
Security Analysis of WeChat’s
MMTLS Encryption Protocol
Pellaeon Lin, Mona Wang

Thursday, April 3 2025

Agenda
Security Analysis of WeChatʼs
MMTLS Encryption Protocol

● Introduction, motivation, methodologies

● WeChat network request lifecycle

● MMTLS encryption, Business-layer encryption

● Discussion, recommendations, future work

Pellaeon Lin
● Researcher at Citizen Lab, University of Toronto
● Security and privacy of mobile apps
● Past studies

○ TikTok vs Douyin - A Security and Privacy Analysis
○ Unmasked II: An Analysis of Indonesia and the Philippinesʼ Government-launched

COVID-19 Apps
○ Unmasked: COVID-KAYA and the Exposure of Healthcare Worker Data in the

Philippines

Mona Wang
● Networking security researcher, PhD student at Princeton CITP
● OTF Information Controls Research Fellow at Citizen Lab
● Previously technologist at EFF
● Other work

○ Network measurement (CoNEXT 22)
○ Traffic fingerprinting resistance and censorship circumvention (PETS 22)
○ Threat modelling and security training for organizers (CSCW 22)

https://m0na.net

Motivation
Whatʼs being sent? Is the encryption sound? Why custom encryption?

Motivation
WeChat MMTLS

● Secures 1+ billion users traffic
● Deployed for ~8 years
● One public blog post

SSL/TLS

● Secures billions of users traffic
● 30+ years of development
● Open standard, lots of academic

and public scrutiny

MMTLS deserves just as much scrutiny as TLS!!!

WeChat network
request lifecycle

Anatomy of a
Wechat network
request

● API endpoint is referred to as
“Scene”, has unique “type” number
and URI

Anatomy of a
Wechat network
request

● Request and response formats are
defined using Protobuf

● Screenshot shows a portion of the
request Protobuf fields

API object
(NetSceneBase)

● Defines structure of
API data, what type
of encryption to use

Serializer (reqToBuf)
● Serialize the object into

bytearrays

Encryptor (MMProtocalJni.so)
● Encrypts byte arrays

using crypto specified by
API type

OpenSSL

Other components can make this specific
API call by calling SomeAPI.doScene

1

Business-layer
Encryption

2

Task manager (NetCore)
● Manages

long/short link
connection tasks

● Adds task to
network queue

API object
(NetSceneBase)

● Defines structure of
API data, what type
of encryption to use

Blue=native,
green=Java

Serializer (reqToBuf)
● Serialize the object into

bytearrays

Encryptor (MMProtocalJni.so)
● Encrypts byte arrays

using crypto specified by
API type

OpenSSL

Other components can make this specific
API call by calling SomeAPI.doScene

Start Network Task

1

3

Business-layer
Encryption

2

Task manager (NetCore)
● Manages

long/short link
connection tasks

● Adds task to
network queue

API object
(NetSceneBase)

● Defines structure of
API data, what type
of encryption to use

Blue=native,
green=Java

Serializer (reqToBuf)
● Serialize the object into

bytearrays

Encryptor (MMProtocalJni.so)
● Encrypts byte arrays

using crypto specified by
API type

MMTLS shortlink manager (worker)
● Handles MMTLS handshaking
● Pools connections, rate limit

MMTLS shortlink (HTTP)
serializer
Serialize MMTLS headers (records) and
generates HTTP headers

Socket connector
Makes TCP connection

OpenSSLOutgoing connections

Other components can make this specific
API call by calling SomeAPI.doScene

Start Network Task

1

2

3

4

5

MMTLS
Encryption

Business-layer
Encryption

Task manager (NetCore)
● Manages

long/short link
connection tasks

● Adds task to
network queue

API object
(NetSceneBase)

● Defines structure of
API data, what type
of encryption to use

Blue=native,
green=Java

Serializer (reqToBuf)
● Serialize the object into

bytearrays

Encryptor (MMProtocalJni.so)
● Encrypts byte arrays

using crypto specified by
API type

MMTLS shortlink manager (worker)
● Handles MMTLS handshaking
● Pools connections, rate limit

MMTLS shortlink (HTTP)
serializer
Serialize MMTLS headers (records) and
generates HTTP headers

Socket connector
Makes TCP connection

OpenSSLOutgoing connections

Other components can make this specific
API call by calling SomeAPI.doScene

Start Network Task

1

2

3

4

5

To handle the
response, implement
SomeAPI.onSceneE
nd method. It’s a
callback method
when a response is
received, decrypted,
and deserialized.

