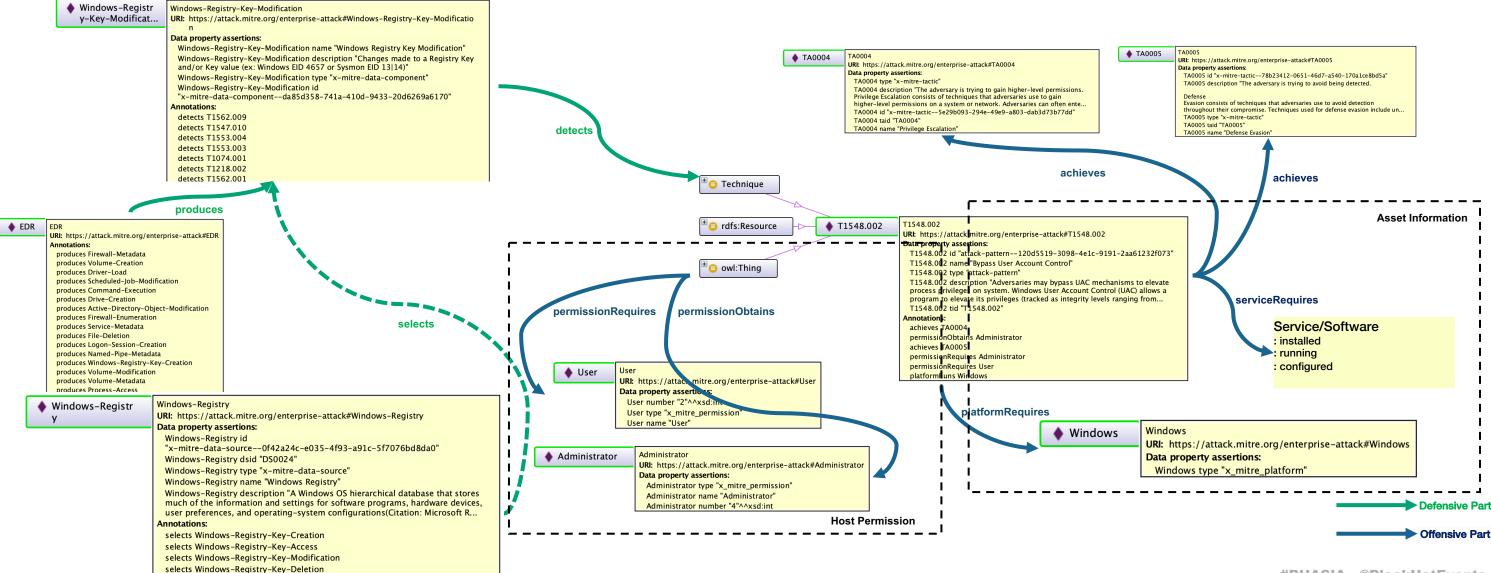
Data property assertions:

n

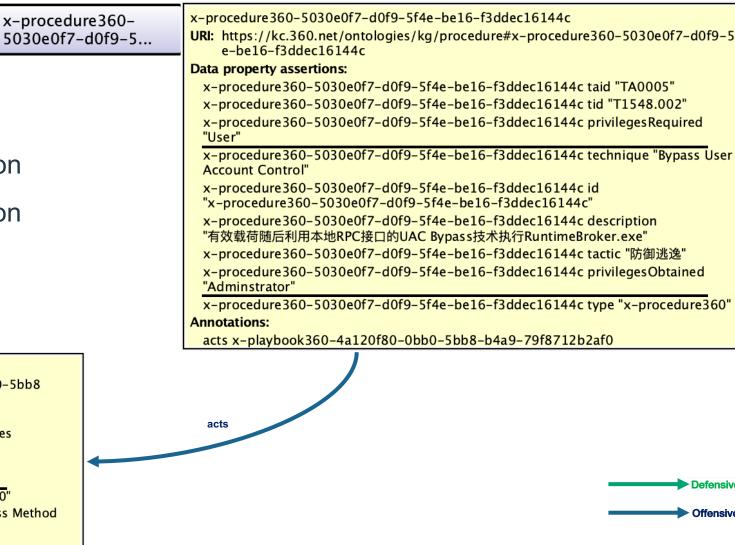
Annotations:


detects T1562.009 detects T1547.010 detects T1553.004 detects T1553.003

detects T1074.001


- Appropriate defensive entities and relationships
 - DefenseProduct [produces] –> DataComponent
 - DataComponent [detects] –> Technique

