
Unveiling the Mysteries 
of Hexagon QDSP6 JTAG
A Journey into Advanced Theoretical Reverse 

Engineering

Alisa Esage 
Zero Day Engineering Research & Training

Black Hat Asia 2025, Singapore



About me
Alisa Esage Shevchenko

● Independent Hacker
● Founder of Zero Day Engineering
● Researcher of God Mode* since 1999

* gaming term



About this talk
What is Hexagon?

● Qualcomm Snapdragon & MDM chips
○ ~30% of smartphone market
○ Now entering laptop market
○ One or more specialized cores on the 

Snapdragon SoC are Hexagon cores
● Hexagon architecture

○ Proprietary by Qualcomm, secure
○ Mostly fw code behind Secure Boot
○ VLIW optimized for parallel 

execution, solid benchmarks
○ Started as DSP for specialized media 

workloads
○ Runs modem on Android MSM, aka 

baseband. Variety of attack vectors
○ Now, NPU

What is the problem with Hexagon?

● You can’t debug it



Intro



Recap: Hexagon architecture



Hexagon and Snapdragon

https://d
eveloper.
qualcom
m.com/d
ownload/
sd820e/q
ualcomm
-snapdra
gon-820e
-processo
r-apq809
6sge-devi
ce-specifi
cation.pd
f 

https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf


Hexagon™ now



How do they debug Hexagon code?
Hardware debugger

● Lauterbach TRACE32 (JTAG/Coresight)
○ 3rd party product, endorsed by Qualcomm
○ Requires Qualcomm “partner enrollment” level 

support to use it (impossible)
○ Not applicable to off-the-shelf devices
○ Expensive

Software debugger

● Doesn’t exist
○ Code that runs on Hexagon arch is heavily proprietary 

and undocumented, you are not supposed to know 
about it, let alone debug it

● Engineer your own gdb server on software 
vulnerability primitives

○ DIY reports in the past
○ Limited, unreliable & unsustainable

● Hexagon emulator/simulator are available
○ You can write high-level app code in Hexagon SDK 

and “debug” it on simulator, no problem with that
○ Mostly useless for deep security research



Trace32 User’s Manual is pessimistic… 



Wait, what is ISDB? ⁉ 



Start researching, mystery builds up…

Mentions in open source 
code added and removed…Google knows little aside 

from a few patents…



Reverse Engineering Hexagon Debugging
Sources - open

● Patent documentation
● Qualcomm Programmer’s Reference Manuals
● Open source code
● Datasheets

Methods - theoretical

● OSINT
● Thinking
● Grepping QURT binaries for strings
● Open baseband firmware in IDA and close it

Funding - private

● This research project was partially sponsored by a 
company that chose to remain anonymous

● Findings approved for disclosure
● Thank you

Results

● Qualcomm ISDB system internals 
revealed for the first time

● Outlined basic prerequisites to 
enable and operate both trusted and 
untrusted debugging of Hexagon

● This talk will focus on the core 
aspects of the matter due to limited 
time and disclosure, a lot had to be 
left out

● Still a lot to uncover



Fast forward to findings >>>



Hexagon Debugging 
Internals



ISDB (In Silicone Debugger)



Breakpoint processing circuitry



Recap: JTAG IEEE 1149.1
The standard 

● Basic technology for testing 
microelectronic circuits

● Simple interface - serial pins
○ TDI (Test Data In), TDO (Test Data 

Out)
○ Test mode selection, clock, reset

● Very powerful 
● No access control
● No resource control
● Most device vendors either don’t care 

or rely on “security by obscurity” to 
hide JTAG port https://www.researchgate

.net/publication/2206489
26_Security_extension_fo
r_IEEE_Std_11491 

https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491


Extended JTAG pinouts

https://www.allaboutcircu
its.com/technical-articles/
jtag-connectors-and-interf
aces/ 

https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/


JTAG and software debugging
● Powerful primitives 

○ Access to memory
○ Access to registers
○ Halt signal

● Software debugger engineering
○ Build standard debugging ops on 

JTAG hardware primitives
○ wrap in GUI/CLI/gdb
○ FTDI (USB-TTL) for wiring

● Example: tracing/single step 
○ Halt signal + program counter 

register modification
● Example: breakpoint

○ Hardware bp: program the register
○ Software bp: inject the opcode

● OpenOCD
https://pinout.xyz/pinout/jtag 

https://sysprogs.com/VisualKernel/tutorials/raspberry/
jtagsetup/ 

https://pinout.xyz/pinout/jtag
https://sysprogs.com/VisualKernel/tutorials/raspberry/jtagsetup/
https://sysprogs.com/VisualKernel/tutorials/raspberry/jtagsetup/


