
Standing on the Shoulders of Giants
De-Obfuscating WebAssembly Using LLVM

Vikas Gupta & Peter Garba
Thales Cybersecurity & Digital Identity (CDI)

Agenda

2

About Us

● Vikas Gupta
○ Senior Security Researcher at Thales CDI, previously with Google.
○ Masters in information security, OSCP Certified
○ Co-Author OWASP Mobile Security Testing Guide (MSTG)
○ Interests: Reverse engineering, mobile security

● Peter Garba
○ Principal Software Security Engineer at Thales CDI, Singapore
○ Product Owner
○ Author of the Thales internal obfuscation tools
○ Passionate reverse engineer at night.

3

Motivation

4

Problem Statement

1. Is Wasm secure for us?

2. Obfuscate Wasm binaries

3. Lifting Wasm to LLVM IR

4. Deobfuscate Wasm binaries &

recover original logic

5

Achievements

● Demonstrating use of existing tooling for Wasm
○ Obfuscation

○ Deobfuscation

● Lifting Wasm to LLVM IR - Squanchy

● Automated deobfuscation of Wasm

6

WebAssembly Essentials

7

WebAssembly Essentials

● Announced in 2015, a high-performance, secure, and
portable compilation target.

● Binaries that are compact and quick to parse.

● Runs in a stack based virtual machine (think JVM)
○ Communicates with host program using well

defined exports and imports

● Wide adoption
○ Games
○ Big web apps - Google Earth
○ Blockchain smart contracts
○ ...

8

WebAssembly Essentials

● Each Wasm program is a single file of
code - Module.

● Module is organized in sections.
○ Sections - Export, imports,

globals, functions etc.

● Indexed Spaces
○ Items can be accessed by a 0-based

integer index

● Code and data spaces are disjoint
○ compiled programs cannot corrupt

their execution environment
○ Can not jump to arbitrary locations
○ Perform other undefined behaviour

9

WebAssembly Tooling

10

WebAssembly Tooling

● WebAssembly Binary Toolkit
● Wasm-tools
● Ghidra

○ Using a Wasm plugin
○ Used to view decompiled Wasm

● IDA Pro v9
○ It is hit-n-miss with Wasm
○ Using to view object files

● JEB Pro

11

https://github.com/WebAssembly/wabt
https://github.com/bytecodealliance/wasm-tools
https://github.com/nneonneo/ghidra-wasm-plugin

WebAssembly Obfuscation

12

Obfuscation

● Obfuscation: Process of making a program harder to
understand while preserving the original program’s
behavior.

● To make code unreadable, for reasons...
○ Malware author to avoid reversing
○ In apps, to prevent stealing/reversing of IP
○ Digital Rights Management (DRM)

13

WebAssembly Obfuscation: Approaches

14

Obfuscation Using LLVM

● Open Source Obfuscators: O-LLVM, Hikari, Polaris
● Works on the middle-end
● Approach is source language agnostic

15

https://github.com/obfuscator-llvm/obfuscator
https://github.com/61bcdefg/Hikari-LLVM15
https://github.com/za233/Polaris-Obfuscator

LLVM Based Obfuscators

O-LLVM
● Instruction Substitution

● Control Flow Flattening

● Basic block splitting

● Bogus control flow

Hikari
● Bogus control flow

● Control Flow Flattening

● Function call Obfuscate

● Function wrapper

● Basic block splitting

● String encryption

● Instruction Substitution

● Indirect Branching

Polaris
● Alias Access

● Flattening

● Indirect Branch

● Indirect Call

● String Encryption

● Bogus Control Flow

● Instruction Substitution

● Merge Function

● Linear MBA

16

Obfuscation: O-LLVM Instruction Substitution

17

O-LLVM Instruction
Substitution (Loop=1)

O-LLVM Instruction
Substitution (Loop=3)

Obfuscation: Control Flow

18

Obfuscation: Complexity Increases

● On applying obfuscation multiple
times
○ Binary sizes can balloon, e.g to

12MB
○ 2k+ LoC of decompiled code.
○ Tools start to break

19

WebAssembly Deobfuscation

20

Deobfuscation

21

● Classical Obfuscation
○ Obfuscation patterns,

constant unfolding, junk code
insertion

● Classical Deobfuscation
○ Pattern matching

● Modern obfuscation
○ Source Code Level
○ Intermediate representation

level
● Modern deobfuscation

○ Several Intermediate
Languages at different
abstract layers

○ Based on generic optimization
tools

● Revert the transformations (sometimes impossible)
● Simplify the code to facilitate further analysis

SATURN: Compiler Based Deobfuscation

● Generic approach for deobfuscation based on
LLVM compiler infrastructure.

● Weaken certain obfuscation, and in best
case completely remove them.

22

SATURN: Compiler Based Deobfuscation

23

Binaryen

● Binaryen is a compiler and
toolchain infrastructure library
for Wasm.