	DataCompo		reeningue		detects T121 detects T156	
	♦ Windows-Registr y-Key-Modificat	Windows-Registry-Key-Modification URI: https://attack.mitre.org/enterprise-attack#Windo n Data property assertions: Windows-Registry-Key-Modification name "Windows Windows-Registry-Key-Modification description "Ch and/or Key value (ex: Windows EID 4657 or Sysmon Windows-Registry-Key-Modification type "x-mitre-c Windows-Registry-Key-Modification id "x-mitre-data-componentda85d358-741a-410d- Annotations: detects T1562.009 detects T1553.004 detects T1574.010 detects T1574.001 detects T1218.002 detects T1562.001	Registry Key Modification" anges made to a Registry Key EID 13 14)" Jata-component"		♦ EDR	EDR URI: https://attack.mitre.org/enter Annotations: produces Firewall-Metadata produces Volume-Creation produces Driver-Load produces Command-Execution produces Command-Execution produces Drive-Creation produces Active-Directory-Obje produces Firewall-Enumeration produces Service-Metadata produces File-Deletion produces Logon-Session-Creati produces Windows-Registry-Ke
Windows-Registr y	Windows-Registry dsid "DS0024" Windows-Registry type "x-mitre- Windows-Registry name "Window Windows-Registry description "A much of the information and sett	c-e035-4f93-a91c-5f7076bd8da0" -data-source" /s Registry" Windows OS hierarchical database that stores ings for software programs, hardware devices, system configurations(Citation: Microsoft R reation ccess lodification	selects			produces Volume-Modification produces Volume-Metadata produces Process-Access produces Network-Connection- produces Logon-Session-Metad produces Script-Execution produces Service-Creation produces Driver-Metadata produces Windows-Registry-Ke produces Web-Credential-Creat produces Scheduled-Job-Metad produces User-Account-Deletio produces Windows-Registry-Ke produces Drive-Access produces Scheduled-Job-Creation produces Scheduled-Job-Creation produces Network-Traffic-Flow

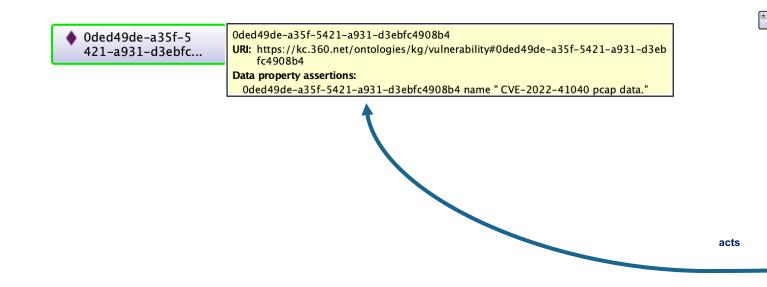


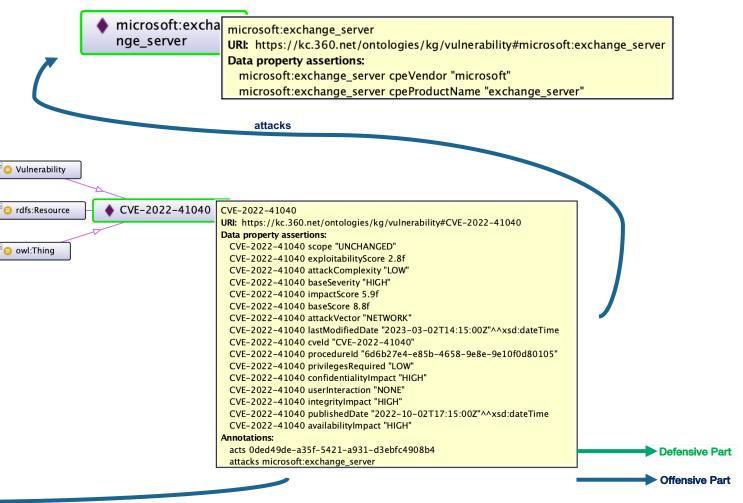
TTPs and playbooks semantic web building

x-procedure360-

- Extracted TTPs and their playbooks
 - Procedure [taid] –> Tactic
 - Procedure [tid] –> Technique
 - Procedure [privilegesRequired] –> Permission
 - Procedure [privilegesObtained] –> Permission
 - Procedure [acts] –> Playbook
 - Playbook [attacks] –> Asset

x-playbook360-4 a120f80-0bb0-5b	 x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 URI: https://kc.360.net/ontologies/kg/procedure#x-playbook360-4a120f80-0bb0-5bb8 -b4a9-79f8712b2af0 Data property assertions: 	
	x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 description " Executes User Account Control Bypass according to the methods listed below. Upon successful execution you should see event viewer load and two administrativ x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 platform "Windows"	+
	x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 type "x-playbook360" x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 name "UACME Bypass Method 31 " x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0 id "x-playbook360-4a120f80-0bb0-5bb8-b4a9-79f8712b2af0"	

