blackhat **ASIA 2025**

APRIL 3-4, 2025 BRIEFINGS

A Closer Look at the Gaps in the Grid: New Vulnerabilities and Exploits Affecting Solar Power Systems

Daniel dos Santos, Francesco La Spina, Stanislav Dashevskyi **Forescout Technologies**

Who we are

Daniel dos Santos

VEDERE LABS

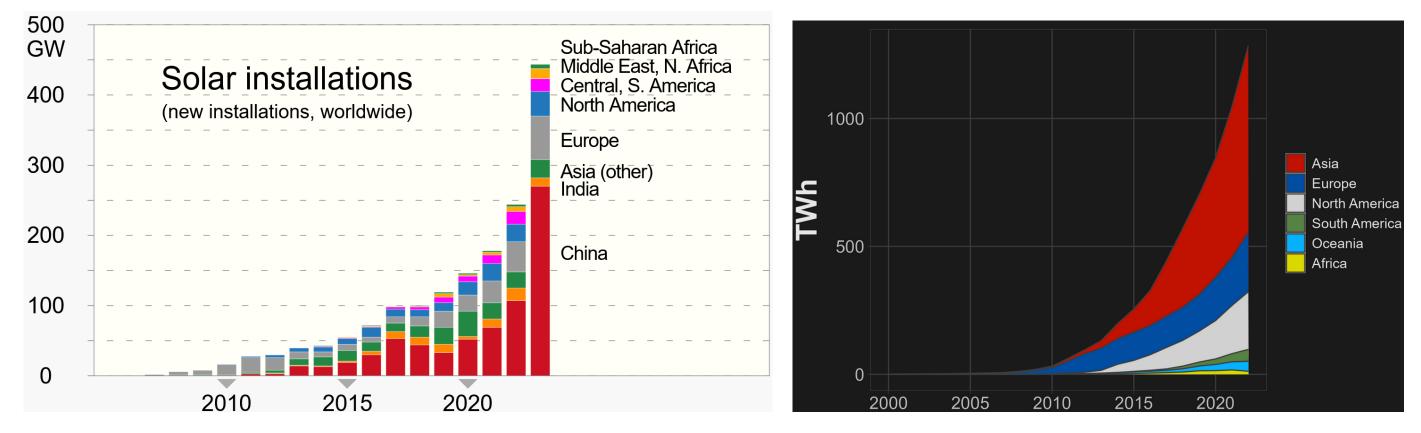
Vulnerability Research

- Focus on vulnerabilities against managed and unmanaged devices (IT/IoT/IoMT/OT)
- 200+ vulnerabilities discovered in last 5 years

Threat Reports

Manual and automatic analysis of malware samples collected via customer telemetry and other sources

Francesco La Spina



black hat ASIA 2025

Part 1: Motivation and Background

Why analyze solar power systems?

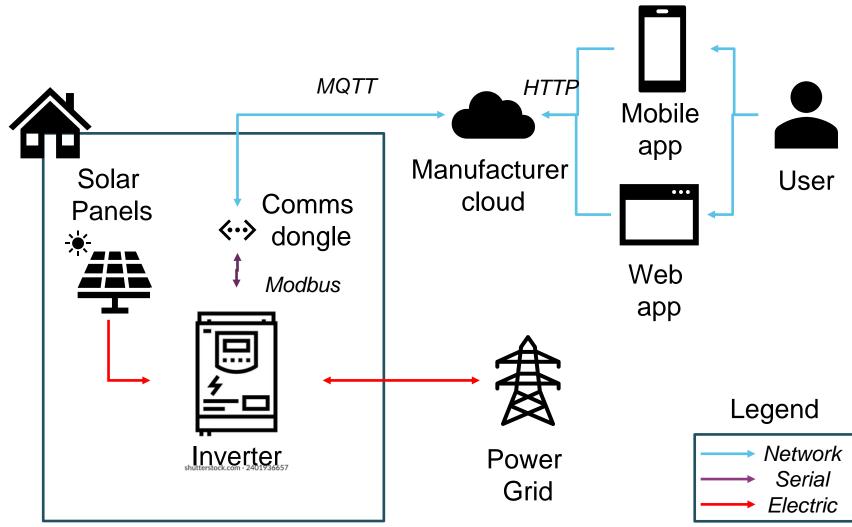
The remarkable rise of solar power

26 January 2024

No other energy technology in our history has grown as fast as solar. What lies ahead?

How solar energy could be the largest source of electricity by mid-century

News 29 September 2014


- https://en.wikipedia.org/wiki/Growth of photovoltaics
- https://www.ief.org/news/the-remarkable-rise-of-solar-power

https://www.iea.org/news/how-solar-energy-could-be-the-largest-source-of-electricity-by-mid-century

Overview of solar power systems


- Solar PV panels generate DC power, • which is converted to AC by **inverters**
- These inverters are grid-connected and cloud-connected IoT devices
 - Enable remote monitoring and management
 - Sometimes require an extra dongle / data logger
- Large attack surface •
 - Inverters (comm dongles) are not supposed to be accessible directly via the internet
 - However, they are managed via the **vendor's** cloud, web apps and mobile apps
 - Lots of other components we don't include in this talk: batteries, EV chargers, etc.

