
#BHAS @BlackHatEvents

Bridging the Gap:
Type Confusion and Boundary Vulnerabilities
Between WebAssembly and JavaScript in V8

Nan Wang, Zhenghang Xiao

#BHAS @BlackHatEvents

About us

Nan Wang
@eternalsakura13

• Security researcher focusing on browser vulnerability

research.

• Chrome VRP Top 3 Researcher in 2022/2023/2024

• Facebook Top 2 Whitehat Hacker in 2023

• MSRC Ranked 6th in Q3 2024

• Speaker of BlackHat USA 2023 / BlackHat Asia 2023 /

ZeroCon 2024 / BlackHat USA 2024

Zhenghang Xiao
@Kipreyyy

• Security researcher on SERES TECH.
• Second-year Master's candidate at NISL Lab, Tsinghua

University
• Focusing on browser security and fuzzing
• Chrome VRP top researcher in 2023&2024
• Credited by Facebook, Google, etc.
• Speaker of BlackHat USA 2023 & 2024 / ZeroCon 2024

#BHAS @BlackHatEvents

Offensive Security
Technique

Attack Behavior
Modeling

Multi-source Big Data
Intelligence

Cyber Security LLM…

Realistic Cyber Drills

Threat Vulnerability
Intelligence

Crowdsourced Security
Testing

Security Risk
Assessment…

Providing One-stop Cyber Security Solutions For
Government & Enterprise Clients.

ABOUT SERES: An Innovative Network Security Company Focusing On
Offensive & Defensive Security Applications

#BHAS @BlackHatEvents

Agenda

1. Introduction
2. Type Confusion between WasmObject and JSObject
3. UAF in V8 WasmInternalFunction GC
4. Type Confusion in WebAssembly JSPI Wrapping
5. Conclusion

#BHAS @BlackHatEvents

Introduction
Issue First Exploited Description JavaScript or

WebAssembly

330588502 Pwn2Own Incorrect parsing of Wasm
Types

WebAssembly

323694592 V8CTF Signature mismatch in
specialized wasm-to-js

wrappers

WebAssembly

339458194 ITW Wrong handling of Wasm
Structs in JavaScript

runtime

Both

339736513 V8CTF Wrong handling of Wasm
Structs in JavaScript

runtime

Both

346197738 V8CTF Missing type
canonicalization for wasm

exceptions JS API

WebAssembly

360533914 V8CTF Arbitrary WASM type
confusion due to

incomplete fix of CVE-
2024-6100

WebAssembly

360700873 ITW Missing Loop Input
Spilling in Wasm Causing

Redundant Register
Reload

WebAssembly

365802567 V8CTF WASM type confusion
due to imported tag
signature subtyping

WebAssembly

368241697 V8CTF Type confusion
due to improper
WASM module
size check in

AsyncStreamingD
ecoder

Both

371565065 V8CTF Arbitrary WASM
type confusion due

to module
confusion in

wasm-to-js tier-up

WebAssembl
y

372269618 V8CTF Type confusion
due to

DefaultReference
Value()

`undefined` default
value for

kNoExtern

WebAssembl
y

378779897 V8CTF Register overwrite
caused by

GetMemOp
reusing

kScratchRegister
in WASM Liftoff

WebAssembl
y

379009132 V8CTF Relative Type
Indexes in

Canonical Types
Cause WASM

Type Confusion

WebAssembl
y

383356864 V8CTF Single-block Loop
Phi Input Error in

WasmGCTypeAna
lyzer

WebAssembl
y

391907159 V8CTF Dead Code
Tracking Bug in

Wasm

WebAssembl
y

 WASM-exploitable Bugs

 New WASM Proposals

https://crbug.com/368241697

#BHAS @BlackHatEvents

Research Focus: WASM &
JS Boundary
 Two Runtimes

 Wasm Runtime(such as Exceptions, and Memory/GC)
 JavaScript Runtime

 Bridging Layer: “Wrappers”
 JS-to-Wasm / Wasm-to-JS
 Handles Import/Export across language boundaries

 Why Focus Here?
 New Proposals (WASM GC, Exceptions, JSPI, etc.)

raise complexity
 High-Risk Bugs

#BHAS @BlackHatEvents

Recap JS Fuzzer

Analysis guided mutaion
• Type Analysis
• Scope Analysis
• Context Analysis

#BHAS @BlackHatEvents

Type Confusion between WasmObject
and JSObject
CVE-2024-5158
CVE-2024-7550
issue-339736513

#BHAS @BlackHatEvents

WASM GC proposal
 Object-based reference types

(struct, array)

 externref, eqref, funcref for richer
references

 Automatic garbage collection

 Subtyping support for advanced
type usage

#BHAS @BlackHatEvents

How to modify the Fuzzer to find bugs?

Boom!

#BHAS @BlackHatEvents

CVE-2024-5158

#BHAS @BlackHatEvents

 Key Flow
 Array.prototype.__proto__ = wasmObj
 Slow_ArrayConcat → IterateElements
 HasOnlySimpleElements does

iter.GetCurrent<JSObject>()
 Incorrectly treated as a JSObject

CVE-2024-5158

#BHAS @BlackHatEvents

Fix Patch
Check JSObject explicitly, not just avoid
Proxy.

Resolves WasmObject→JSObject
confusion in prototype chain.