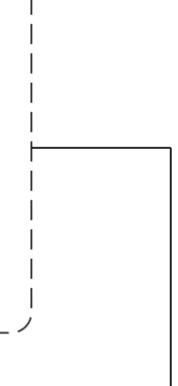

URI: https://kc.360.net/ontologies/kg/procedure#x-procedure360-5030e0f7-d0f9-5f4

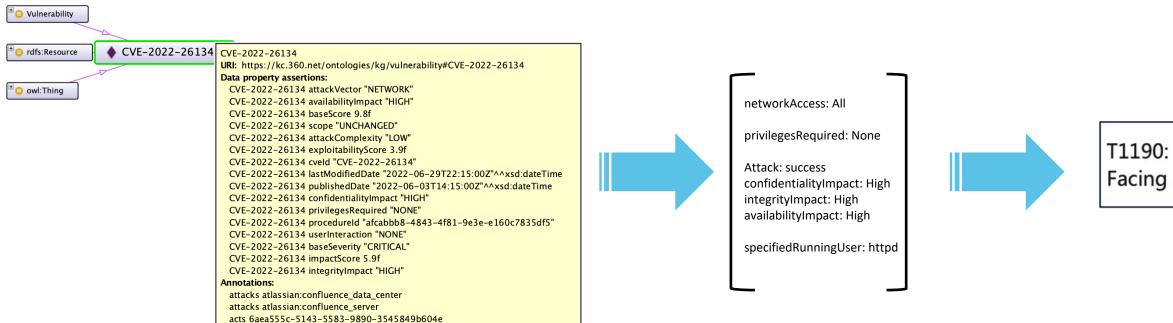

Defensive Part Offensive Part

TTPs and playbooks semantic web building

- NVD vulnerabilities and their PCAP data
 - Vulnerability [data property] –> CVSS
 - Vulnerability [attacks] –> Asset
 - Vulnerability [acts] –> Playbook

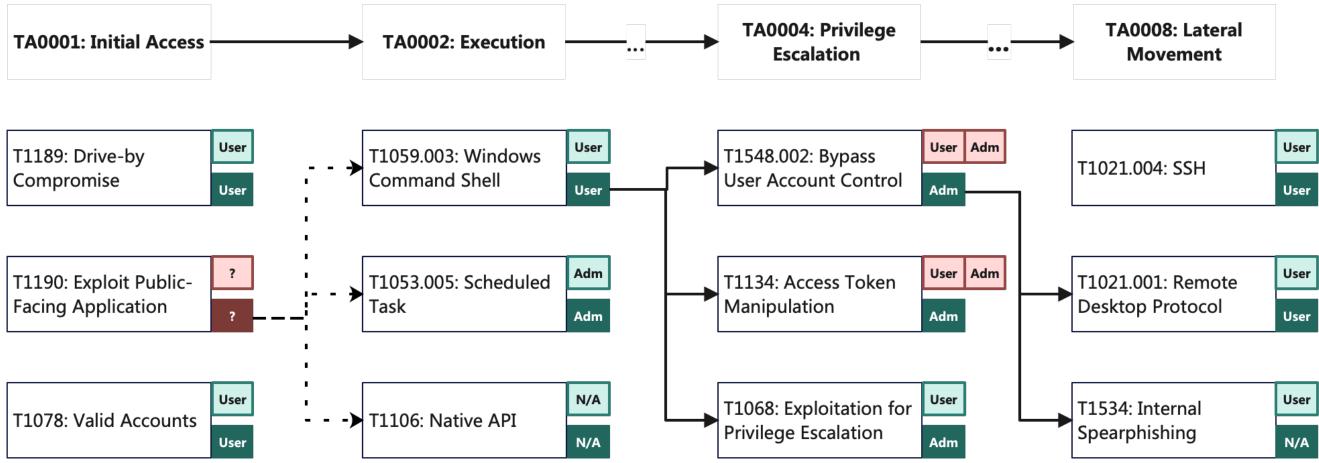
- Asset information for the target organization
 - Results of asset mapping tools •
- Network typology configuration for the target organization
 - Ensure the authenticity of the network topology where the assets are located as much as possible, e.g. \bullet determine the location of the assets, DMZ, Office and network connectivity
- Defense-in-depth typology configuration for the target organization
 - Keep asset-based security topologies as real as possible, e.g. determine which assets are protected by which security products