● Binaryen's optimizer has many
passes that can improve code size
and speed.

● Input Wasm, Output Wasm

● Didn’t work - no deobfuscation
😞😡

24

25

Lifting to LLVM IR

26

Why LLVM?

● LLVM - a target-independent optimizer and code generator.
● LLVM has a language-independent intermediate representation

(IR)
● Advantages of using LLVM IR

○ World Class Optimizations and Analysis Passes
○ Feature rich intermediate language
○ Accessible API
○ Normalization
○ Several backends available for recompilation
○ It’s fast!

27

Challenges of Lifting

● To leverage LLVM optimisation passes, requires lifting
Wasm to LLVM IR.

● Challenges
○ Correctness
○ Captures side effects and expressiveness
○ Representation of the runtime environment
○ Stack machine to register machine transformation

28

Wasm Code Lifting to C: Lifting Principles

29

Wasm Code Wasm Opcode Specification Lifted C Code

Wasm Code Lifting: Using WAMRC

● WebAssembly Micro Runtime (WAMR)
○ Lightweight, standalone Wasm runtime
○ WAMR Compiler (WAMRC)

■ The AOT compiler to compile Wasm file into
AOT file

● Shortcomings
○ Symbols information is lost
○ Generated LLVM IR does not contain

various tables (global’s table, function
table) => LLVM optimisations don’t work

30

31

Wasm Lifter Problem Persists

32

Wasm Code Lifting: Code Lifters Comparison

33

Wasm Code Lifting: Lifting Idea!

34

Wasm Tool: wasm2c

● Great tool to lift Wasm to C

● Well defined wasm runtime that helps during deobfuscation
○ Helpers to initialize - Wasm instance and memory
○ Helpers to initialize and modify globals
○ Helpers for load/stores to memory

■ Load/Stores are access through helpers that can be overridden

● Does not modify the original Control Flow Graph

● Shortcomings
○ Runtime information (tables…) not available for each function
○ Code doesn’t fold

35

Wasm Code Lifting: Motivating Example

36

Wasm Code Lifting: wasm2c (O3 Unobfuscated)

wasm2c clang -O3

clang -c + IDA Pro

37

Wasm Code Lifting: wasm2c

● w2c_instance is passed to all
functions
○ Keeps track of execution state

between functions
● w2c_env_instance can be freely used

to keep track of important values
● Memory struct keeps the state of

the current initialized memory
○ Will be initialized with table

memory
● Function table is used for indirect

function calls
● Globals will be dynamically

generated

u32 w2c_add(w2c* instance, …)

38

Wasm Code Lifting: wasm2c

● w2c_instance will be instantiated by helper functions
○ Initialized memory, globals and others

39

Wasm Code Lifting: Deobfuscation idea!

40

Wasm Code Lifting: Squanchy

● Tool to automate several deobfuscation steps

● Models and injects the runtime

○ Injects runtime helpers into Module/Function

● Inlines functions accordingly

● Optimizes the function/module

○ Customized optimization pipeline to preserve Control Flow Graph

● Removes wasm2c runtime

● Extracts functions and dependencies into new clean module

● https://github.com/pgarba/Squanchy

41

Wasm Code Lifting: Squanchy - Runtime Modeling

42

Wasm Code Lifting: Squanchy - Runtime Injection

43

Wasm Code Lifting: Squanchy - Runtime Injection

44

Wasm Code Lifting: Squanchy - Inlining

45

Wasm Code Lifting: Squanchy - Inlining

46

Wasm Code Lifting: Squanchy - Runtime Injection

47

Wasm Code Lifting: Squanchy - Optimisation

48

Apply LLVM O3 pipeline and preserve
Control Flow Graph

● Obfuscation pipelines are written by
humans
○ Control Flow Protection

■ Control Flow Flattening
○ Code Protection

■ Instruction Substitutions
○ Harden Protections

■ Opaque Predicates
■ Mixed Boolean Arithmetics

Wasm Code Lifting: Squanchy - Optimizations

Override LLVM Thresholds

49

Wasm Code Lifting: Squanchy - Brightening

50

Wasm Code Lifting: Squanchy - Recompilation

LLVM IR

ARM64

51

Deobfuscation

52

Reminder: Original Input

53

Deobfuscation: LLVM Optimisations

54

Deobfuscation: LLVM Optimisations

55

Deobfuscation: Progress…

56

Deobfuscation: LLVM Optimisation Shortcomings

● May only weaken some obfuscations
● Some techniques which LLVM cannot outright break

○ Control flow flattening*
○ Bogus control flow
○ Solving complex MBAs

■ Multiple iterations of substitution
○ . . .

57

58

Beyond LLVM: Solving MBAs

● Mixed Boolean Arithmetic (MBA) expressions
○ Expressions mixing arithmetic operators (+,-,x) with boolean

operators (¬, ⊕, ∧, ∨)
○ Difficult to analyze - no general rules for interaction b/w

operators (no distributivity, no associativity etc.)
○ With complex MBAs, SMT solvers may not able to solve them.

