blackhat ASIA 2025

APRIL 3-4, 2025 BRIEFINGS

Sweeping the Blockchain **Unmasking Illicit Accounts in Web3 Scams Speaker: Wenkai Li**

Hainan University, China

Collaborators: Zhijie Liu (ShanghaiTech University), Xiaoqi Li* (Hainan University)

*Corresponding author: csxqli@ieee.org

The Team

Li Wenkai

- PhD Student, Hainan University, China
- cswkli@hainanu.edu.cn
- https://cswkli.github.io/

Liu Zhijie

- Msc Student, ShanghaiTech University, China
- liuzhj2022@shanghaitech.edu.cn
- https://rroscha.github.io/

Li Xiaoqi

- Associate Professor, Hainan University, China
- csxqli@ieee.org
- https://csxqli.github.io/

Security Research

- 9 year-experience (since 2016) of Ethereum (Born in 2015) Blockchain Security.
- Blockchain/Software/System Security and Privacy, Ethereum/Smart Contract, Malware Detection, and etc.
- 40+ papers including ASE、INFOCOM、ICSE、 WWW、AAAI、TSE, etc. within 5 years
- 30+ CVE/CNVD Vulnerabilities identified within 5 years
- 3700+ citations within 5 years
- Best Paper from INFOCOM、ISPEC、CCF, etc.
- SV Insight Annual Global Top-50 Blockchain **Research Paper**
- ESI Hot (Top 0.1%), Highly Cited Paper (Top 1%)

About Us

Introduction Motivation ScamSweeper Experiments

Case Study

Introduction

Many ways for crypto users to engage with Web3.0:

The most used Web3.0 Services:

META

ASIA 2025 The 3rd Generation Internet – Web 3.0

- What is the scale of Web3.0 tech market?
 - > A growing trend.
 - > The accelerating growth rate.
 - ➤ USD 3.17 billion in 2024.
- Web3.0 applications
 - > DApp, DeFi protocol, DID, and etc. based on blockchain.
 - > The blockchain node network follows a power-law distribution.
 - > A minority of accounts appear at majority of Txs.

The Web3 environment comes with *scam risks* ...

Motivation

Motivation: Web3 Scams

- The situation of Web3 scams:
 - Phishing, Rug Pulls, Harmful Airdrops, Giveaway Scams...
 - Crypto Drainer, Pig Butchering, Address Poisoning Scams...

www.infosecurity-magazine.com **NEWS 6 JAN 2025** NEWS 16 JAN 2024 Scammers Drain \$500m from Crypto Wallets in a Year Inferno Drainer Spoofs Over 100 Crypto Brands to Steal \$80m+

• The scams on Web3 ecosystem can be catastrophic

NEWS 22 DEC 2023

Crypto Drainer Steals \$59m Via Google and X Ads

NEWS 12 MAR 2024

Victims Lose \$47m to Crypto Phishing Scams in February

NEWS 8 JAN 2024

Security Firm Certik's Account Hijacked to Spread Crypto Drainer

NEWS 3 JAN 2025

Web3 Attacks Result in \$2.3Bn in Cryptocurrency Losses

Motivation: Web3 Scams

- What do the Web3 Scams on blockchain look like?
 - e.g., crypto drainers often masquerade as web3 projects, enticing victims into the drainer and getting the control access.

SCAM ALERTI

Victim

Motivation: Previous Research

- Graph Learning Methods
 - > Intuitive to represent interactions of the topology structure.
 - Account as node, transaction as edge.
 - > Top-k algorithm.
 - Power-law distribution leads lots of noise.

Random Walk

6-0

[1] Li, Shucheng and et al. "SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection." in *Proc. of MM*. 2023.
 [2] Wu, Zhiying and et al. "TRacer: Scalable graph-based transaction tracing for account-based blockchain trading systems." *TIFS*. 2023.
 [3] Li, Sijia and et al. "TTAGN: Temporal transaction aggregation graph network for Ethereum phishing scams detection." in *Proc. of WWW*. 2022. ^{@BlackHatEvents}

Motivation: Previous Research

- Sequence Learning Methods
 - \succ Transductive to learn the logic of account behavior feature.
 - \succ Analyzing an account is related to its length.
 - > Large-scale transactions, e.g., **2.7 billion txs** on Ethereum.

Tab.1 – The statistical information of some accounts on Ethereum.