blackhat ASIA 2025 Example 1: Growatt architecture and app

Monitoring Platform

Remote monitoring

T&TA eeee

@ **1 0** 100%

5:40 🖲 …

atl all 🕱 💷 ‡

Turn inverter on/off

Turn inverter on/off

Power ON

Click to Select

Power Off

Power ON

Cancel

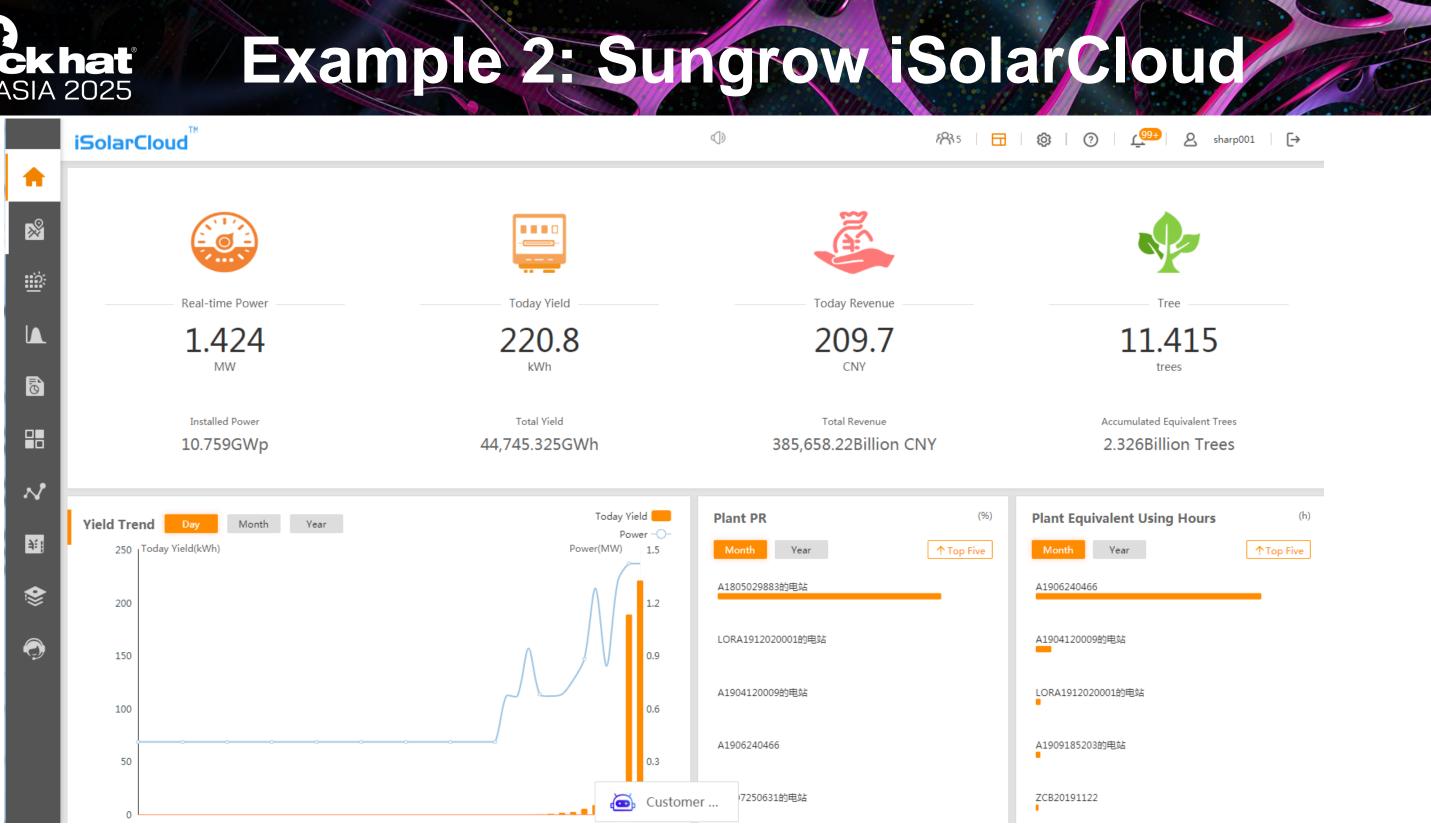


Image source: http://base.isolarcloud.com:8181/docs/a1-0/d3.md

Example 2: Sungrow iSolarCloud App

MORE \$ Settings > Download Log > Download Log > Firmware Update > Modify Password > About > About Communication Parameters Communication Parameters	>
Image Image </th <th>> > ></th>	> > >
 Download Log Firmware Update Modify Password About Operation Parameters Power Regulation Parameters Protection Parameters 	> > >
 Firmware Update Modify Password About Power Regulation Parameters Protection Parameters	>
Modify Password Power Regulation Parameters Protection Parameters About	>
About Protection Parameters	
About Communication Parameters	/
	>
LOGOUT	
Home Run Information Records More	

Example 2: Sungrow WiNet-S dongle

	General Information		 kWh Daily Yield		2.65 KM Real-time Activ	
	Current Alarms		kWh Total Yield		10.00 kW	le Active Power
	Device Monitoring					
	Ilistory Data	•	Inverter Real-time Va	lues (Off-grid <mark>0</mark> , On-grid	d 1)	
SUNGROW	System	•	Device Name	Device Model	Status	Daily Yield(kWh)
	About		SH10RT(COM1-001)	SH10RT	Run	

- Thousands more similarly exposed from other manufacturers
- Millions more managed via apps/clouds

🛿 Setup Wizard 🛛 🕀 English 🛛 💄 Login

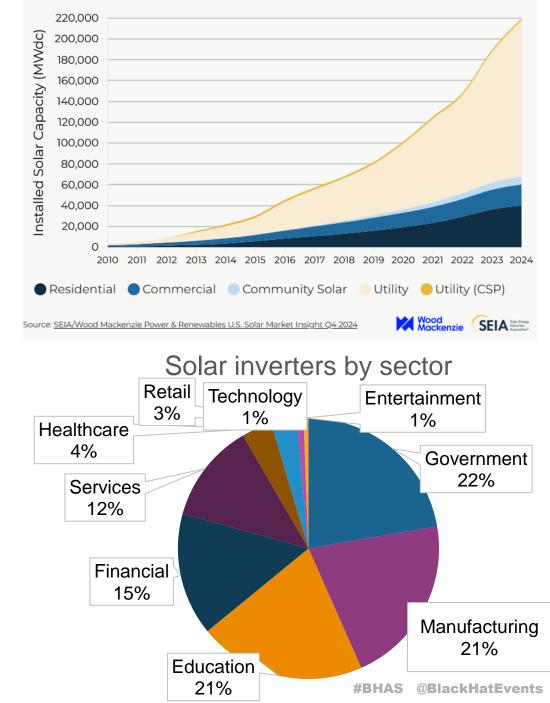
Expand ∨

TAL RESULTS

,615

P COUNTRIES

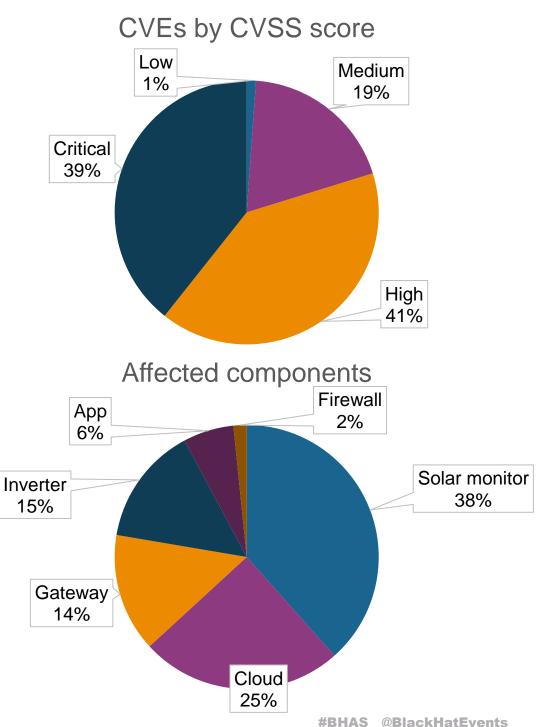
Sweden	700
Greece	513
Korea, Republic of	282
Japan	205
Germany	124


More...