● Pattern based solving of MBAs can be overcome by
chaining the MBAs.

59

(x ⊕ y) + 2 × (x ∧ y) = x + y

Solving MBAs: Tooling

● Specialised tools for solving MBAs
○ SiMBA - For linear MBAs
○ GAMBA - Nonlinear MBA expression
○ SiMBA++ - For simplifying MBAs in LLVM IR

■ https://github.com/pgarba/SiMBA-

● SiMBA++
○ Detects candidate expressions in LLVM IR
○ Performs simplification using SiMBA or

GAMBA
■ Supports calling external simplifiers

○ Replaces expressions with simplifications
in LLVM IR

60

https://github.com/DenuvoSoftwareSolutions/SiMBA
https://github.com/DenuvoSoftwareSolutions/GAMBA
https://github.com/pgarba/SiMBA-
https://github.com/pgarba/SiMBA-

Deobfuscation: LLVM Opt + SiMBA + GAMBA

61

Deobfuscation: LLVM Opt + SiMBA + GAMBA

62

Deobfuscation: Progress…

63

SOUPER: Supercharging Deobfuscation

● Souper - a synthesis-based superoptimizer for a
domain specific intermediate representation (IR)
that resembles a purely functional,
control-flow-free subset of LLVM IR

● Can run as an LLVM optimization pass

● Synthesise optimisations
○ Counterexample guided inductive synthesis

(CEGIS)
■ Multiple RHS generated, cheapest among

them is chosen.
○ Dataflow

● Can resolve opaque predicates
● Good results with control flow obfuscation

64

Deobfuscation: SOUPER

65

Deobfuscation: SOUPER

66

67

Deobfuscation: Progress…

68

Deobfuscation: Hikari (Sub=1, bogus=1, split=1)

69

Long complex
obfuscated code

69

Real World Application

70

WebAssembly Malwares

● Steady increase in usage of Wasm for
cryptomining in browsers
○ Compared to JS, Wasm is fast in performing

hashing operations
○ Monero is the most used cryptocurrency for

cryptomining.

71

Malware Diversification: wasm-mutate

● Carbera-Arteaga et. al. demonstrate use of
wasm-mutate to evade detection

● wasm-mutate transforms binary into a variant
binary program that preserves the original
functionality.

● 3 kind of transformations
○ Peephole

■ ~135 rewrite rules.
○ Module structure transformation

■ Add new type, new function, new export etc.
○ Control flow graph

■ Loop unrolling, swap conditional branches.

● wasm-mutate output needs to verified with wasm-validate
○ Some transformation break the WASM file

72

https://arxiv.org/pdf/2309.07638

DEMO!!

73

Use Case: wasm-mutate

● wasm-mutate
○ 3000 (real) iterations are applied
○ 100% of mutations are removed
○ Code is normalized and matches 100% the original code!

■ Our approach fully recovers the function (and
optimizes it!)

74

Use Case: Deobfuscating Malwares

● CryptoNight, CryptoNight Obfuscated
○ Deobfuscated functions by Squanchy match non-obfuscated

functions
○ https://www.crowdstrike.com/en-us/blog/ecriminals-increas

ingly-use-webassembly-to-hide-malware/
○ https://arxiv.org/abs/2403.15197

75

https://www.crowdstrike.com/en-us/blog/ecriminals-increasingly-use-webassembly-to-hide-malware/
https://www.crowdstrike.com/en-us/blog/ecriminals-increasingly-use-webassembly-to-hide-malware/
https://arxiv.org/abs/2403.15197

Use Case: hCaptcha

● hCaptcha uses obfuscated Wasm
● Small and medium size obfuscated functions

can be simplified in <1-2min.

Unflattens control flow, simplifies and inlines functions.

76

77

Conclusion

● Wasm obfuscation
○ LLVM IR based tools - O-LLVM, Polaris

● Squanchy: Lifting Wasm to LLVM IR
○ Wasm2c + Squanchy works great.

● Deobfuscation using LLVM
○ LLVM + SiMBA + GAMBA + SOUPER + …

78

Conclusion

● Real World Application
○ Malware Normalisation

■ Wasm-mutate output can be simplified
■ Cryptonight malware simplified

○ Deobfuscating hCaptcha binary

● Tooling
○ Existing tooling can be reused
○ Obfuscation - Polaris, O-LLVM, Wasmixer
○ Deobfuscation - LLVM, SiMBA++, SOUPER
○ Symbolic Execution - KLEE, Manticore, SeeWasm

79

Thank You!!

● Slides + Whitepaper -
https://github.com/su-vikas/Presentations

● Squanchy - https://github.com/pgarba/Squanchy

80

https://github.com/pgarba/Squanchy

