Jnveiling the Mysteri eg.
of Hexagon QDS_P6JTAG

7 ;‘ 7 ¥ Allsa ESage‘ AR, "7‘”
7 Zero Day Engineering Research & Training

//BlaCk Hat Asia 2025 Slngapore'
AT ([e — -

About me

Alisa Esage Shevchenko

e Independent Hacker
e Founder of Zero Day Engineering
e Researcher of God Mode™ since 1999

Zero Day
Engineering

research & training

* gaming term

About this talk

What is Hexagon?

e Qualcomm Snapdragon & MDM chips
o ~30% of smartphone market
o Now entering laptop market
o One or more specialized cores on the
Snapdragon SoC are Hexagon cores
e Hexagon architecture
o Proprietary by Qualcomm, secure
o Mostly fw code behind Secure Boot
o VLIW optimized for parallel
execution, solid benchmarks
o Started as DSP for specialized media
workloads
o Runs modem on Android MSM, aka
baseband. Variety of attack vectors
o Now, NPU

What is the problem with Hexagon?

e You can’t debug it

Intro

Recap: Hexagon architecture
Hexagon: programmer’s view

Memory
(unified address space)

4x32 bit
Instructions
XTYPE Instructions
ALU32 Instructions
J Instructions
CR Instructions

Sequencer
Packets of
1-4 instructions
2: X Unit
XTYPE Instructions
ALU32 Instructions
J Instructions
JR Instructions

Control Registers
Hardware Loop Regs
Modifier Registers

Status Register

Program Counter
Predicate Registers

User General Pointer
Global Pointer

Circular Start Registers

S1: Load/Store
Unit

LD Instructions
ST Instructions
ALU32 Instructions

S0: Load/Store

LD Instructions

ST Instructions
ALU32 Instructions
MEMOP Instructions
NV Instructions
SYSTEM Instructions

Figure 1-1 Hexagon V62 processor architecture

1.3.6 Instruction packets

Sequences of instructions can be explicitly grouped into packets for parallel execution.
For example:
Load/

Store 4 64 {

R8 = memh (R3++#2)
R12 = memw(R1++#4)
R = mpy(R10,R6) :<<l:sat

R7 = add(R9,#2)

1.3.7 Dot-new instructions
General

Registers
RO-R31

In many cases, a predicate or general register can be both generated and used in the same
instruction packet. This feature is expressed in assembly language by appending the suffix
“.new” to the specified register. For example:

{

PO = cmp.eq(R2, #4)

if (PO.new) R3 = memw(R4)
if (!PO.new) R5 = #5

&= }

{
R2 = memh (R4+#8)
memw (R5) = R2.new

[HEXAGONISA] https://developer.qualcomm.com/download/hexagon/hexagon-v62-programmers-reference-manual.pdf

exag

on and Snapdragon

Qualcomm® Snapdragon™ 820E Processor (APQ8096SGE) Device Specification Introduction

Processors Memory support

Package-on-package
LPODR4 SDRAM

e

Chipset I/F

Single-wire S8

role status/
control

RF front-end
WGR7640

Internal functions

[Fomtvmon] [emsiomen]
o]
JTAG ! ETM / DFSD

4dana CSI
4.ano CSI
4.ana CSI

QCAG174A
VLAN

PMI8996, L]
PMB996

Figure 1-1 APQ8096SGE functional block diagram and example application

https://d
eveloper.
gualcom
m.com/d
ownload/
sd820e/qg
ualcomm
-snapdra
gon-820e
-processo
r-apq809
6sge-devi
ce-specifi
cation.pd
f

https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

Hexagon™ now

Introducing Snapdragon® X Elite, the most powerful, intelligent,
and efficient processor in its class for Windows.

With a powerful Al engine, including the world’s fastest NPU for laptops, Snapdragon® X Elite enables
Al-enhanced apps that unlock focus, flow and innovation. Because laptops powered by Snapdragon
technology work equally well plugged-in or on battery, your employees can work from wherever they need to.