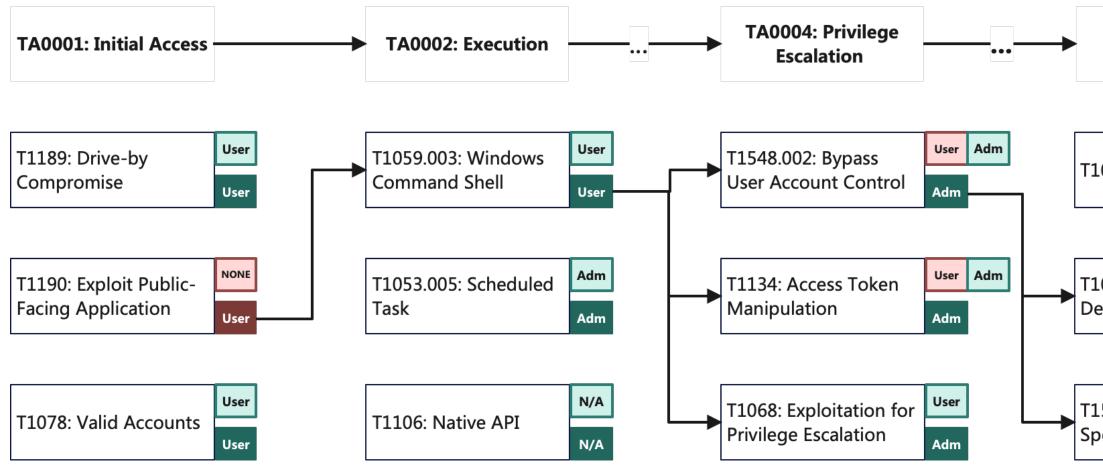

- Reasoning based on MITRE ATT&CK
 - The first dimension: The MITRE ATT&CK kill-chain phase determines the tactic route
 - ✓ Start from Initial Access (TA0001)
 - ✓ Put Credential Access (TA0006) and Lateral Movement (TA0008) last
 - The second dimension: Using the results of the previous step simulation attack, reason the techniques that can be used in the next phase
 - ✓ Host permission: obtained from the previous step's simulated attack, meet the techniques
 - \checkmark Asset: The asset condition and platform that meet the techniques
 - \checkmark Defense-in-depth: The techniques that enable defense products to produce detection data

- Reasoning based on MITRE ATT&CK
 - Reasoning based on permission levels

E.g. for Windows, system permission can act as one of [system, Administrator, User and None]