Solar power deployments

Cumulative U.S. Solar Installations

- Three types of deployments
 - Residential: 5-15 kW, small rooftop
 - **Commercial**: >100 kW, large rooftop
 - Utility: >1 MW, solar parks/farms owned by utilities
- Most installations are residential but most power comes from utilities
 - Varies per country, but usually >90% inverters are residential/commercial, while >50% of power is from utilities
 - Utility deployments are often different, with large battery systems and less cloud connection
- Commercial deployments are growing and an interesting attack surface
 - Not very different from residential in terms of security but more power
 - Chart: distribution of 1,700 inverters seen on customer networks



Previous vulnerabilities

- Cataloged 93 previous vulnerabilities affecting 34 vendors
 - CVEs since 2012, average of 10/year for the past 3 years
 - 80% high or critical CVSS
 - Most cases affected solar monitoring/cloud products
 - Relatively few issues found directly on the inverters
- Six vulnerabilities regularly exploited by botnets since 2022

Product	CVEs
	CVE-2022-29303
CONTEC	CVE-2022-40881
SolarView	CVE-2023-23333
	CVE-2023-29919
APsytems	CVE-2023-28343
Altenergy	CVE-2024-11305

Known incidents

Reports of incidents since 2019

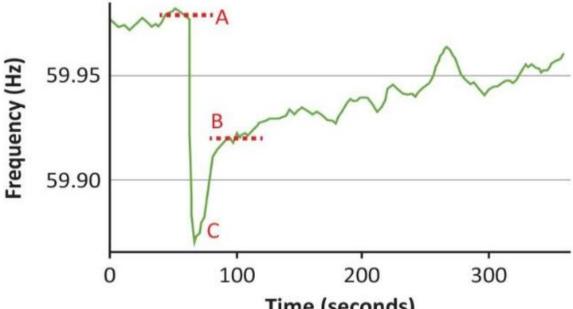
- **US 2019:** Repeated denial of service on a firewall caused loss of visibility over 500MW PV generation
- **Romania 2023**: Installer credentials used to disable safety setting on • inverter that decreases output during low grid demand

Three relevant issues in 2024

- Lithuania: Pro-Russian hacktivists hijacked inverters in 22 • organizations, including 2 hospitals via iSolarCloud management
- Japan: 800 CONTEC monitoring devices hijacked by botnets •
- **US**: Flax Typhoon APT building botnets used to proxy further attacks. Exploited CVEs include two on CONTEC
- No incidents directly targeting power generation, but
 - FBI warned in a Private Industry Notification of the risk in July 2024 •
 - Is it possible to affect the power grid? •

JST EVIL

- В этот раз мы отключаем от света:
- 2 больницы
- З военных гимназии
- 7 академий
- И прочие другие ненужные объекты....

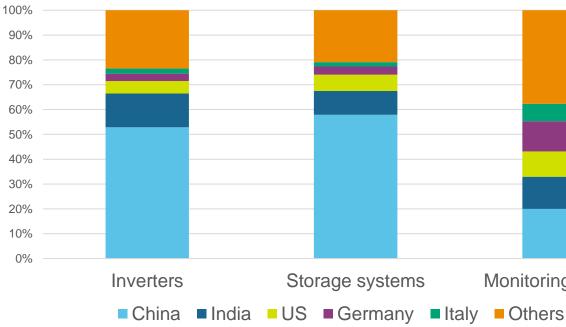

Вт)					
	* Twn pace	вния О		 Моцеость фотралектреческой 	установ
	Commercia	ei PV	~	74.8	
	Dovrogask	manc		* Crpseva	
)	\$1271			Lithuania	
	Дитя тодо	novenues		 Тип подключения к сяти 	
			8	Self-Consumption	
			and the second second	ferritarenterenter a	
		1	A	Summer Street	
		and the second	2000 - 142 - 1620 -		140.00
			formation of the local division of the	Passing and the second	
			Variation of ACA References Area	degram - A. (1-MH) (speed, News	Ser. 1
		8.0		The Assessment Proton	-
		1.00	Transaction Street or other	Property Statistics	
		0	90,09 dime 7,81 di 201,50 di		100.00
			home-months and \$100	Transmission to LL 22	hanna
			Parliant on R. Holly Super- Indu-	Automatica in the Charlest Statement, Social	in the second

- Продолжаем наказывать Ignitis Group.

Potential impacts on the grid

- AC power grid operates at a certain frequency
 - Grid stability depends on real-time **balance between power** generation and demand to keep that frequency (50 or 60Hz)
 - Increased/decreased generation or demand without the other side keeping up impacts the frequency
 - Too fast and too wild swings in frequency lead to emergency measures, such as load shedding
- Several grid disturbances worldwide due to solar power faults
 - Blue Cut Fire (California, 2016) ~1.2 GW
 - Canyon 2 Fire (California, 2017) ~900 MW
 - Odessa Disturbance (Texas, 2021) ~1.1 GW
 - Sri Lanka, 2025 ~1.2 GW
 - A disturbance does not mean a blackout different grids have different levels of emergency capacity for frequency control
 - These were not cyber, but natural phenomena (fire, animals, others) affecting power output or transmission

	Table 1.1: Solar Photovoltaic Generation Loss									
Event No.	Date/Time	Fault Location	Fault Type	Clearing Time (cycles)	Lost Generation (MW)	Geographic Impact				
1	8/16/2016 11:45	500 kV line	Line to Line (AB)	2.49	1,178	Widespread				
2	8/16/2016 14:04	500 kV line	Line to Ground (AG)	2.93	234	Somewhat Localized				
3	8/16/2016 15:13	500 kV line	Line to Ground (AG)	3.45	311	Widespread				
4	8/16/2016 15:19	500 kV line	Line to Ground (AG)	3.05	30	Localized				


Time (seconds)

black hat ASIA 2025 Further risk: supply chain considerations

- Due to this potential impact, there's now a focus • on the origin and security of these devices
- Countries are starting to ban the sale or remote • management of devices from certain countries
 - It's not just about cyberattacks but remote control from foreign manufacturers (Deye case in US, 2024)
- 53% of inverter manufacturers are based in • China, 14% in India, 5% in the US, remaining 28% throughout the world
 - Somewhat similar for other components
 - 9 of 10 largest manufacturers are based in China, 1 in News 2024.11.12 13:28 Germany.