Incoming
response

6

MMTLS
Encryption

Business-layer
Encryption

One more thing…
● Mars is Tencentʼs cross-platform infrastructure

component, written in C++
● Network requests are handled by submodule

“STN”
● Mars is partially open source

○ mars-open is the open source part
○ mars-private : “potentially open

sourced”
○ mars-wechat : wechat-specific code,

including MMTLS encryption

“Mars”
mars-open Mars-

private
Mars-

wechat

One more thing…
● Mars is Tencentʼs cross-platform infrastructure

component, written in C++
● Network requests are handled by submodule

“STN”
● Mars is partially open source

○ mars-open is the open source part
○ mars-private : “potentially open

sourced”
○ mars-wechat : wechat-specific code,

including MMTLS encryption

“Mars”
mars-open Mars-

private
Mars-

wechat

Mars-open helps us reverse engineer other
closed-source parts ;-)

WeChat network
encryption

How does WeChat encrypt requests?

How does WeChat encrypt requests?

How does WeChat encrypt requests?
Two transport protocols: Longlink and Shortlink

MMTLS

TCP

IP

Longlink

Busines
s-layer

● TCP, port 8080
● Long-lived connection
● Supports multiple request-response cycle
● Likely used for server-initiated

transmissions

How does WeChat encrypt requests?
Two transport protocols: Longlink and Shortlink

HTTP

TCP

IP

MMTLS

Shortlink

Business-
layer

● HTTP POST, port 80
● Short-lived connection
● Supports single request-response cycle
● Used for most client-initiated

transmissions

How does WeChat encrypt requests?
Encrypted twice (and also differently if youʼre logged-out)

Key derivation Encryption Library

MMTLS layer DH with resumption AES-GCM with tag libwechatnetwork.so

Business-layer, logged-out Static DH AES-GCM with tag libwechatmm.so

Business-layer, logged-in Fixed key from server AES-CBC with checksum libMMProtocalJNI.so

How does WeChat encrypt requests?

Protobuf
data

AES-CBC w/
“session key”

WeChat request
headers

ciphertext1

ciphertext2AES-GCM w/
ECDH-derived key

MMTLS headers

“Business-layer” encryption
● Found and reported many issues

“MMTLS” encryption
● Added in 2016

Logged-in example of network request encryption:

MMTLS “records”

MMTLS ServerHello Packet

Handshake record

Data record

Alert record

TLS ServerHello Packet

Handshake record

Data record

MMTLS

19 f1 04

16 f1 04

17 f1 04

15 f1 04

16 03 04

17 03 04

15 03 04

Handshake resumption

Handshake

Data

Alert

Handshake

Data

Alert

MMTLS record headers TLS record headers

MMTLS handshake

MMTLS Layer
● Modifications from TLS 1.3:

○ Limited ciphersuite selection, pinned keys and certificate (since WeChat controls
both client and server)

● AES-GCM + tag for encryption, authenticity
● Public documentation on Github

● Public flaws: lack of forward secrecy, heavy use of session
resumption implies no replay resistance

https://github.com/WeMobileDev/article/blob/master/%E5%9F%BA%E4%BA%8ETLS1.3%E7%9A%84%E5%BE%AE%E4%BF%A1%E5%AE%89%E5%85%A8%E9%80%9A%E4%BF%A1%E5%8D%8F%E8%AE%AEmmtls%E4%BB%8B%E7%BB%8D.md

Business-Layer

Logged out LoggING in Logged in

Business-Layer (Logged out)
● Static Diffie-Hellman

○ static public server key + newly generated client key to generate session key
○ No forward secrecy (e.g. if static private server key is compromised, all session

can be compromised)

● AES-GCM + tag for encryption, authenticity

Business-Layer (Logged in)
● Uses key given by server

○ Server sends key to client encrypted with “logged-out” encryption– highly
unusual!