T1190: Exploit Public-Facing Application



1021.001: Remote	User	
esktop Protocol	User	

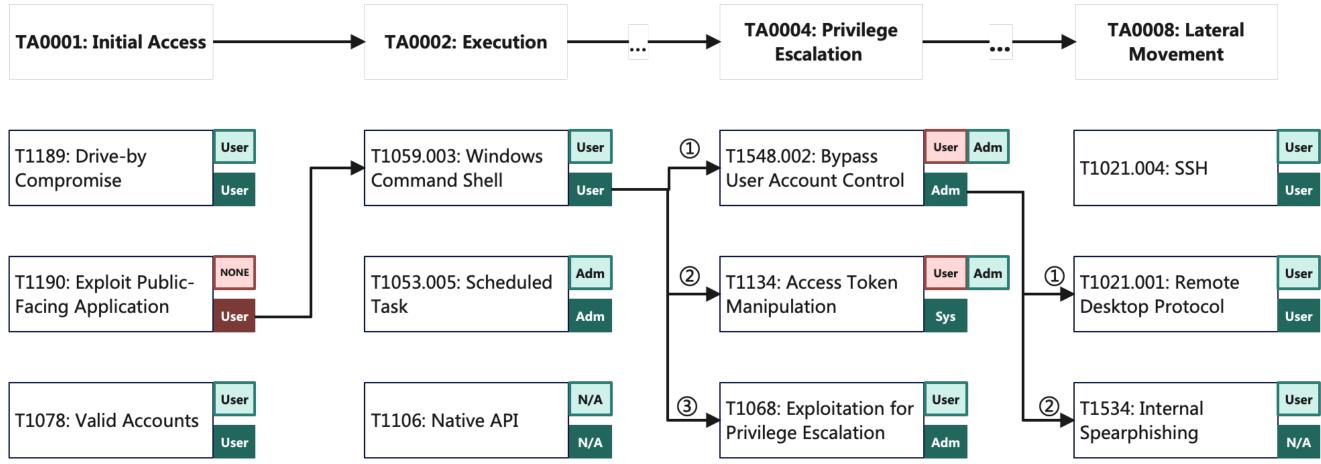
L534: Internal	User	
bearphishing	N/A	

TA0008: Lateral Movement

	User
.021.004: SSH	User

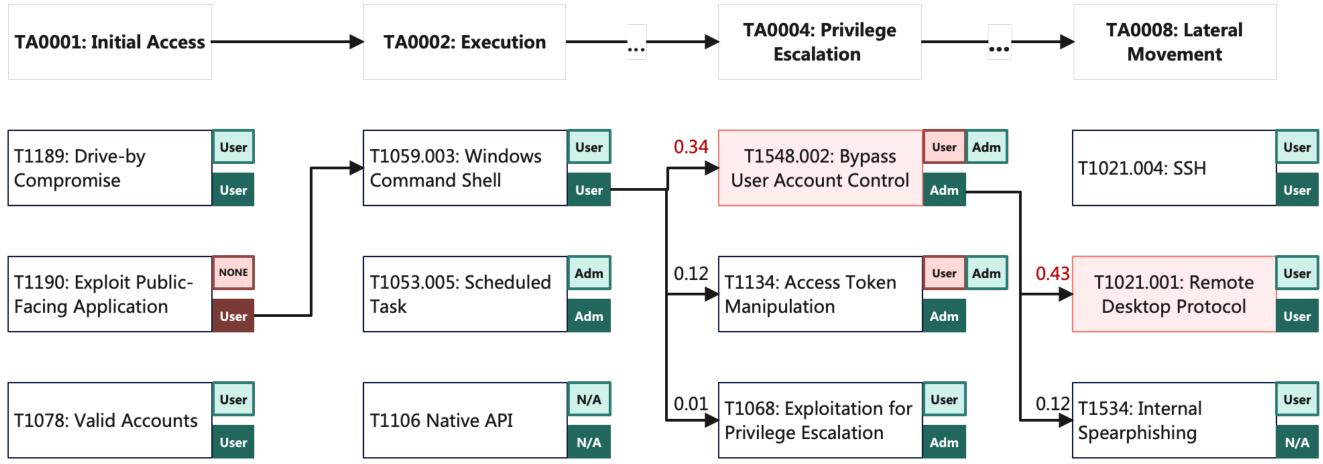
021.001: Remote	User			
esktop Protocol	User			

1534: Internal	User			
pearphishing	N/A			


TTP Reason Engine: Procedures reasoning

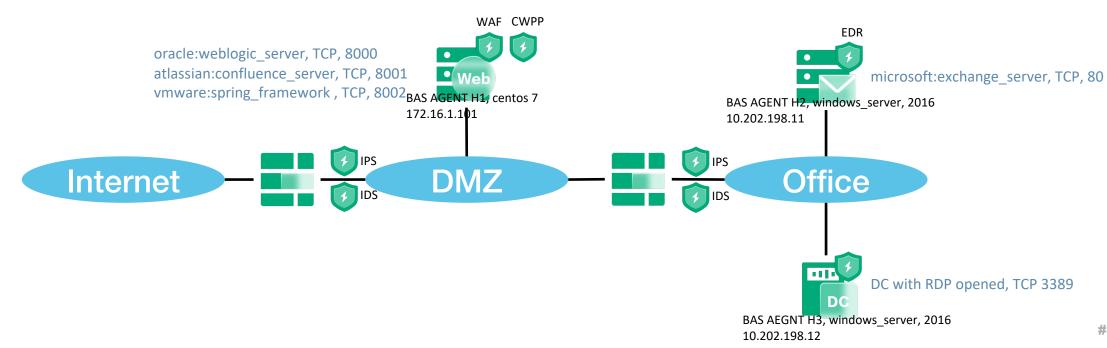
- Based on real world procedures distribution
 - Continuously collect procedures by TTP Extraction approach •
- Determine possibility which TTP to use in the next step
 - In the TTP chains we collected in real cybersecurity attacks
 - \checkmark in current state: permission owned or obtained, asset
 - \checkmark The most possible procedures used in attacks: the quantity, the popularity