#BHAS @BlackHatEvents

CVE-2024-7550

#BHAS @BlackHatEvents

Fix Patch
Added a JSObject check for the
prototype map.

Resolves WasmObject→JSObject
confusion in prototype chain.

#BHAS @BlackHatEvents

issue-339736513 [v8ctf M125]
found by Google internal ClusterFuzz

#BHAS @BlackHatEvents

issue-339736513 [v8ctf M125]

#BHAS @BlackHatEvents

Exploit
The memory layout of WasmArray：

Modifying the length to a FixedArray address
expanded access boundaries.

#BHAS @BlackHatEvents

Fix Patch

#BHAS @BlackHatEvents

UAF in V8 WasmInternalFunction GC
CVE-2024-3156

#BHAS @BlackHatEvents

How to modify the Fuzzer to find bugs?

#BHAS @BlackHatEvents

How to modify the Fuzzer to find bugs?

#BHAS @BlackHatEvents

CVE-2024-3156
 Import a JS function into Wasm

 Declared as a global import of type
kWasmAnyFunc

 JS function is wrapped by
WebAssembly.Function

 Internally stored in a WasmInternalFunction,
holding a code pointer

 Tier up Optimization
 Optimization triggers (e.g., --jit-fuzzing)
 code pointer in WasmInternalFunction switches

to optimized version

 GC Trigger
 WasmInternalFunction.code is not marked or

updated

#BHAS @BlackHatEvents

Fix Patch
Explicitly invokes IterateCodePointer
in the object descriptor to track
kCodeOffset as a strong reference.

#BHAS @BlackHatEvents

Type Confusion in WebAssembly JSPI
Wrapping
CVE-2024-5838
CVE-2024-8638

#BHAS @BlackHatEvents

What is JavaScript Promise Integration API?

Consider following scenario:

A WebAssembly module calls a JavaScript function
that performs an asynchronous operation (e.g.,
fetch). This function returns a Promise.

However, WebAssembly execution is synchronous,
so handling the returned Promise within Wasm
becomes a challenge.

#BHAS @BlackHatEvents

What is JavaScript Promise Integration API?

A proposal allows WebAssembly
applications that were written
assuming synchronous access to
external functionality to operate
smoothly in an environment where
the functionality is actually
asynchronous.

#BHAS @BlackHatEvents

WASM JSPI
• WebAssembly.Suspending

Allows Wasm code to call asynchronous
JavaScript functions and suspend
execution until the Promise resolves.

• WebAssembly.Promising
Enables Wasm functions to return a
Promise, allowing JavaScript to handle
asynchronous Wasm results.

#BHAS @BlackHatEvents

How to modify the Fuzzer to find bugs?

Boom!

#BHAS @BlackHatEvents

CVE-2024-5838
V8 internally uses different data
structures to represent functions
• imported from JavaScript into the

Wasm environment.
• native Wasm functions.

#BHAS @BlackHatEvents

CVE-2024-5838
Is it possible for the function caller to confuse
the use of these two structures?

#BHAS @BlackHatEvents

CVE-2024-5838
Try Re-exported the imported function?

=> Type confusion!

But how to exploit?

#BHAS @BlackHatEvents

CVE-2024-5838
Analyse internal data structure:
• Some pointer in WasmTrustedInstanceData

are PROTECTED.
• The field offset of `callable` field and

`dispatch_table_for_imports` are the same.

#BHAS @BlackHatEvents

CVE-2024-5838
What happend if we confuse these two
structures?

=> Fake a callable object.

#BHAS @BlackHatEvents

CVE-2024-5838
What happend if we confuse these two
structures?

=> Fake a callable object.

#BHAS @BlackHatEvents

Fix Patch
Restricted some functionalities of the imported
function.

#BHAS @BlackHatEvents

CVE-2024-8638
Let's talk about *To*Wrapper!

• WasmToJSWrapper
• JSToWasmWrapper
• JSToJSWrapper

To simplify representation, some structural relationships may differ
from the actual code.

#BHAS @BlackHatEvents

CVE-2024-8638
V8 would optimizes the
JSToWasmWrapper to reduce the
overhead of parameter type
conversion.

Newly optimized wrapper is then
applied to all exported functions
with same functio signature.

#BHAS @BlackHatEvents

CVE-2024-8638
What about the function wrapper for re-exporting the imported JS function?

=> JSToJSWrapper

#BHAS @BlackHatEvents

CVE-2024-8638
What happens if the wrapper of another Wasm exported function is optimized at
this point?

=> The JSToJSWrapper will be incorrectly replaced.

Crashed

#BHAS @BlackHatEvents

CVE-2024-8638

#BHAS @BlackHatEvents

Fix Patch

In replacing the wrapper of a function exported
from Wasm, do not replace the wrapper if the
function is imported from the JavaScript side.

#BHAS @BlackHatEvents

WASM-JS Interaction Fuzzing
Architecture

#BHAS @BlackHatEvents

Conclusions
1. The Boundary Between WASM and JS Remains a High-Risk Area

2. JSPI Improves Asynchronous Integration but Poses Security Risks

3. Fuzz Testing is Crucial for Discovering Vulnerabilities

4. Engine-Level Improvements and Patches Are Ongoing

#BHAS @BlackHatEvents

Thanks