Lithuania passes law to block Chinese access to solar and wind farm systems

Distribution of solar power system vendors per country (top 5)

MI5 investigates use of Chinese green technology in UK

Concern has grown at Beijing's potential hold on strategic assets

Manufacturer data source: https://www.enfsolar.com/

Image sources: https://www.lrt.lt/en/news-in-english/19/2411602/lithuania-passes-law-to-block-chinese-access-to-solar-and-wind-farm-systems and https://www.ft.com/content/534eef36-d9ad-4a03-afa1-f87ab03a9b18

Monitoring systems

Research

Research questions

- Can we find an exploit chain from cloud • to inverters that allows to take over a fleet of devices?
- Are there other relevant vulnerabilities • on these ecosystems?

Target selection

- 6 of top 10 vendors
- Sungrow: ~740 GW worldwide
- Growatt: ~300 GW worldwide •
- SMA: ~130 GW worldwide

Research strategy

- Cloud analysis using demo/test account
- Mobile/web app analysis
- Inverter/dongle analysis in one case •

Market share source: https://www.statista.com/statistics/1003705/global-pv-inverter-market-share-s	<u>nipments/</u>

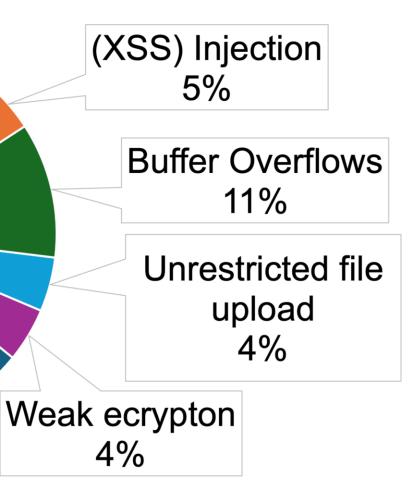
method	lology		
Vendor	Market share	Selected for analysis?	Summary Results
Huawei	29%	Yes	No issues found in limited analysis
Sungrow	23%	Yes	Possible takeover of devices and data leak
Ginlong Solis	8%	Yes	No issues found in limited analysis
Growatt	6%	Yes	Possible takeover of accounts and devices and data leak
GoodWe	5%	Yes	No issues found in limited analysis
SMA	3%	Yes	Remote Code Execution on the cloud platform
Power Electronics	3%	No	N/A
SofarSolar	3%	No	N/A
Sineng	3%	No	N/A
Aiswei	3%	No	N/A
Others	14%	No	N/A

black hat ASIA 2025

Part 2: Our Findings

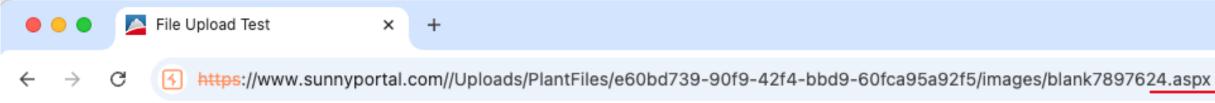
Overview of findings

46 vulnerabilities in three vendors!


- SMA Solar Technology
- Growatt
- Sungrow

Broken Access Control 76%

Two exploitable RCEs and account takeover


Vulnerabilities in SMA

SMA Solar Technology is a German solar energy equipment supplier founded in 1981. It is the largest Europe-based solar technology company by revenue

- **RCE** on their cloud portal (sunnyportal.com) through **unrestricted** file upload (CVE-2025-0731) -> unprivileged user
- We uploaded an aspx file instead of a plant picture through a demo account
- Potential control of an inverter fleet?

Test Page for File Upload

This page has been uploaded successfully as a test.

Vulnerabilities in Growatt

Growatt is a Chinese manufacturer of PV inverters founded in 2011 and is the global No.1 residential inverter supplier

- 2 x Stored XSS (also through IDORs)
- Missing authentication/broken access control issues led to data leakage and account takeover
- Potential control of a fleet?

LUY

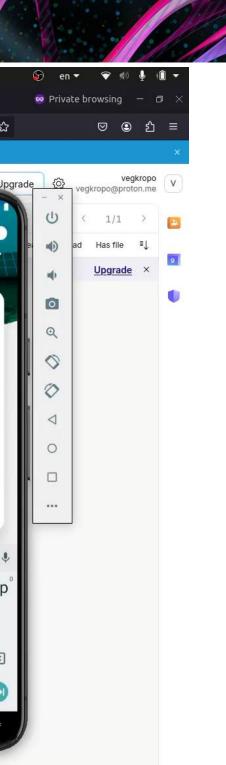
How to take control of inverters?

11

- The first way and more direct is by taking over accounts because of broken access control issues
- **The second way** is by injecting JavaScript in user profiles through an IDOR and potentially getting credentials and performing arbitrary operations
- In all cases, we can guess valid usernames by exploiting other exposed APIs or by obtaining thousands of them from the vendor's legitimate "customer cases" page