No.	Account Address	Tx Cnt
1	0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2	16,514,200
2	0x28C6c06298d514Db089934071355E5743bf21d60	18,921,592
3	0x267be1C1D684F78cb4F6a176C4911b741E4Ffdc0	3,832,284
4	0x32400084C286CF3E17e7B677ea9583e60a000324	3,094,481
5	0xf7858Da8a6617f7C6d0fF2bcAFDb6D2eeDF64840	1,588,678
6	0xA7EFAe728D2936e78BDA97dc267687568dD593f3	3,482,451
7	0xBf94F0AC752C739F623C463b5210a7fb2cbb420B	1,611,882
8	0xae0Ee0A63A2cE6BaeEFFE56e7714FB4EFE48D419	1,798,762
9	0x0D0707963952f2fBA59dD06f2b425ace40b492Fe	7,527,833
10	0x6262998Ced04146fA42253a5C0AF90CA02dfd2A3	1,183,120

[4] Hu, Sihao and et al. "BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection." in Proc. of WWW. 2023.

Motivation: Previous Research

- Graph Learning Methods
 - \succ Not suitable to capture dynamic information. Merging multiple edges into one for graph computation e.g., graph convolution or random walk
 - \succ Not suitable for power law distribution.

Introducing noise when multi-hop convolution,

In GRU, Model capability is limited (# of GNN layers = # of hop)

- Sequence Learning Methods
 - \succ Not suitable to large-scale transactions.

Analyzing an account is related to the length of its transaction sequence.

[4] Hu, Sihao and et al. "BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection." in Proc. of WWW. 2023.

Transaction sequence

ScamSweeper

ScamSweeper

- Learning the dynamic evolution of transaction graph, and applying to account detection
 - \succ Sequence learning from the graph structure.
 - \succ crawl the data from the Etherscan, Ethereum and github.
 - transaction network construction.
 - \succ split the graph into several subgraph according to the temporal series.
 - \succ learn each sub-graph feature.
 - \succ capture the dynamic evolution, and make a classification.

ScamSweeper (1)

- (a) Graph Construction
 - > Most previous works used the **random walk** to sample the transaction network.
 - > Random walk is like a **dice game**!

Motivation:

To lower the computing consumption, and learn features from temporal sequence and topology structure.

We designed a new walk-sampling method:

Struct-Temporal Random walk (STRWalk)

ScamSweeper (1

- (a) Graph Construction
 - \succ current node is v_i , next node is v_{i+1} ,
 - \succ the edge is e_i
 - $\succ \mu(T(e_i)) = T(e_i) mintime,$

With P_i and p_m , Struct-Temporal Random walk (STRWalk)

With P_i, Temporal Random Walk (TRWalk)

 $\succ \delta(v)$ represents the number of nodes that are in the same interval with v.

The 1st sampled node selected by the alias sample algorithm with the **probability** p_i .

The 2nd sampled node selected by the alias sample algorithm with the **probability** p_m .

ScamSweeper (1)

- (a) Graph Construction
 - \succ Walk length: 20, the window size: 4, and the embedding dimension: 128
 - Phishing dataset, 1165 malicious nodes and 636 normal nodes.
 - > T-SNE Visualization

- Results
 - Random walk and deep walk are selected into ScamSweeper at the same time as TRWalk and STRWalk
 - \succ The model with STRWalk can segment almost linearly.

ScamSweeper (2)

- (b) Directed Graph Encoder
 - \succ Spliting the whole graph according to the interval, generating several sub-graphs
 - > Learning the feature of each subgraph in time sequence

ScamSweeper (3)

- (c) Temporal Feature Learning
 - Leveraging the ability of Transformer

$$H^{(l+1)} = Attention(H^{(l)^{T}}\Theta_{Q}, H^{(l)^{T}}\Theta_{K}, H^{(l)^{T}}\Theta_{V})$$
(5)

$$h = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}}V)$$
(6)

$$H^{(l+1)} = FFN(h)$$
(7)

$$FFN(x) = Sigmiod(xW_{1}^{(l)} + b_{1}^{(l)})W_{2}^{(l)} + b_{2}^{(l)}$$
(8)

- \succ sort them in the original time order.
- > variational Transformer structure to extract the features on time.
- > capture the dynamic evolution feature.

Experiments

Experiments: Large-scale Data

- Data & distribution
 - Crawling the first 18 million block height on Ethereum
 - Phishing labels from Etherscan
 - ➢ Web3 scams from [5]
 - \succ Normal nodes contains 4 types: exchange, mining, ICO wallet, and gambling.

[5] https://github.com/scamsniffer/scam-database, 2024.

Experiments: Ablation

- How well do the components work?
 - the importance of graph encoder and T-Transformer
 - \succ The ScamSweeper is mainly contained with both of them.

- Results
 - Under the F1-score and Weighted F1-score
 - \succ Both of them are valuable for the classification.