Up to Up to

2 X 5 l I X Snapdragon® X Elite: SKU Comparison Table
: L]

Qualcomm Oryon™ CPU

Qualcomm®
Adreno”GPU Hexagon™NPU Memory

Qualcomm®

FASTER NPU MORE EFFICIENT NPU PO e PO WS =i
Part Number ‘requen Boost TFLOPs NPUTOPS Type Rate

: sreprgexievecoroe | C R U Tl C CN oo 7Y

than M3 than Core Ultra 72 R . | v [soo |eom |w |6 |swoones [meorn |

Rl - |cve [0 [wwe foo i o [ouew |

s e (R N Lt R RN CoC CZX7N

1
2 Source: Geekbench, WL Extreme, NPUTOPS

How do they debug Hexagon code?

Hardware debugger

° Lauterbach TRACE32 (JTAG/Coresight)
o 3rd party product, endorsed by Qualcomm
o Requires Qualcomm “partner enroliment” level
support to use it (impossible)
o Not applicable to off-the-shelf devices
o Expensive

Software debugger

° Doesn’t exist
o Code that runs on Hexagon arch is heavily proprietary
and undocumented, you are not supposed to know
about it, let alone debug it
° Engineer your own gdb server on software
vulnerability primitives
o DIY reports in the past
) Limited, unreliable & unsustainable
° Hexagon emulator/simulator are available
o You can write high-level app code in Hexagon SDK
and “debug” it on simulator, no problem with that
o Mostly useless for deep security research

Trace32 User’s Manual is pessimistic...

1. Hexagon Conceptual Basics

Especially when starting to get familiar with the Hexagon architecture these points are of exceptional
importance:

. Hexagon is a secure platform: by default, debugging is prohibited. Whether the user can debug a
specific application or not is configured by the application which is executed.

If you write your own application, please consult the Hexagon documentation on how to enable Hexagon Secu"ty

debugging. If you are using a third-party application please contact the vendor of this application
for a debug-enabled version. Hexagon has three debug modes:

Beside from “debugging not allowed” there are two debugging levels: 1. Nodebugging allowed.

- Untrusted debugging requires a debug monitor running under the control of the application = Uninpstediesbag

and RTOS. The debugger communicates with a debug monitor integrated in the kernel. This allows debugging of
only a few resources, e.g. some dedicated user applications or tasks.

- Trusted debugging allows full control over the Hexagon core. See also Hexagon Security for

more information on the Hexagon debug modes. Trusted debug.

The debugger has full access and control over Hexagon.
Because the debugger does not have any access to the core by default, Hexagon needs to be

configured via some external “instance”. Normally an Arm core is responsible for configuration TRACES2 only supports trusted debug.

and loading at least an initial application for enabling debugging. Please see the chipset’s

documentation on how to do this. The application running on the target selects the debug mode in its startup code. After this is done, a hard-
coded software breakpoint will halt the DSP.

©1989-2024 Lauterbach Hexagon Debugger | 12

Wait, what is ISDB?

©1989-2024 Lauterbach Hexagon Debugger | 56

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

This command resets the DSP via the debug registers in ISDB. Only the DSP will reset, not the debug port
or the target system. This function only works when the CPU is in SYStem.Mode Up.

ISDB

Television system

Integrated Services Digital Broadcasting is a Japanese
broadcasting standard for digital television and digital
radio. ISDB supersedes both the NTSC-J analog
television system and the previously used MUSE Hi-
vision analog HDTV system in Japan. Wikipedia >

Start researching, mystery builds up...

C adreno_a5xx.c 5 X
+DEF_MACRO (£IN_DEBUG_MODE, (TNUM),

drivers > gpu > msm > C adreno_abxx.c > @ abxx_start(adreno_device *) + "in debug_mode",
if ((adreno_compare_pfp_version(adreno_dev, 0x5FF@77) >= 0)) it "in_debug_mode", .
kgs1_regrmw(device, A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8)); 1 Et}:hread—>debug_mode || (£READ_GLOBAL_REG_FIELD (ERINF T DEBUGMODE) & 1<<TNUM)),
} +)
S ——— R +DEF_MACRO (£IN_DEBUG_MODE_NO_[ISDB], (TNUM) ,
/* Set the USE_RETENTION_FLOPS chicken bit 4 T "in_debug mode",
kgsl_regwrite(device, A5XX_CP_CHICKEN_DBG, 0x02000000); i "in_debug_mode",
+ (th;ead—>aebug_mode) '
Enable mode if re sted x/ + ()
if (test_bit(ADRENO_DEVICE_ISDB_ENABLED, &adreno_dev->priv)) { +))
if (!kgsl_active_count_get(device)) { + A A
; ~ Mentions in open source
+DEF_M a =
+ Google knows little aside code added and removed...
: from a feW patentS aa ource.com/kernel/msm/+/android-msm-dory-3.10-kitkat-wear/drivers/esoc/esoc-mdm-4x.c
qualcomm “isdb" debugging mdm->dbg_addr = addr + MDM_DBG_OFFSET;
val = readl_relaxed(mdm->dbg_addr) ;
Forc P1 clocks on to en > ISDB */ GoodlelRetenty if (val == MDM_DBG_MODE) {