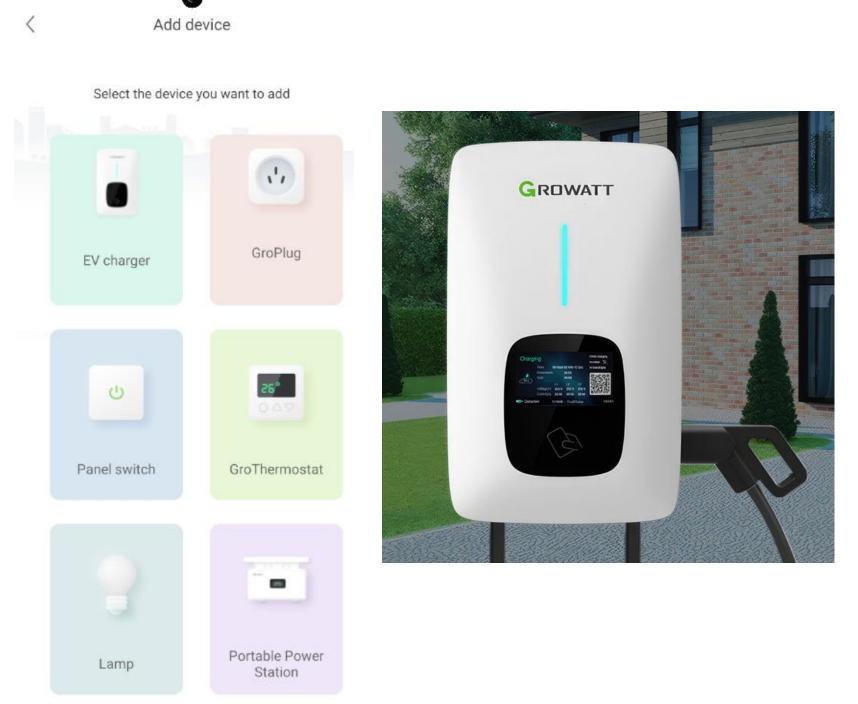
Request

	L L	eques					
	F	retty	Raw	Hex			
	1			getCusto r.growat	merCase? <mark>cu</mark> t.com	irrPage=1&	currSi
	3	Cooki lang= selec %5B%7	.e: JSES = <mark>en;</mark> ass :tedPlar	55IONID= sToken=3 ntId=928 y%22%3A%	3A5B8D7466 d5b3ebde4f 1376; selP 229281376%	874af9cc6: <mark>/age=%</mark> 2Fpar	1658d7 nel; m
	4	=d7d9 d7d95 Upgra	9572420e 972420e1 9de - Inse	e106a7a0 106a7a07 ecure-Re	229281376% 71dd98f240 1dd98f240f quests: 1 /5.0 (Linu	of 87d 1728; 87d 17285;	573696 73696
alf pla ame Nec ,"e g",	Powe antI e":" derl eTot ,"fa	r":"] mg":" and", al":" ultNu	.080"," 735_1i ","pla "plant 8217.3 um":"0"	'eToday .mageslo antAddro Type": 3","acco ',"onlin	60,"pages ":"0","eT 608472071 ess":"Do "0","stat puntName" neNum":"0	otal":"9 jpg","f ton Mile :us":"0"} :"odt	006.9 aultN .{"no ","pl
",' l"	'pla :"17 Num"	ntTyp 083.2 :"1",	2","acc	,"stati countNa	us":"0"}, me":"	{"nomina	lantI



Account takeover

Activities 🕕 Emulator	*		okt 9 15:42	
🔰 Inbox vegkropo@protor	× H			~
$\leftarrow \rightarrow \mathbf{G}$	¢	https://mail.proton.me/u/0/inbox		1
		Proton Ma	il needs your permission to <u>enable desktop notifications</u> .	
M Proton Mail	80	Q Search messages		
New message		Inbox		3:42 🌣 A 🖬 🕑 🗸
⊖ Inbox	Ċ	□ ▼ Upgrade to use Proton Mail with Apple Mail, Outlook or Thunderbird.		GROWATT Demo >>
	Ø			 Please select a country or region Afghanistan Username MikeScott MikeScott 123456
			No messages found	Remember password Sign in Forgot password NikeScott Mikescott q ¹ w ² e ³ r ⁴ t ⁵ y ⁶ u ⁷ i ⁸ o ⁹
			Seems like you are all caught up for now	asdfghjkl ☆ zxcvbnm ≪ ?123,©