ScamSweeper > Graph encoder > T-Transformer

Experiments: Comparison

- How well do the ScamSweeper work?
 - Compared with Graph methods and Transformer
 - > Structure window: $\{5, 10, 15\}$.
 - Training: 70%, Validation: 20%, Test:10%
 - STRWalk samples the network and then used for the evaluation
- Results
 - Under the Accuracy, F1-score, Precision, and Recall
 - ScamSweeper always outperform other methods.

Case Study

Case Study: Web3 Scam

Dynamic Evolution

- $\succ \tau$ is a time interval.
- \succ The time interval sets 1 day.
- \succ All the data from on-chain data,
- \succ not contained any off-chain data.
- \succ scammer mimics the normal regularity
- the decrease of transaction volume
- > Not suffer any DoS attack

	A	В	С	D		
1	from	to	value	timestamps	36	0x075d
2	0x075d9bb	0x375abb8	0	1.68E+09	37	0x075d
3	0x075d9bb	0xf17a3fe5	0	1.68E+09	38	0x075d
4	0x075d9bb	0x29488e5	2.27818	1.68E+09	20	0x075d
5	0x075d9bb	0x29488e5	1.54884	1.68E+09	39	0x0750
6	0x075d9bb	0x7749afe	0.010056	1.68E+09	40	0x0750
7	0x075d9bb	0xc183602	0	1.68E+09	41	0x0750
8	0x075d9bb	0x881d402	0	1.68E+09	42	0x075d
9	0x075d9bb	0x881d402	0	1.68E+09	43	0x075d
10	0x075d9bb	0x881d402	0	1.68E+09	44	0x075d
11	0x075d9bb	0x881d402	0	1.68E+09	45	0x075d
12	0x075d9bb	0x881d402	0	1.68E+09	46	0x075d
13	0x075d9bb	0x881d402	0	1.68E+09	17	0x075c
14	0x075d9bb	0x881d402	0	1.68E+09	10	0x0750
15	0x075d9bb	0x881d402	0	1.68E+09	40	0x075
16	0x075d9bb	0x881d402	0	1.68E+09	49	0x0750
17	0x075d9bb	0x881d402	0	1.68E+09	50	0x0750
18	0x075d9bb	0x881d402	0	1.68E+09	51	0x075c
19	0x075d9bb	0x881d402	0	1.68E+09	52	0x0750
20	0x075d9bb	0x881d402	0	1.68E+09		
21	0x075d9bb	0x881d402	0	1.68E+09		
22	0x075d9bb	0x881d402	0	1.68E+09		
23	0x075d9bb	0x881d402	0	1.68E+09		
24	0x075d9bb	0x881d402	0	1.68E+09		
25	0x075d9bb	0x881d402	0	1.68E+09		
26	0x075d9bb	0x881d402	0	1.68E+09		
27	0x075d9bb	0xd417144	0	1.68E+09		
28	0x075d9bb	0xa0b8699	0	1.68E+09		
29	0x075d9bb	0xa0b8699	0	1.68E+09		
30	0x075d9bb	0x5668145	0	1.68E+09		
31	0x075d9bb	0x0000000	0	1.68E+09		
32	0x075d9bb	0x0000000	0	1.68E+09		
33	0x075d9bb	0x10a5703	11.30202	1.68E+09		
34	0x075d9bb	0x10a5703	7	1.68E+09		
35	0x075d9bb	0xb1ca0f7	0.133012	1.68E+09		

		-		11
75d9bl0x7d1a	fa7	0	1.68E+09)
75d9bt0xde30	da	0	1.68E+09)
75d9bt0x5149	107	0	1.68E+09)
75d9bl 0x1f984	0al	0	1.68E+09)
75d9bt0x95ad	61t	0	1.68E+09)
75d9bt0x03be	5c9	0	1.68E+09)
75d9bl0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bt0xef1c6	e6	0	1.68E+09)
75d9bl0xef1c6	e6	0	1.68E+09)

Case Study: Web3 Scam

- Dynamic Evolution
 - $\succ \tau$ is a time interval.

Takeaways

Summary & key takeaways

> Web3 Scams Proliferation: Web3 applications are increasingly targeted by scammers who mimic legitimate transactions to deceive users, highlighting a critical gap in current detection methods.

> Research Gap: Prior studies focus on de-anonymization and phishing nodes, neglecting the unique temporal and structural patterns of web3 scams, while existing detection tools struggle with power-law distributed transaction networks.

> New Approach: A novel approach that combines structure-temporal random walks for efficient transaction network sampling and variational transformers for dynamic pattern analysis, capturing both temporal and structural evolution of scams.

> Practical Insights: Large-scale dataset collection, effective data sampling, and dynamic evolution analysis, enabling real-world application in Ethereum transaction monitoring.

Thank You

