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About this talk
What is Hexagon?

● Qualcomm Snapdragon & MDM chips
○ ~30% of smartphone market
○ Now entering laptop market
○ One or more specialized cores on the 

Snapdragon SoC are Hexagon cores
● Hexagon architecture

○ Proprietary by Qualcomm, secure
○ Mostly fw code behind Secure Boot
○ VLIW optimized for parallel 

execution, solid benchmarks
○ Started as DSP for specialized media 

workloads
○ Runs modem on Android MSM, aka 

baseband. Variety of attack vectors
○ Now, NPU

What is the problem with Hexagon?

● You can’t debug it



Intro



Recap: Hexagon architecture



Hexagon and Snapdragon
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Hexagon™ now



How do they debug Hexagon code?
Hardware debugger

● Lauterbach TRACE32 (JTAG/Coresight)
○ 3rd party product, endorsed by Qualcomm
○ Requires Qualcomm “partner enrollment” level 

support to use it (impossible)
○ Not applicable to off-the-shelf devices
○ Expensive

Software debugger

● Doesn’t exist
○ Code that runs on Hexagon arch is heavily proprietary 

and undocumented, you are not supposed to know 
about it, let alone debug it

● Engineer your own gdb server on software 
vulnerability primitives

○ DIY reports in the past
○ Limited, unreliable & unsustainable

● Hexagon emulator/simulator are available
○ You can write high-level app code in Hexagon SDK 

and “debug” it on simulator, no problem with that
○ Mostly useless for deep security research



Trace32 User’s Manual is pessimistic… 



Wait, what is ISDB? ⁉ 



Start researching, mystery builds up…

Mentions in open source 
code added and removed…Google knows little aside 

from a few patents…



Reverse Engineering Hexagon Debugging
Sources - open

● Patent documentation
● Qualcomm Programmer’s Reference Manuals
● Open source code
● Datasheets

Methods - theoretical

● OSINT
● Thinking
● Grepping QURT binaries for strings
● Open baseband firmware in IDA and close it

Funding - private

● This research project was partially sponsored by a 
company that chose to remain anonymous

● Findings approved for disclosure
● Thank you

Results

● Qualcomm ISDB system internals 
revealed for the first time

● Outlined basic prerequisites to 
enable and operate both trusted and 
untrusted debugging of Hexagon

● This talk will focus on the core 
aspects of the matter due to limited 
time and disclosure, a lot had to be 
left out

● Still a lot to uncover



Fast forward to findings >>>



Hexagon Debugging 
Internals



ISDB (In Silicone Debugger)



Breakpoint processing circuitry



Recap: JTAG IEEE 1149.1
The standard 

● Basic technology for testing 
microelectronic circuits

● Simple interface - serial pins
○ TDI (Test Data In), TDO (Test Data 

Out)
○ Test mode selection, clock, reset

● Very powerful 
● No access control
● No resource control
● Most device vendors either don’t care 

or rely on “security by obscurity” to 
hide JTAG port https://www.researchgate

.net/publication/2206489
26_Security_extension_fo
r_IEEE_Std_11491 
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Extended JTAG pinouts
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JTAG and software debugging
● Powerful primitives 

○ Access to memory
○ Access to registers
○ Halt signal

● Software debugger engineering
○ Build standard debugging ops on 

JTAG hardware primitives
○ wrap in GUI/CLI/gdb
○ FTDI (USB-TTL) for wiring

● Example: tracing/single step 
○ Halt signal + program counter 

register modification
● Example: breakpoint

○ Hardware bp: program the register
○ Software bp: inject the opcode

● OpenOCD
https://pinout.xyz/pinout/jtag 

https://sysprogs.com/VisualKernel/tutorials/raspberry/
jtagsetup/ 

https://pinout.xyz/pinout/jtag
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ISDB Registers



Trusted and Untrusted debugging mode



Supervisor Mode



● Patent documentation:
○ “Communication through a SYSCFG 

register as a 40-bit packet identifies 
the ISDB register to read/write and a 
32-bit data payload”

○ RESERVED part?

SYSCFG register
● Hexagon architecture register, 

exposed to assembler
○ But, undocumented
○ Patent shows “one way of forming 

the register” → 
● Supervisor-only (privileged)

○ QURT kernel OR application in 
privileged mode of execution; eg. 
modem firmware in early boot

● Use to set ISDB_TRUSTED bit
○ 0x28 == 0b0..1000

● ISDB status bit will be tested by host 
debugger and eligible others



How to program SYSCFG register?

V73 (2024) no longer mentions 
SYSCFG register layout & 
ISDB bits

V69 (2022)



Breakpoints



Magic Cookie
Newer msm kernels no longer leak it



Qualcomm IMEM 
● Shared memory
● Exposed in MSM → 
● Undocumented



Enable Hexagon debugging with Magic Cookie
● QURT kernel operates ISDB, mostly 

via privileged mode
● It uses a simple flag-based 

mechanism to trigger ISDB 
operations for applications/users

● 0x53444247 (‘SDBG’ in hex)
● Put the magic cookie in IMEM via 

JTAG
○ You need to know specific offset in 

IMEM for each application/control
○ Modem, PIL, mba, Android msm, 

QURT kernel will check the cookie 
○ Triggers software setup consistent 

with debug mode of thread, and/or 
enter debug mode via ISDB

Big secret



qurtkernel.o



Conclusions
Technology summary

● ISDB is the low-level debugging 
circuitry of Hexagon architecture which 
sits in-between JTAG and the core

○ Don’t confuse with ISDB-T, a digital TV 
broadcasting standard

● Debugging works by reading/writing 
ISDB registers, via either JTAG or 
software

● Multiple ways of doing things
● This research is the first step

○ System internals of ISDB
○ Key requirements to enable and control 

debugging over JTAG and via software
○ Untested - may need extra config!

Security

● Basically, ISDB is the core gatekeeper of 
debugging on Hexagon cores

○ Blocks JTAG if is ISDB_TRUSTED register is 
not set

○ Exposes software-based debugging controls 
via proprietary kernel code

● Trusted and Untrusted mode of execution
○ Trusted: Qualcomm’s kernel dev
○ Untrusted: you

● Specialized enablement and configuration 
protocols

● Qurt Kernel will check other debugging 
controls before enabling ISDB

○ Build-time configuration variables
○ CoT & Attestation Certificates, Fuses, IMEM
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