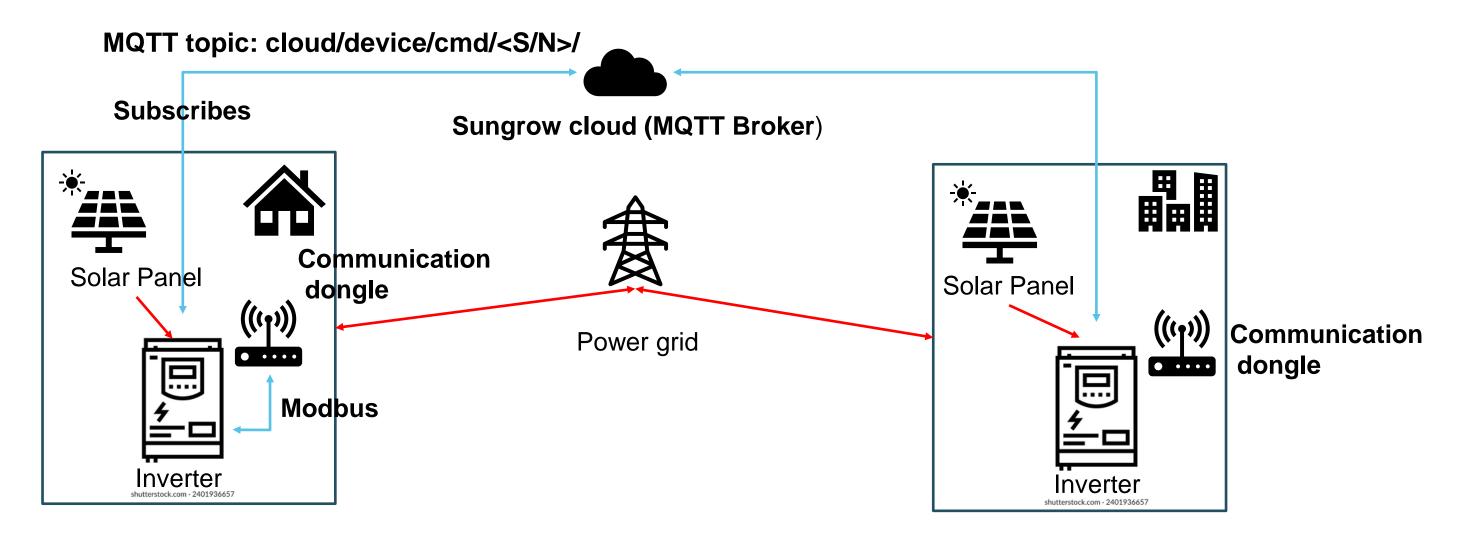
Hijack smart devices and E/V chargers

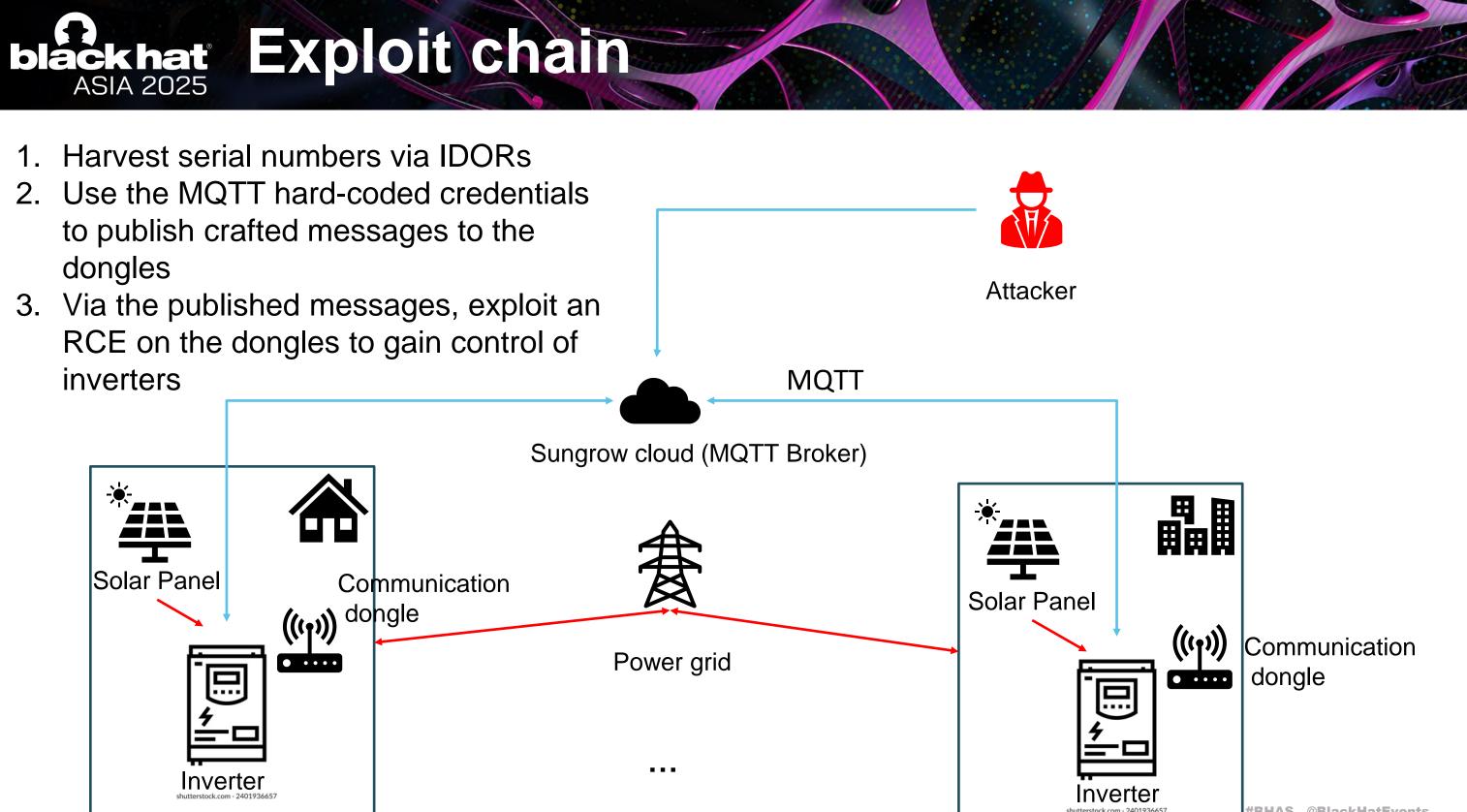
- Growatt app allows users to add and manage other smart devices
- We could exploit several IDORs to realize potential "Halloween" scenarios:
 - E/V chargers stop charging
 - Thermostats act weird
 - Smart lightbulbs become too smart and swear in Morse code

Vulnerabilities in Sungrow

Sungrow is a Chinese manufacturer of PV inverters founded in 1997 and is recognized as the world's No. 1 on PV inverter shipments

- Again, many...many IDORs
- Hardcoded credentials for MQTT
- Weak encryption in the mobile app communication
- Unsigned firmware update
- 4x Buffer overflow vulnerabilities in the inverter connection Dongle (WiNet-S), one led to RCE
- Potential control of a fleet?





blackhat How to take control of inverters? ASIA 2025

- Inverter dongles communicate with the cloud via MQTT to receive commands and send telemetry
- A dongle subscribes to topics that contain its serial number (S/N) in the path.

- The first step is to get some WiNet device serial numbers
- We have multiple ways to get S/N by exploiting several IDORs
- Example:
 - 1. With /v1/powerStationService/getPowerStationInfo, we can query a huge list of Power Station IDs (IDs are predictable)
 - 2. With another IDOR we can get dongle S/N by Power Station IDs:

/v1/commonService/getSecondDataAbilitySnInfoByPsId

API model vulnerable to IDOR

powerStationService

userService

orgService

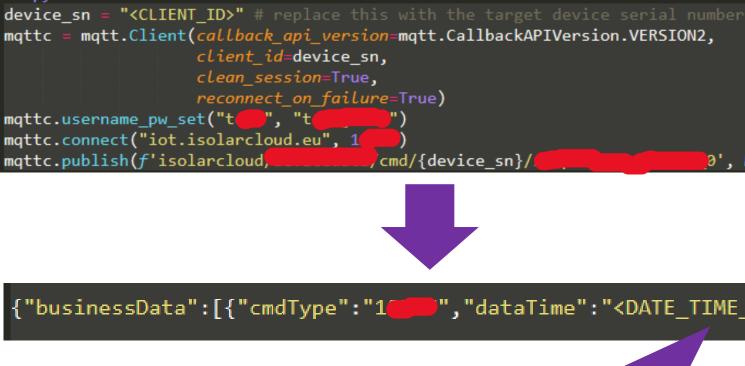
commonService

devService

blackhat ASIA 2025 Hard-coded credentials

- The second step is to send crafted messages via
 MQTT...
- The WiNet's module firmware (the communication dongle) contains hardcoded MQTT credentials (CVE-2024-50692) that allow attackers to send messages to arbitrary dongles via the corresponding MQTT broker
- It can be chained with another vulnerability to reach arbitrary code execution...

blackhat Buffer overflows


- We found four buffer overflow vulnerabilities in the latest version of WiNet firmware.
- These vulnerabilities are related to parsing incoming MQTT messages and can be triggered by anyone via the MQTT
- We decided to exploit a stack overflow in the handler function for the "settime" command (CVE-2024-50694)

01: undefined4 on settime command(char *topic, cJSON *obj) cJSON *jsonObj; 02: 03: 04: size t size; 05: char *src; 06: char buffer [14]; 07: 08: seconds = 0;09: 10: memw(); jsonObj = cJSON GetObjectItem(obj,"dataTime"); 11: if (jsonObj == (cJSON *)0x0) { 12: 13: 14: uVar2 = 0xfffffff; 15: else { 16: memset(buffer,0,14); 17: src = jsonObj->valuestring; 18: size = strlen mmm(src); 19: 20: memcpy(buffer,src,size); 21: 22: 23: 24:

blackhat Attack via MQTT ASIA 2025

- We know that the WiNet dongle can receive commands from the cloud through MQTT
- Since the credentials are hard-coded, an attacker can trigger the buffer overflow with any MQTT client
- Attackers can target arbitray dongles, because they know S/Ns

So far "so good"... what about the exploit?