TTP Reason Engine: Procedures reasoning



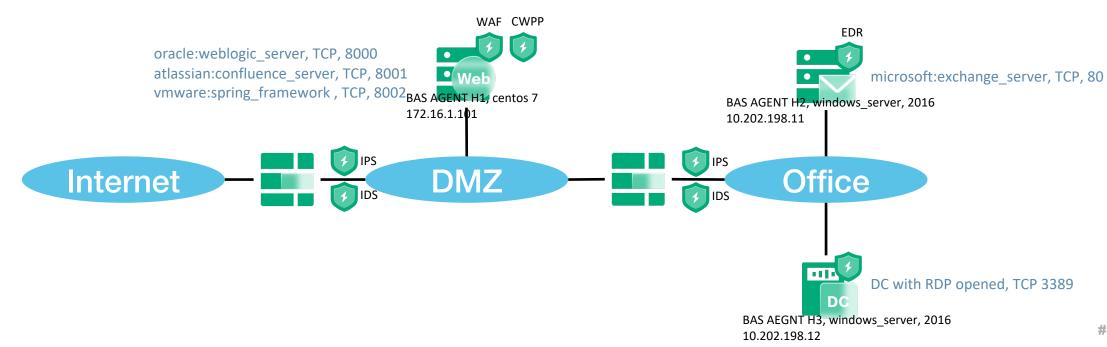
534: Internal	User		
bearphishing	N/A		

TTP Reason Engine: Procedures reasoning



- A Small Real-World Example Key attack path
 - Target services are weblogic server, confluence server, spring framework, exchange server, RDP
 - Target operation systems are centos and windows server

Therefore, the TTP Reason Engine will only reason the attack path around above assets.



- A Small Real-World Example Key attack path
 - Defense-in-depth topology consists of IPS, IDS, WAF, CWPP, and EDR

Therefore, the TTP Reason Engine will only reason the attack path that these security products will generate detection data.

- A Small Real-World Example Key attack path
 - BAS AGENT H1, centos 7

1. According to exposed [oracle:weblogic_server], [atlassian:confluence_server] and [vmware:spring_server], selects corresponding vulnerability pcap playbooks.

Step	Result	Security Products	Area	Agent IP	Asset	Privilege Obtained	Tactic	Technique	Possibility	Privilege Required
18	PREVENTED	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	oracle:weblogi c_server	None	TA0001 Initial Access	T1190 Exploit Public-Facing Application	0.15650742	None
19	PREVENTED	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	oracle:weblogi c_server	None	TA0001 Initial Access	T1190 Exploit Public-Facing Application	0.15650742	None
20	SUCCESS	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	oracle:weblogi c_server	User	TA0001 Initial Access	T1190 Exploit Public-Facing Application	0.15650742	None

Playbook

x-playbook360-db193392e328-510a-9298f0982b97c9ce CVE-2022-21371 pcap data. 入侵者模拟团队

x-playbook360-e4f96f9b-5d3d-5f64-b8f5e8714a383983 CVE-2022-21441 pcap data. ↔ 入侵者模拟团队

x-playbook360-4f177683f6a0-5b38-a36a-453f8f2df71b CVE-2022-24839 pcap data. ◆ 入侵者模拟团队

- A Small Real-World Example Key attack path
 - BAS AGENT H1, centos 7

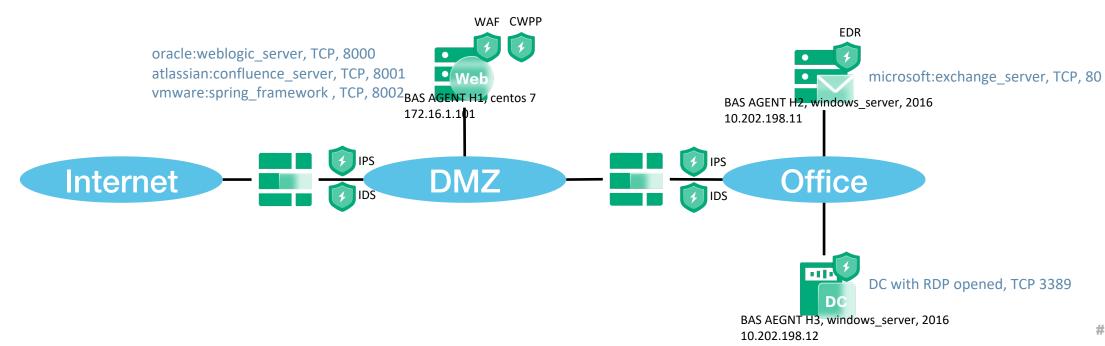
2. According to previous step simulation attack result: obtained [User] permission, reason next TTP playbooks to attack [Linux], loop until Credential Access phase.