https:/ipatents google.com > patent

kgs1_regwrite(device, A5XX_RBBM_CLOCK_CNTL_SPO, 0x0); Non-intrusive, thread-selective, debugging method and system ... mdm->dbg_mode = true;

kgsl_regwrite(device, A5XX_RBBM_CLOCK_CNTL_SP1, 0x0); .. ISDB 82, may be used to debug the DSP 40 operating system software. ISDB 82 supports debugging mdm->cti = coresight_cti_get(MDM_CTI_NAME);
k951 regwrite(device A5XX_RBBM_CLOCK_CNTL_SP2, 0x@); hardware threads individually. Users may suspend thread if (IS_ERR(mdm->cti {
= ’ ! | = _SP2, ;

kgs1_regwrite(device, A5XX_RBBM_CLOCK_CNTL_SP3, 0x@); coogl Patots dev:enr (pdmy 2dev; uneblertoigetic el HandLe i)
kgsl_regwrite(device, A5XX_RBBM_CLOCK_CNTL2_SP@, 0x0); https//patents.google.com > patent § goto cti_get_err;
kgsl_regwrite(device, A5XX_RBBM_CLOCK_CNTL2_SP1, 0x0); Method and system for trusted/untrusted digital signal processor ... ¥
kgsl_regwrite(device, A5XX_RBBM_CLOCK CNTL2_SP2, 0x@); 15DB 62 provides software debug features through JTAG interface 84 by sharing system or supervisor- ret = coresight_cti_map_trigout(mdm->cti, MDM_CTI_TRIG, .

) ; only registers, that are divided into supervisor control .. MDM_CTI_CH);
kgsl_regwrite(device, A5XX_RBBM_CLOCK_CNTL2_SP3, 0x0); if (ret) {

f
. ﬁ‘::?i:;::uammm com» publicrssource » topics 1 dev_err (mdm->dev, "unable to map trig to channel\n");

/ al Le nw K, M —

) : QRB5165 features goto cti_map_err;

M . 5
kgsl_regwr%te (dev%ce, ASXX_RBBM_CLOCK_CNTL, 0x@); Jul 7, 2023 — PlayReady SL2000/SL3000, Widevine level 1 and level 3, ISDB-T fuse bits available for }
kgsl_regwrite(device, A5XX_RBBM_ISDB CNT, 0x0); OEM use. Access control, Programmable security domain mdm->trig_cnt = 0;
} else } else {
KGSL_CORE_ERR(STl — | B dev_dbg(mdn->dev, "Not in debug mode. debug mode = %u\n", val);
"Active count failed while turning on ISDB."); QRB5165 mdm->dbg_mode = false;
} else Jun 7, 2023 — ... ISDB-T fuse bits available for OEM use. Access control. Programmable ... JTAG,

design for software debug (DFSD), embedded USB debug (EUD).
99 pages

Reverse Engineering Hexagon Debugging

Sources - open

Patent documentation

Qualcomm Programmer’s Reference Manuals
Open source code

Datasheets

Methods - theoretical

OSINT

Thinking

Grepping QURT binaries for strings

Open baseband firmware in IDA and close it

Funding - private

e This research project was partially sponsored by a
company that chose to remain anonymous

° Findings approved for disclosure

° Thank you

Results

Qualcomm ISDB system internals
revealed for the first time

Outlined basic prerequisites to
enable and operate both trusted and
untrusted debugging of Hexagon
This talk will focus on the core
aspects of the matter due to limited
time and disclosure, a lot had to be
left out

Still a lot to uncover

Fast forward to findings >>>

Hexagon Debugging
Internals

ISDB (In Silicone Debugger)

