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Data-Only Attack

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

CGI-BIN configuration string in Null Httpd 

Load CGI-BIN configuration:
/usr/local/httpd/cgi-bin

Server Client

/cgi-bin/ : a CGI request
calculator: executable name 

POST /cgi-bin/calculator …

Search calculator in 
/usr/local/httpd/cgi-bin

Run calculator

if found

What if configuration 
/usr/local/httpd/cgi-bin gets 

corrupted?
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Data-Only Attack

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

CGI-BIN configuration string in Null Httpd 

Load CGI-BIN configuration:
/usr/local/httpd/cgi-bin

Server Client

/cgi-bin/ : a CGI request
sh: executable name 

Heap corruption
Overwrite CGI-BIN to /bin

Search sh in 
/bin

Run /bin/sh and remove 
/tmp/root-private-file

POST /cgi-bin/sh …
…

rm /tmp/root-private-file
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Data-Only Attack
Shuo Chen et al. at USENIX Security’05

Attack: Root privilege in WU-FTPD server

Critical Data: seteuid( pw->pw_uid );

Yang Yu at BlackHat USA’14

Attack: Code execution in IE browser 

Critical Data: 
if ( safemode & 0xB == 0 ) { Turn_on_God_Mode( ); }

Bing Sun et al. at BlackHat Asia’17

Attack: Bypass Control Flow Guard in Windows

Critical Data: gIsCFGEnabled …

Moritz Jodeit et al. at HITB GSEC’16

Attack: Bypass EMET in Windows

Critical Data: EnableProtectionPtr
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?

How to Automatically Identify Security-Critical Non-Control Data 
(Critical Data)
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Spotting Critical Data is Challenging 

Previous work

• Manual inspection: tedious human efforts, not scalable

• FlowStitch [Security’15]: rely on explicit sources/sinks

• e.g., argument of setuid

• KENALI [NDSS’16]: rely on error codes in Linux Kernel

Critical data

• No common low-level properties (e.g., data type, memory location)

• Difficult to infer high-level semantics
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Our Contribution
• Automatic identification of syscall-guard variables

• Branch force

• Corruptibility assessment

• A framework - VIPER

• 34 unknown syscall-guard variables from 13 programs

• 4 new data-only attacks on SQLite and V8

• https://github.com/psu-security-universe/viper

https://github.com/PSU-Security-Universe/viper
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Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?
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Motivating Example

Chen, Shuo, et al. "Non-control-data attacks are realistic threats." USENIX security symposium. Vol. 5. 2005.

How to identify “authenticated”?

Most data-only attacks rely on 
security-related syscalls

Security-related syscalls are often 
guarded by security checks

Syscall-Guard Branch: security checks 
as conditional branches 

Syscall-Guard Variable: variables in 
syscall-guard branches 

VIPER: identify syscall-guard variables
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Does Syscall-Guard Variable Matter?
A = syscall arguments
C = syscall-guard variables

11 syscall arguments

6 syscall-guard variables
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Challenges
• Identify sole contribution of each variable

• Symbolic execution can identify a complete path

• Limitation: cannot tell which variables are more critical

• Efficient and scalable analysis

• Static analysis 

• Limitations: indirect calls, inter-procedural analysis, etc
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Branch Force: Identify Syscall-Guard Branches
• Flip every branch during execution

• Hook syscalls to find newly invoked ones

• If yes, the flipped is a syscall-guard branch

…
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Corruptibility Assessment
• Backward Data-Flow Analysis

• Generate data flow of syscall-guard variables

• Assessment (for each memory node in the data flow)

• Metric 1: memory location

• Global > Heap > Stack

• Metric 2: number of memory-write instructions

• Assumption: every memory-write could be abused



VariableRatorBranchForcer
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Workflow of VIPER

Record
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binary
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original
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• Unique Branch Flipping

• Forkserver

save
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• Record execution trace on LLVM IR level

• Simulate execution based on recorded trace

Program

Input
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Evaluation (setting)
• 20 programs for evaluation

• 9 programs with known data-only attacks (e.g., OpenSSH)

• 7 programs from FuzzBench (e.g., SQLite)

• 4 other well-tested programs (e.g., V8)

• Corpus

• Testcases in source code repository

• Online corpus (e.g., FuzzBench Dataset)

• Fuzz with AFL++
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Evaluation (identified syscall-guard variables)
36 syscall-guard variables from 14 programs
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Evaluation (exploitability investigation)  

4Exploit Construction

CVE Investigation

GDB Emulation
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Evaluation (time costs)  

We can combine VIPER 
with other tools for 

automatic exploit generation
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Case Study: Attacks on SQLite

SQLite: Most widely deployed database engine

• Used in Android, iOS, Chrome, Safari, Opera … 

VIPER result

• 7 syscall-guard variables

• 3 new data-only attacks on top 3 syscall-guard variables

• (demo 1) p->doXdgOpen: arbitrary command execution

• (demo 2) p->zTempFile: arbitrary file deletion

• isDelete: arbitrary file deletion
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Case Study 1: Command Execution on SQLite

How SQLite handles query results

• Print on stdout

• Save to a file ( .output filename)

• Edit before saving ( .once –e / .once –x ) 

How VIPER identified p->doXdgOpen

• BranchForce flips if (p->doXdgOpen) and catches execve

• VariableRator generates data flow graph for p->doXdgOpen and p->zTempFile
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Case Study 1: Command Execution on SQLite

Data-flow Graph of p->doXdgOpen
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Case Study 1: Command Execution on SQLite

Data-flow Graph of p->zTempFile
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Case Study 1: Command Execution on SQLite

One memory bug to corrupt p->doXdgOpen and p->zTempFile

• CVE 2017-6983 ( Kun Yang at BlackHat USA’17 )

• Arbitrary write primitive

• Bypass ASLR is feasible

https://www.blackhat.com/docs/us-17/wednesday/us-17-Feng-Many-Birds-One-Stone-Exploiting-A-Single-SQLite-Vulnerability-Across-Multiple-Software.pdf
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Demo 1
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Case Study 2: File Deletion on SQLite

zTempFile is also used in other places

• Flip if (p->zTempFile == 0) and catches unlink  

• Both syscall-guard variable and syscall argument are zTempFile

• One shot exploit
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Demo 2
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Case Study 3: New Attack on V8  

V8: Chromium JavaScript engine

• Used in Google Chrome, Microsoft Edge, Opera, Node.js …

• 3,586 KLoC in the latest version

VIPER result

• 2 potential syscall-guard variables

• 1 highly corruptible variable

• Location: global variable

• Memory-Write instructions: 93,512,607
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Case Study 3: New Attack on V8  

Our Attack (CVE-2021-30632) 

• Arbitrary read privilege

• Bypass ASLR

• Arbitrary write privilege

• Set options.enable_os_system to 1
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Demo
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Conclusion

• VIPER: automatically spotting syscall-guard variables for data-only attacks

• Design branch force and corruptibility assessment

• Find 34 previous unknown syscall-guard variables

• Build 4 new data-only attacks on SQLite and V8

• Open Source

• VIPER: https://github.com/psu-security-universe/viper

• Exploits: https://github.com/psu-security-universe/data-only-attacks

https://github.com/psu-security-universe/viper
https://github.com/PSU-Security-Universe/data-only-attacks


Thank You

Question?
hengkai@psu.edu