● AES-CBC + checksum
○ Checksum is forgeable and provides no cryptographic guarantees

● Prior to 2016, this was the only layer of encryption…
○ But it leaks metadata such as user ID and request URI
○ Acknowledged by Tencent to be one reason to develop MMTLS Encryption

Disclosure
● We reported to Tencent, suggested to switch to QUIC/TLS1.3 or

remove Business-layer encryption altogether
● They replied saying they would upgrade Business-layer encryption

to use AES-GCM instead of AES-CBC
● ???
● Possibly, Business-layer encryption is the only layer of encryption

within WeChat internal networks
○ This is also bad: means WeChat data could be subject to surveillance

Discussion

It’s not just WeChat…

Source: https://www.businessofapps.com/data/most-popular-apps/ (1/30/2025)

https://www.businessofapps.com/data/most-popular-apps/

Which always use HTTPS/TLS?

*but theyʼre also not not encrypting…

they are often using proprietary cryptography

❌ WeChat 1,012
❌ Alipay 901
❌ Taobao 795
✅ TikTok 773
✅ Instagram 759
❌ Pinduoduo 728

✅ Douyin 695
❌ QQ 583
✅ Facebook 571
✅WhatsApp 527
❌ Baidu 491
❌ Kuaishou 480

12.9% of top 1k apps sent plaintext traffic.

3.5% of top 1k apps used proprietary cryptography.

65.4% of top 1k apps sent plaintext traffic.

47.6% of top 1k used proprietary cryptography!

HTTPS adoption on mobile?

(Chinese
version)

Is the proprietary cryptography secure?
We manually analyzed the 9 most popular proprietary protocols globally…

8 contained severe vulnerabilities where we broke the encryption!

The remaining one was MMTLS… !

Why does this matter?
● Bad encryption enables mass surveillance and MITM.
● If apps use bad encryption, users of those apps are more vulnerable to

mass surveillance by all governments and attackers.
● Not just Chinese people are affected!

○ Chinese apps have sizable international user base
■ E.G. RedNote/XiaoHongShu:

https://citizenlab.ca/2025/02/network-security-issues-in-rednote/
○ Non-Chinese apps may still use Chinese SDK

https://citizenlab.ca/2025/02/network-security-issues-in-rednote/

Discussion:
Why do Chinese apps prefer custom cryptography?

● Distrust in TLS?
○ Early concerns on TLS Certificate Authority ecosystem circa 2011

● Obfuscation mechanism?
○ Why not just use commercial packers?

● OS performance / compatibility ?
○ Fragmented Android OS and app store ecosystem increases the need for dirty

patches and workarounds

● Network filtering?
○ Prevalent ISP filtering and traffic poisoning prompts the need for dirty patches

● “Not invented here” problem?
● Technical debt / inertia

Discussion:
Why do Chinese apps prefer custom cryptography?

● Distrust in TLS?
○ Early concerns on TLS Certificate Authority ecosystem circa 2011

● Obfuscation mechanism?
○ Why not just use commercial packers?

● OS performance / compatibility ?
○ Fragmented Android OS and app store ecosystem increases the need for dirty

patches and workarounds

● Network filtering?
○ Prevalent ISP filtering and traffic poisoning prompts the need for dirty patches

● “Not invented here” problem?
● Technical debt / inertia

Probably a mix of all
reasons!

Discussion:
How can we improve security in Chinese ALL apps?

● Continued study of privacy and security of consumer apps?
● Researchers should engage more with Global South developers and

security engineers?
● App store reviews/attestation of network security?
● OS vendors should provide better documentation, easy-to-use

development tools?

Thank you! Questions?
pellaeon@citizenlab.ca
monaw@princeton.edu

Link to full report

Appendix

Install
app

Isolate
non-TLS

traffic

Scrape popular
applications

Entropy
analysis

Simulate user
behavior

Protocol
clustering

Is the proprietary cryptography secure?