ISDB
ENTRY

DEBUGGING
OPERATIONS

/1'10

ISDB 116 U

[124 AARDWARE Y ES
ik s i BREAKPOINT
ISDB JTAGS ! lunitISDBlogic | |or=S1ock
y - . P

- » I Sync 1 lunit ogic 1 [« .
Jtag_tck=--» = NORMAL THREAD
. 3 OPERATION
jtag_tck - core_clk ==

¥ SOFTWARE

3REAKPOINT
118

Y

JTAG I/F

MCD I/F 136

S INTERRUPT
ISDB_gprDataOut | ~136 o CU ISDB - 140 e 8 EXISIS
ETM_breakTrigger | ~138 | (‘ON‘I:ROI.I.F,R - »| CONTROLLER BREAKPOINT

NO
core_clock == L e 12
soccnadenbens | i
1 S . 1 | core clock 5
', . ITAG
|t,unnlSI)Blm__-u,: e BREAKPOINT
-

YES

QDSP6 Core ISDB_reset ISDB _interrupt

132 =134

Breakpoint processing circuitry

debugModeStatus ANY[0]
174

brkptinfo_D[2:0]
3 brkptinfo_Q[2:0]

ENCODE
s 178 | BRKPT
BREAK INFO

INFO [brkValid[0]

ucg_resumeTnum_ANY[0]
OR reset

Recap: JTAG IEEE 1149.1

The standard

Basic technology for testing
microelectronic circuits

Simple interface - serial pins
o TDI (Test Data In), TDO (Test Data
Out)
o Test mode selection, clock, reset

Very powerful

No access control

No resource control

Most device vendors either don’t care
or rely on “security by obscurity” to
hide JTAG port

Device Inputs

Boundary Reg

esign Specific Reg

Device ID Reg

Device Outputs

e

. Locking Mechanism l
==

ClockDR
ShifibR
UpdateDR

Controller
(16-State
Machine)

Instruction Decoder

Instruction Register

chgate
06489
26 Security extension fo

r IEEE Std 11491

https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491
https://www.researchgate.net/publication/220648926_Security_extension_for_IEEE_Std_11491

Extended JTAG pinouts

T0OSWO 1

837
08GAO v
0BG

O
TUSSWO0
T SHQX

T0OSWO
VIRES

e
E &

o

y
2
<

PasermsNC
T_JTUST SO0

2
o

e
588

o

GOt

TGP R

STOC14 Intertace
STME2 JTAGSWD wat VCP)

WSSO0

ARM JTAG 14 bntertace TISTAG 14 Intertace

DS Leveit JTAG
Infnecn Intertace

TS SWO0

RTCKTRACECLX
SWOTRACE
nTRST TraceOt
OGO Trael2
OBGALK Tracel3

ARM CoreSght 20 Ietectace

TS SWOI0
TCX WX
TOOSWO
™™

rSASY

ARM CoreSight 10 Intiertace

https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/
https://www.allaboutcircuits.com/technical-articles/jtag-connectors-and-interfaces/

JTAG and software debugging g v

Pinout
q S 3v3 Power 3 Sv Power
® Powerfl-‘” prlmltlves GPIO 2 (12¢c1 spa) o 5v Power
o ACCGSS to memory GPIO 3 (12¢c1 scL) . Ground
A . et 1 GPIO 4 (DI (Alt5) . GPIO 14 uART TX)
o Ccess 1o registers e (mm)| Ground . GPIO 15 (UART RX)
1 clarEl GPIO2 alu]| GPO 17 * GPIO18remcug
o Halt sigha GPIO3
)) :ﬂ < 10 _GPIO 27 mws akay 8 D Ground
[Softwa re debugger eng|neer|ng GPIO4 10 _GPIO 22 arsT (aita) © 16 GPIO 23 Rrck (Alta)
. . 3v3 P M © 18 GPIO 24 t
o Build standard debugging ops on GPIO17 F’ EB womr—y | e
JTAG hardware primitives GPI027 | | e 4O 22 GPIO 25 ek
) GPI022 .] 4 GPIO 8 (spio CE0)
o Wr‘ap N GUI/CLI/gdb .) GPIO 7 (spio ce1)