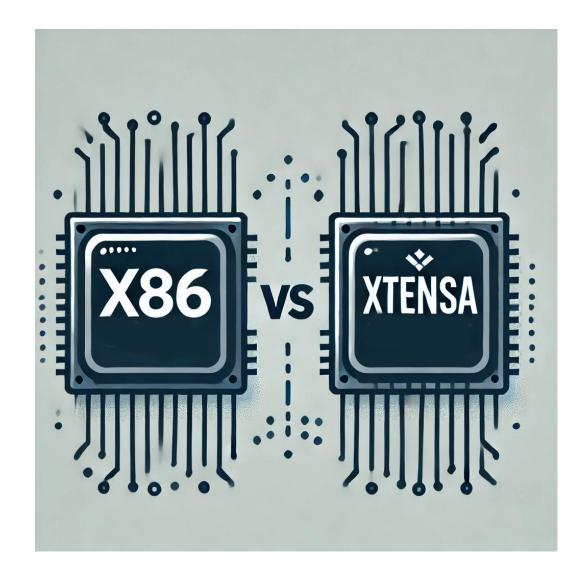
0', MALICIOUS JSON)

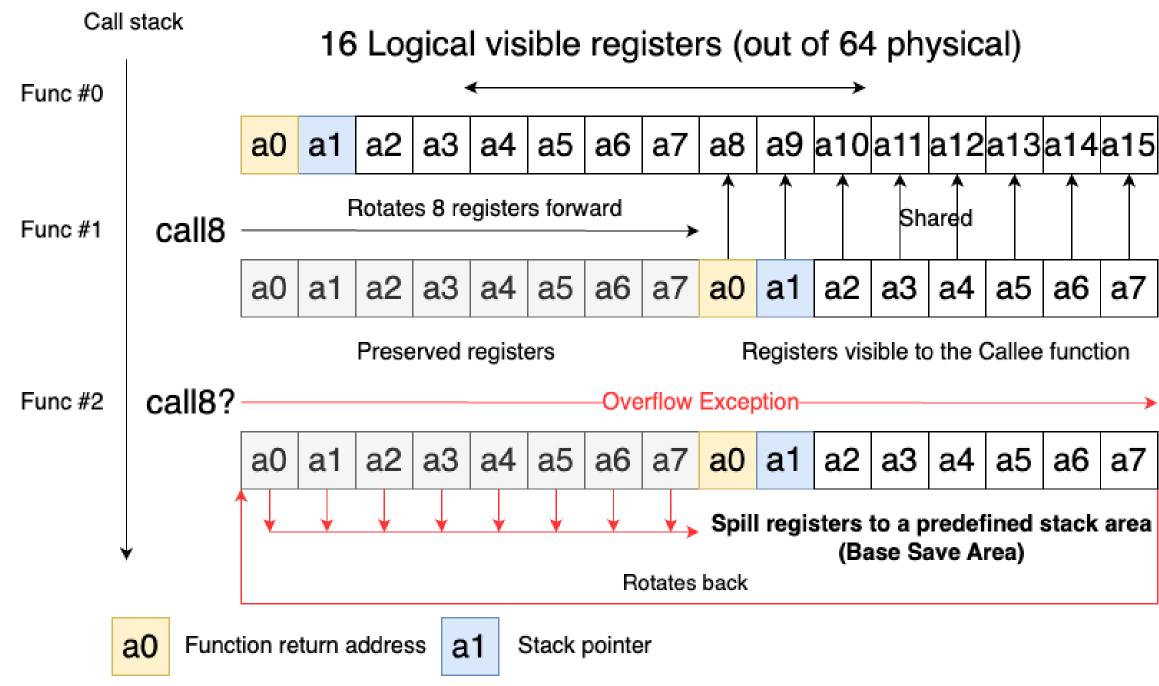
","dataTime":"<DATE_TIME_VALUE>"}]}

Exploit payload

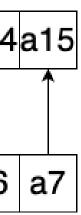
black hat ASIA 2025 Tensilica Xtensa Architecture

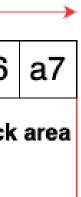
- Even if the buffer-overflow is a text-book example...the architecture is not at all
- The WiNet-S dongle runs a modified version of FreeRTOS on an ESP32 SoC (manufactured by Espressif) with Tensilica Xtensa architecture
- Unique challenges...very few exploitation techniques are publicly discussed (a few research from Philipp Promeuschel and Carel van Rooyen)





Challenges

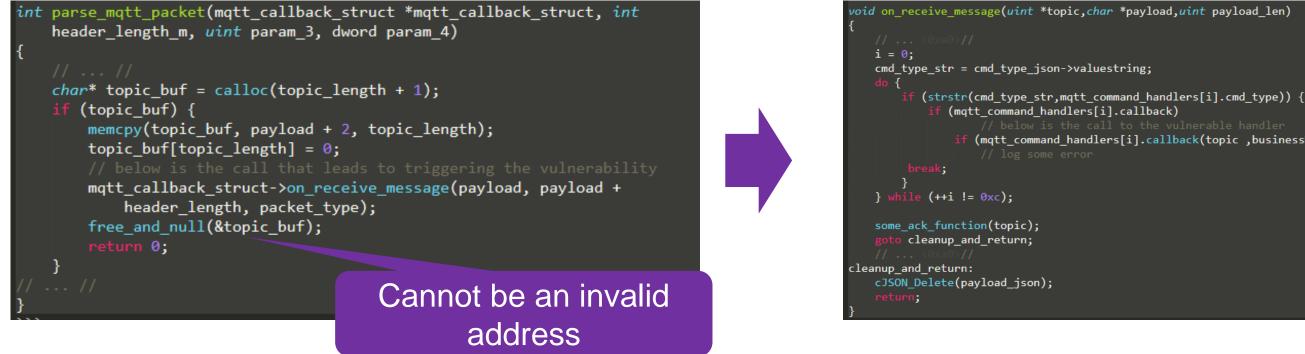

- This architecture uses a "**sliding register window**": there are only 16 logical registers in the CPU
- The calling convention includes rotating the register window
- Unlike an x86 architecture, the **return address** the attacker wants to overwrite **is stored in a specific register**, not the stack
- Mechanisms to overcome this limitation include the overflow exception, which writes registers to the stack, and the underflow exception, which restores them



blackhat Windowed registers in a nutshell ASIA 2025

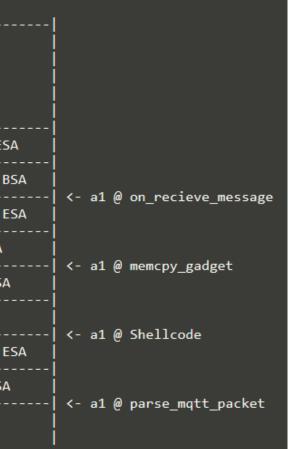
blackhat ASIA 2025 Exploitation Strategy