Step	Result	Security Products	Area	Agent IP	Asset	Privilege Obtained	Tactic	Technique	Possibility	Privilege Required
20	SUCCESS	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	oracle:weblogi c_server	User	TA0001 Initial Access	T1190 Exploit Public-Facing Application	0.15650742	None
21	PREVENTED	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	Linux	User	TA0003 Persistence	T1078.003 Local Accounts	0.026086956	User, Administrator
22	PREVENTED	IPS, CWPP, IDS, WAF	DMZ	172.16.1.101	Linux	User	TA0004 Privilege Escalation	T1078.003 Local Accounts	0.026086956	User, Administrator

Playbook

x-playbook360-4f177683f6a0-5b38-a36a-453f8f2df71b CVE-2022-24839 pcap data. ◆ 入侵者模拟团队

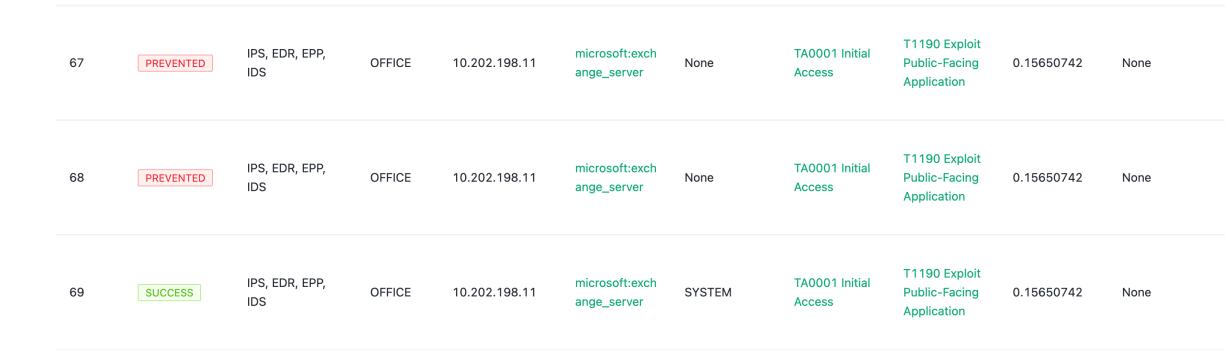
x-playbook360-1a1e2ac6-33c6-5ec9-adcdb519528c9471 Login as nobody (Linux) ↔ 入侵者模拟团队


x-playbook360-1a1e2ac6-33c6-5ec9-adcdb519528c9471 Login as nobody (Linux)

◆ 入侵者模拟团队

- A Small Real-World Example Key attack path
 - BAS AGENT H1, centos 7

3. Lateral Movement phase: based on previous step simulation attack result: owned [User] permission of H1, and running service [microsoft:exchange_server] on BAS AGENT H2.

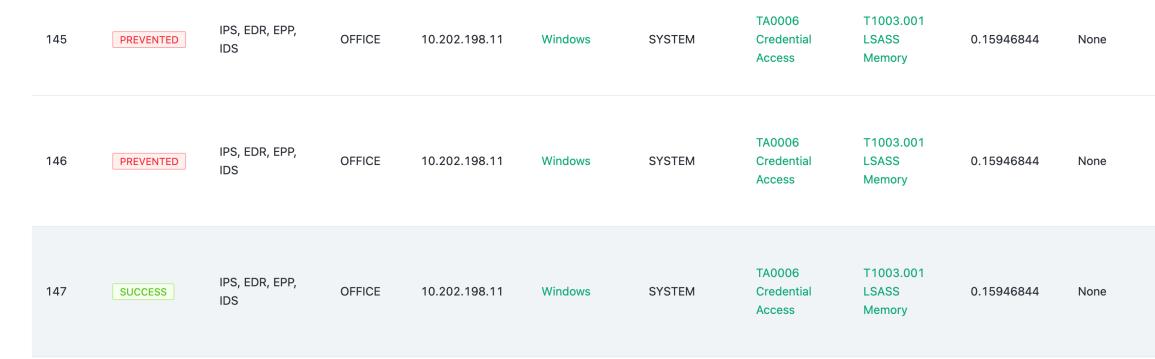


- A Small Real-World Example Key attack path
 - BAS AGENT H2, windows server 2016

1. According to exposed *[microsoft:exchange server]*, selects corresponding vulnerability pcap playbooks

x-playbook360-ce518c10d4ec-5c17-934ddd71f27c8886 CVE-2022-41082 pcap data. ◆ 入侵者模拟团队

x-playbook360-5f8d9520-4f8a-534f-b972-885e8eef5d1a CVE-2023-21529 pcap data. ◆ 入侵者模拟团队


x-playbook360-47ac2637-4bf8-521d-aa77-2cae41275a88 CVE-2023-21706 pcap data.