¢] FTDI (USB'-H_L) for wiring (BE!E):O GPIO 1 (EerrOM sCL)
)) GPIO9 Ground
e Example: tracing/single step GPIO11 " (
. 2 pin ZTQT Ground
o Halt signal + program counter ID_SD i Sl
register modification GPIO5 GPIO 20 cmoiNy
. GPIO6 GPIO 21 (Pcm bouT)
e Example: breakpoint GPIO13 e}

e OpenOCD

.....
T3

WO (%) N DOl] af
O~ — \J,; O~ O]
DO

TAG-pin 19: OxFEFFEFFE
Th0"2'6' THE - @ SRST - 8 TRST = B

https://sv{ ap/deuice Founds BxTHTEIZE (neq: GEDE. paxc: BTN

jtagsetup/ as 6 breskpoints, 2 uatchpoints

https://pinout.xyz/pinout/jtag
https://sysprogs.com/VisualKernel/tutorials/raspberry/jtagsetup/
https://sysprogs.com/VisualKernel/tutorials/raspberry/jtagsetup/

ISDB Registers

U REGISTER
DESCRIPTION ADDRESS

[BRRPTINFO | BREAKPOINTINFO |00 | R | Noe | Nowe |
:

ISDB GENERAL PURPOSE
REGISTER

ISDB_GPR
A3y
1

NO ACC IS ALLOWED FROM THE CORE IN USER MODE
l? ONLY BITS 4:0 ARE VISIBLE IN UNTRUSTED MODE
“ ONLY THE INTERRUPT COMMAND IS AVAILABLE

Trusted and Untrusted debugging mode

METHOD AND SYSTEM FOR TRUSTED/UNTRUSTED DIGITAL SIGNAL PROCESSOR DEBUGGING OPER-

ISDE TEST DATA REGISTER

a2 L
ik 2
JTAG ndd chas ot
ADDR(60 DATA[310)

[0012] According to one aspect of the disclosed subject matter, a method and

system for controlling between trusted and untrusted debugging operational modes ADikhes
includes the processes, circuitry, and instructions for operating a core processor process S
within a core processor associated with the digital signal processor. The method and

system further operate a debugging process within a debugging mechanism of the

digital signal processor, which debugging mechanism associates with the core

processor. The core processor process determines the origin of debugging control as

trusted debugging control or untrusted debugging control. In the event that debugging

control is trusted debugging control, the core processor process provides to the trusted

debugging control a first set of features and privileges. Alternatively, in the event that

Supervisor Mode

Qualcomm Hexagon V73 Programmer's Reference Manual Instruction Set

Trap

The trap instruction causes a precise exception.

Executing a trap instruction sets the EX bit in SSR to 1, which disables interrupts and enables
Supervisor mode. The program then jumps to the vector location (either TRAPO or TRAP1). The
instruction specifies a n 8-bit immediate field. This field is copied into the system status register
cause field.

Upon returning from the service routine with a RTE, execution resumes at the packet after the
TRAP instruction.

These instructions are generally intended for user code to request services from the operating
system. Two TRAP instructions are provided so the OS can optimize for fast service routines and
slower service routines.

Syntax Behavior

trap0 (#u8) SSR E = #u;
TRAP "0";

trapl (#u8) Assembler mapped to: "trapl(RO,#u8)"

trapl (Rx, #u8) if (!can handle trapl virtinsn(#u)) {

SSR.CAUSE = fu;
TRAP "1";

else if (#u = 1)
VMRTE;

else if (fu 3)
VMSETIE;

else if (#u 4)
VMGETIE;

else if (fu 6)
VMSPSWAP;

SYSCFG register

e Hexagon architecture register, RESERVED
exposed to assembler
o But, undocumented 0 ISDB CORE NOT READY 0= MMU DISABLED
o Patent shows “one way of forming
the register” — 0~ INTERRUPTS DISABLED 0~ lcache DISABLED
" Supersoronly tpriviieges) STIBR R o Bk DD
privileged mode of execution; eg.
modem firmware in early boot e Patent documentation:
e Use to set ISDB_TRUSTED bit o “Communication through a SYSCFG
o 0x28 == 0b0..1000 register as a 40-bit packet identifies
e ISDB status bit will be tested by host the ISDB register to read/write and a
debugger and eligible others 32-bit data payload”

o RESERVED part?

How to program SYSCFG register?