ISDB Registers



Trusted and Untrusted debugging mode



Supervisor Mode



● Patent documentation:
○ “Communication through a SYSCFG 

register as a 40-bit packet identifies 
the ISDB register to read/write and a 
32-bit data payload”

○ RESERVED part?

SYSCFG register
● Hexagon architecture register, 

exposed to assembler
○ But, undocumented
○ Patent shows “one way of forming 

the register” → 
● Supervisor-only (privileged)

○ QURT kernel OR application in 
privileged mode of execution; eg. 
modem firmware in early boot

● Use to set ISDB_TRUSTED bit
○ 0x28 == 0b0..1000

● ISDB status bit will be tested by host 
debugger and eligible others



How to program SYSCFG register?

V73 (2024) no longer mentions 
SYSCFG register layout & 
ISDB bits

V69 (2022)



Breakpoints



Magic Cookie
Newer msm kernels no longer leak it



Qualcomm IMEM 
● Shared memory
● Exposed in MSM → 
● Undocumented



Enable Hexagon debugging with Magic Cookie
● QURT kernel operates ISDB, mostly 

via privileged mode
● It uses a simple flag-based 

mechanism to trigger ISDB 
operations for applications/users

● 0x53444247 (‘SDBG’ in hex)
● Put the magic cookie in IMEM via 

JTAG
○ You need to know specific offset in 

IMEM for each application/control
○ Modem, PIL, mba, Android msm, 

QURT kernel will check the cookie 
○ Triggers software setup consistent 

with debug mode of thread, and/or 
enter debug mode via ISDB

Big secret



qurtkernel.o



Conclusions
Technology summary

● ISDB is the low-level debugging 
circuitry of Hexagon architecture which 
sits in-between JTAG and the core

○ Don’t confuse with ISDB-T, a digital TV 
broadcasting standard

● Debugging works by reading/writing 
ISDB registers, via either JTAG or 
software

● Multiple ways of doing things
● This research is the first step

○ System internals of ISDB
○ Key requirements to enable and control 

debugging over JTAG and via software
○ Untested - may need extra config!

Security

● Basically, ISDB is the core gatekeeper of 
debugging on Hexagon cores

○ Blocks JTAG if is ISDB_TRUSTED register is 
not set

○ Exposes software-based debugging controls 
via proprietary kernel code

● Trusted and Untrusted mode of execution
○ Trusted: Qualcomm’s kernel dev
○ Untrusted: you

● Specialized enablement and configuration 
protocols

● Qurt Kernel will check other debugging 
controls before enabling ISDB

○ Build-time configuration variables
○ CoT & Attestation Certificates, Fuses, IMEM



References
1. A.Esage, “Advanced Hexagon Diag”, Chaos Communications Congress (2020)
2. A.Esage, “Deep Dive: Qualcomm MSM Linux Kernel & ARM Mali GPU 0-day 

Exploit Attacks of October 2023”, Zero Day Engineering Research Blog (2023)
3. APQ8016E Technical Reference Manual
4. Qualcomm® Snapdragon™ 410 Processor APQ8016 Hardware Register 

Description
5. Qualcomm® Snapdragon™ 410E (APQ 8016E) Processor Device Specification
6. WIPO patent no.2008/061067 A2
7. WIPO patent no.2008/061089 A2
8. US patent no.7,657,791 B2 of Feb. 2, 2010
9. Qualcomm Hexagon V66 Programmer’s Reference Manual (2017)

10. Qualcomm Hexagon V69 Programmer’s Reference Manual (2022)
11. Qualcomm Hexagon V73 Programmer’s Reference Manual (2024)



Q&A
Twitter/Youtube: @alisaesage 

Email: contact@zerodayengineering.com