◆ 入侵者模拟团队

- A Small Real-World Example Key attack path
 - BAS AGENT H2, windows server 2016

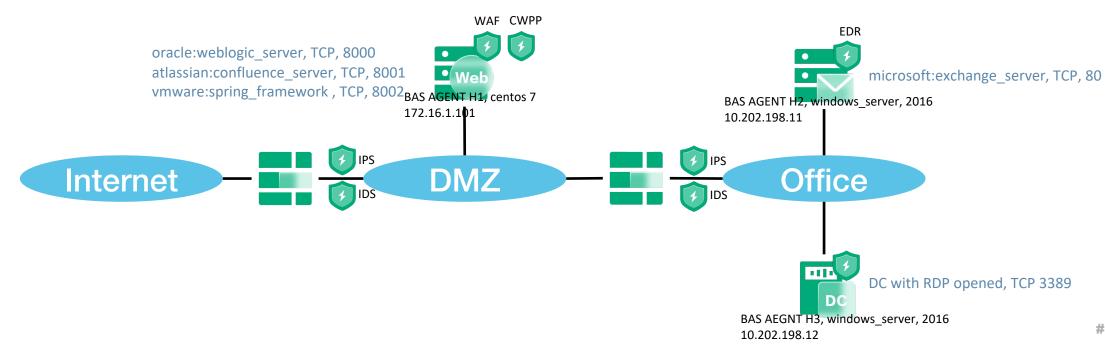
2. According to previous step simulation attack result: obtained [System] permission, reason next TTP playbooks to attack [windows server 2016], loop until Credential Access phase.

x-playbook360-faddfa59-4811-5366-aff3-303ed6fff1e3 Dump LSASS.exe Memory using NanoDump

◆ 入侵者模拟团队

x-playbook360-7074f1bc-9363-5d79-b264-83b4b4e75182 Dump LSASS.exe Memory using Out-Minidump.ps1

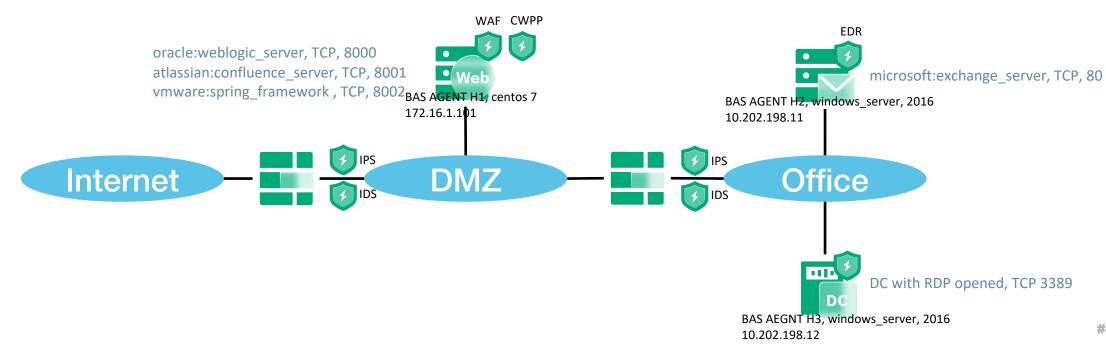
◆ 入侵者模拟团队


x-playbook360-76699fac-380d-59a8-bea4-57d2133df8f5 Dump LSASS.exe Memory using ProcDump

◆ 入侵者模拟团队

- A Small Real-World Example Key attack path
 - BAS AGENT H2, windows server 2016

3. Lateral Movement phase: based on previous step attack result: [credential of H3 Administrator dump successfully], running service on BAS AGENT H3 [RDP].



- A Small Real-World Example Key attack path
 - BAS AGENT H3, windows server 2016

1. If successfully traversed to this server via RDP, reason next TTP playbooks to attack [windows server 2016] in a loop until the end.

- Technology Stack
 - Protégé, RDF/OWL, SPAQL
 - Jena with hybrid rule engine
 - ✓ based on the standard RETE algorithm, incrementally compute support
 - ✓ Logic Programming Engine with Tabling
- Performance
 - JVM
 - ✓ Xms1024m, Xmx10240m
 - Average reason speed
 - ✓ 30s/step

Live soon: https://github.com/Qihoo360/Luwak

BLACK HAT SOUND BYTES

Three key problems to improve the accuracy of TTP extraction helps defender keep up with the TTPs of attackers.

A practical approach for building TTP-oriented knowledge graph can help BAS reason more adaptive attack paths to assess the entire defense-indepth of the target organization.