Qualcomm Hexagon V69 Programmer's Refersnce Manual Inabuction Set Qualcomm Hexagon V73 Programmer’s Reference Manual Instruction Set

System control register transfer V69 (2022)

Move data between supervisor control registers and general registers. I nStru Ctlon synCh ron |Zat|0n

Registers can be moved as 32-bit singles or as 64-bit aligned pairs. The figure shows the system . . " 5 s . " 5 s

control registers and their register field encodings. The isync instruction ensures that all previous instructions have committed before continuing to
o sam ’ " e prv— the next instruction.

wooecn. » | soscroo o [owom

e e e This instruction should execute after the following events (when subsequent instructions must

P observe the results of the event):

IPEND % | BRkPTPCO PMUEVTCFG

= After modifying the TLB with a TLBW instruction

vio 7 | emxprcreo PMUCFG

. V73 (2024) no longer mentions

= After modifying the SSR register SYSCFG register Iayout &
soovoon After modifying the SYSCFG register ISDB bits

IsDeMEXOUT

= After any instruction cache maintenance operation

After modifying the TID register

REV

- Syntax Behavior
povcLeLo

PCYCLEH) . isync instruction_sync;

- — Class: SYSTEM (slot 2)

Sd-Rs

= ? Notes
Sdd-Ras

Class: SYSTEM (slot 3) = This is a solo instruction. It must not be grouped with other instructions in a packet.

Breakpoints

Qualcomm Hexagon V73 Programmer's Reference Manual Instruction Set

Breakpoint

The brkpt instruction causes the program to enter Debug mode if enabled by ISDB.

Execution control is handed to ISDB and the program does not proceed until directed by the
debugger.

If ISDB is disabled, this instruction is treated as a NOP.

Syntax Behavior
brkpt Enter Debug mode;

Class: SYSTEM (slot 3)

Notes

= This is a solo instruction. It must not be grouped with other instructions in a packet.

Encoding

31/30/29 28 27|26 |25 24 23 22/21/20 19 18 17 161514/ 1312|1110 9 8 7|6 5 4 3 2|1 0
ICLASS sm Parse
01101]1]0 0/0j0f1|-|-|- - -|PP-|-|-|--/-[0]0]0|- -

Field name Description
Supervisor mode only
Instruction class
Packet/loop parse bits

Magic Cookie

23 https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/drivers/esoc/esoc-mdm.h

Newer msm kernels no longer leak it

25 https://android.googlesource.com/kernel/msm/+/android-msm-dory-3.10-kitkat-wear/drivers/esoc/esoc-mdm-4x.c

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MDM_PBLRDY_CNT
INVALID_GPIO
MDM_GPIO(mdm, 1)
MDM9x25_LABEL
MDM9x25_HSIC
MDM9x35_LABEL
MDM9x35_PCIE
MDM9x35_DUAL_LINK
MDM9x35_HSIC
MDM9x45_LABEL
MDM9x45_PCIE
MDM9x55_LABEL
MDM9x55_PCIE
MDM2AP_STATUS_TIMEOUT_MS
MDM_MODEM_TIMEOUT
DEF_RAMDUMP_TIMEOUT
DEF_RAMDUMP_DELAY
RD_BUF_SIZE
SFR_MAX_RETRIES
SFR_RETRY_INTERVAL
MDM_DBG_OFFSET
MDM_DBG_MODE
MDM_CTI_NAME
MDM_CTI_TRIG
MDM_CTI_CH

20

(-1
(mdm->gpios[i])
'"MDM9x25"
"HSIC"
""MDM9x35"
"PCIe"
"HSIC+PCIe"
"HSIC"
'"MDM9x45"
"PCIe"
""MDM9x55"
"PCIe"
120000L
3000

120000

2000

100

10

1000

0x934
0x53444247
"coresight-cti-rpm-cpu0"
0

]

mdm->dbg_addr = addr + MDM_DBG_OFFSET;
val = readl_relaxed(mdm->dbg_addr);

if (val == MDM_DBG_MODE) {
mdm->dbg_mode = true;

mdm->cti = coresight_cti_get(MDM_CTI_NAME);

if (IS_ERR(mdm->cti)) {

dev_err(mdm->dev, "unable to get cti handle\n");
goto cti_get_err;

}

ret = coresight_cti_map_trigout(mdm->cti, MDM_CTI_TRIG,

if (ret) {

dev_err(mdm->dev, "unable to map trig to channel\n");

goto cti_map_err;

}
mdm->trig_cnt = 0;
} else {

dev_dbg(mdm->dev, "Not in debug mode.

mdm->dbg_mode = false;

blob: 630fala07f118327627afb3da8b846fc92053130 [file] [log] [blame]

e Shared memory Quatcomm TEM
e Exposed in MSM —
e Undocumented

IMEM 1is fast on-chip memory used for various debug features and dma transactions.

Required properties

-compatible: "qcom,msm-imem"

-reg: start address and size of imem memory

If any children nodes exist the following properties are required:

-#address-cells: should be 1

-#size-cells: should be 1

-ranges: A triplet that includes the child address, parent address, &
length. The child address is assumed to be 0.

Child nodes:

Required properties:

-compatible: "qcom,msm-imem-pil"

-reg: start address and size of PIL region in imem

Bootloader Stats:

Enable Hexagon debugging with Magic Cookie

e QURT kernel operates ISDB, mostly Ox53444247
via privileged mode git quent
. https://git.quent1.fr » msm-kernel » drivers > remoteproc $
e It uses a simple flag— based samsung-kernel/esoc-mdm.h at android-13 - git.quent1.fr

... MDM_DBG_OFFSET 0x934. #define MDM_DBG_MODE 0x53444247. #define MDM_CTI_NAME
"coresight-cti-rpm-cpu0". #define MDM_CTI_TRIG 0. #define MDM_CTI_CH 0. enum ...

mechanism to trigger ISDB
operations for applications/users
e 0x53444247 (‘SDBG’ in hex)
= = = = drivers/esoc/esoc-mdm-4x.c ... - halogenOS GitLab
¢ PUt the maglc COOkIe In IMEM VIa When the ref-count for a subsystem goes down to 0, i.e. there are no current clients for it, the subsystem

JTAG is shutdown by calling the shutdown callbacks ...

0 halogenos.org
https://git.halogenos.org > halogenOS > blob > esoc ¢

o You need to know specific offset in T
IMEM for eaCh app|lcatI0n/C0ntrO| https://git.quent1.fr » msm-kernel » drivers » remoteproc &

- samsung-kernel/esoc-mdm.h at android-12 - git.quent1.fr
© Modem y PI L’ mba y Android msm y ... MDM_DBG_OFFSET 0x934. #define MDM_DBG_MODE 0x53444247. #define MDM_CTI_NAME

QURT kernel will check the cookie "coresight-cti-rpm-cpu0". #define MDM_C1 CTI_CH 0. enum ...
o Triggers software setup consistent Big secret

with debug mode of thread, and/or

enter debug mode via ISDB Google >

12 Next

.start:000004F8 A g @ DATA XREF: QURTK_ init_cache_params:loc_3

.start:000004F8 memw_phys (r@, ri1) }
.start:000004FC asl (r2, #loc_10)
] .start:00000500
.start:00000500 loc_500: @ DATA XREF: sub_36B8+28,0
.start:00000500 @ QURTK_ack_int+30
.start:00000500 immext (#0)
.start:00000504 memw (r25 + ##start) = r2.new }
.start:00000508 rl® = isdben }
.start:0000050C po = tstbit (r1®, #(start+2))
.start:00000510 if !p@.new jump:t _setup_isdb_cont }
.start:00000514 immext (#0)
.start:00000518 rl0 = memw (r25 + ##start)
.start:0000051C if (cmp.eq (rl@.new, #start)) jump:t _setup_isdb_cont }
.start:00000520 immext (#0x53444240)
.start:00000524 rll = ##0x53444247
.start:00000528 rie memw (rl@ + #start) }
.start:0000052C pd = cmp.eq (r1e, ril)
s 3 .start:00000530 if !p@.new jump:t _setup_isdb_cont @ not equal
oA lamexs (19) .start:00000534 immext (#0)
00000480 loc 480: @ DATA XREF SL!t.start:@(-)@)(i(iSSS rl® = add (r25, ##start) }
00000480 = r0 = memw (r25 + ##start) .start:0000053C memw (rl@ + #start) = #(start+l)
00000484 immext (#0) .start:00000540 memw (rl@ + #loc_4) = #(start+l) }
:00000488 rl = memw (r25 + ##start) } .start:00000544 memw (rl@ + #loc_8) = #(start+l) }
:0000048C s60 = r@ } .start:00000548
100000490 chicken = r1 } @ S63 .start:00000548 _setup_isdb_cont: @ CODE XREF: setup_isdb_cont+41j
100000494 .start:00000548 @ setup_isdb_cont+30+j
100000494 _configure_basic_syscfg: .start:00000548 rl = #(start+l)
100000494 { ro = sykcfg } .start:0000054C immext (#0)
100000498 { r3:2 = combine (#start, #start) .start:00000550 rl7 = memw (r25 + ##start)
:0000049C re = or (r@, #byte_42) } .start:00000554 if (cmp.eq (rl7.new, #start)) jump:t _skip_isdb_debug }
:000004A0 syscfg = ro } .start:00000558 isdben = rl1 } @ enable
:000004A4 $31:38 =T13:2) .start:0000055C isync }
:000004A8 isync } bt ADAANLLA.
:000004AC immext (#0)
:000004B0 r@ = memw (r25 + ##start)
:000004B4 immext (#0)
:000004B8 rl = memw (r25 + ##start) }
:000004BC p0 = cmp.eq (r@, #start) ; if (p@.new) jump:nt _setup_isdb
:000004C0 pl = cmp.eq (rl, #start) ; if (!pl.new) jump:nt _setup_isdb }
:000004C4
:000004C4 _stop_at_bootup: @ CODE XREF: start_next:_stop_at_bootup,j
:000004C4 { jump _stop_at_bootup }
:000004C4 @ End of function start_next
:000004C4
:000004C8
:000004C8 2 =SUBROUTINE
:000004C8
:000004C8
:000004C8 _setup_isdb: @ CODE XREF: start_next+BCtj
:000004C8 @ start_next+COtj ..
:000004C8 re = #(loc_C+1)
:000004CC call _setup_isdb }
:000004D0 immext (#0)
:000004D4 rl@ = memw (r25 + ##start)
:000004D8 if (cmp.eq (rl1@.new, #start)) jump:nt _setup_isdb_start }
:000004D8 @ End of function _setup_isdb

Conclusions

Technology summary

e ISDB is the low-level debugging
circuitry of Hexagon architecture which
sits in-between JTAG and the core

o Don’t confuse with ISDB-T, a digital TV
broadcasting standard
e Debugging works by reading/writing
ISDB registers, via either JTAG or
software
e Multiple ways of doing things
This research is the first step
o System internals of ISDB
o Key requirements to enable and control
debugging over JTAG and via software
o Untested - may need extra config!

Security

e Basically, ISDB is the core gatekeeper of
debugging on Hexagon cores
o Blocks JTAG if is ISDB_TRUSTED register is
not set
o Exposes software-based debugging controls
via proprietary kernel code
e Trusted and Untrusted mode of execution
o Trusted: Qualcomm’s kernel dev
o Untrusted: you
e Specialized enablement and configuration
protocols
e Qurt Kernel will check other debugging
controls before enabling ISDB
o Build-time configuration variables
o CoT & Attestation Certificates, Fuses, IMEM

= =

References

=

A.Esage, "Advanced Hexagon Diag”, Chaos Communications Congress (2020)
2. A.Esage, “"Deep Dive: Qualcomm MSM Linux Kernel & ARM Mali GPU 0-day
Exploit Attacks of October 2023”, Zero Day Engineering Research Blog (2023)
APQ8016E Technical Reference Manual

Qualcomm® Snapdragon™ 410 Processor APQ8016 Hardware Register
Description

Qualcomm® Snapdragon™ 410E (APQ 8016E) Processor Device Specification
WIPO patent no.2008/061067 A2

WIPO patent no.2008/061089 A2

US patent no.7,657,791 B2 of Feb. 2, 2010

Qualcomm Hexagon V66 Programmer’s Reference Manual (2017)

Qualcomm Hexagon V69 Programmer’s Reference Manual (2022)

Qualcomm Hexagon V73 Programmer’s Reference Manual (2024)

=

= O V0N U

Twitter/Youtube: @alisaesage

Email: contact@zerodayengineering.com