- Our only primitive is an out-of-bounds write into the stack, the exploit requires us to overwrite registers stored on the stack, abusing overflow exceptions
- The prerequisite is that there is a reachable area on the stack (e.g. the Base Save Area) that has registers stored. Satisfied because in FreeRTOS a context switch always spills the entire register files into the stack
- By overwriting the stack with the right amount of bytes we can overwrite a stored a0 register and return to an arbitrary address
- The stack on the ESP32 is non-executable! Needs to write in IRAM through a memcpy() gadget


4023b190	36	41	00	entry	a1,0x20
4023b193	5c	<mark>8</mark> c		movi.n	a12,0x58
4023b195	bd	<mark>0</mark> 3		mov.n	a11,a3
4023b197	20	a2	20	mov	a10,a2
4023b19a	81	7b	f6	132r	a8-≻memcpy
4023b19d	e0	<mark>0</mark> 8	00	callx8	a8
4023b1a0	1d	f0		retw.n	

blackhat Reaching the return value

- **Overwriting the Base Save Area** at the top of the vulnerable function's stack frame will affect the register values of the vulnerable function's caller's caller (two functions up the call chain)
- **Control flow must return three times** to trigger the overwritten return address a0
- We must carefully inspect the code leading through these return instructions to **ensure** the malicious stack frame will not cause a crash


if (mqtt_command_handlers[i].callback(topic ,businessData_first_elem))

blackhat ASIA 2025 The stack structure

- To create our stack frames, we will need to calculate addresses on the stack relative to the location of the overflown buffer
- The stack is dynamically allocated per RTOS task at startup
- We found that a specific base address is the most common for the MQTT task's stack

fset from buf	fer LOW ADDRESS
0x0	
	Reserved for
	functions
0x3c	called function E
0x4c	
	parse_mqtt_packet
0x5c	 parse_mqtt_packet
0х6с	
	Shellcode's BSA
0х7с	 memcpy_gadget ES
0x8c	imaginary BSA
0x9c	İ
	on_recieve_message
0xac	memcpy gadget's BS
0xbc	 Helpful Zeros
	HIGH ADDRESS

black hat ASIA 2025 The final payload

Offset From Overflown Buffer	Meaning	Value	Additional comments
`0x4c`	parse_mqtt_packet `a0`	memcpy gadget address	"A"
`0x50`	parse_mqtt_packet `a1`	`A + 0xbc`	the
`0x70`	shellcode `a1`	`A + 0x9c`	
`0x90`	imaginary `a1`	`A + 0x100`	 This value must point to a vali location, as it may be used to the location of the shellcode's
`0xac`	memcpy_gadget `a0`	target IRAM location	 This is the address to return a the copy operation.
`0xb0`	memcpy_gadget `a1`	`A + 0x7c`	
`0xb4`	memcpy_gadget `a2`	target IRAM location	 This is the address where the s will be copied.
` 0xb8`	memcpy_gadget `a3`	shellcode source location	This should be the source addre copy. We can use a static addre to an offset in the MQTT packet placed the shellcode.

is the address of overflown buffer

id determine s ESA.

after

shellcode

ess for the ess pointing t where we

black hat ASIA 2025

Part 3: Outlook and Conclusions

Grid destabilization

- So we can take over a lot of inverters, now what?
 - Impact on grid depends on how much generation capacity can be controlled, how fast can the attack happen and how much the grid has in emergency capacity
- Many other studies have modeled grid impact based on "load-changing attacks":
 - Increase demand or decrease generation at large scale via botnets
 - Dvorkin and Garg, 2017; Dabrowski et al., 2017; Soltan et al.; 2018; Goerke et al., 2024; and others.
- Summary for European continental grid (ENTSO-E):
 - 3GW emergency capacity ("reference incident")
 - **Below 49Hz mandatory load shedding**
 - **Control over 4.5GW needed to drop frequency below 49Hz**
 - That's around 563,000 inverters (8kW/inverter average)
 - Current solar capacity is ~270 GW, so need to control less than 2% of inverters. Market led by Huawei, Sungrow and SMA

Table 1: Emergency routines in case of under-frequency in Germany [60, p65] similar to the ENTSO-E policies [55, p26]

	Frequency	Action
1	49.8 Hz	Alerting, activ
2	49.0 Hz	Load-shedding
3	48.7 Hz	Load-shedding
4	48.4 Hz	Load-shedding
5	47.5 Hz	Disconnection

6.3.1 Situation in Germany. A recent study describes a realistic scenario for future photovoltaic installations [21]["Hauptszenario"]. The authors assume 116 GW of rooftop photovoltaic installations for 2030 and 188 GW for 2040⁸. This translates to 14.5 Mio. installations in 2030 and 23.5 Mio. installations in 2040.

In order to reach the required $P_{imp} = 4,500 MW$, an attacker would need to control

This is equivalent to 3.9 % of the installed devices in 2030 and 2.4 % of the installed devices in 2040.

vation of plants, shedding of pumps

g of 10-15% of total load

g of further 10-15% of total load

g of further 15-25% of total load

n of all power plants


 $\frac{4,500MW}{8kW} \approx \frac{563,000}{8V} PV - 1$

(5)

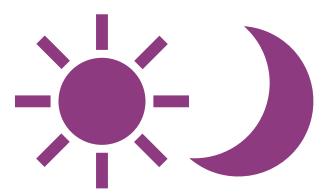
Other scenarios

- Electricity has fluctuating prices based on generation and demand
 - Remember the Romanian incident in 2023 where safety settings were disabled to continue high output?
- More complex attack scenarios may take advantage of that for financial gain rather than to impact grid stability
 - Think cybercriminal vs APT motivations
- A possible scenario is demanding a ransom from energy operators based on the threat of changing inverter settings or disabling them at critical times
 - The RCEs on inverters and allow attackers to disconnect them from manufacturer or other central management to keep persistent control
- "Ransomware on inverters" has also been discussed academically

BoHyun Ahn; Alycia M. Jenkins; Taesic Kim; Jianwu Zeng; Lifford McLauchlan; Sung-won Park

Exploring Ransomware Attacks on Smart Inverters

(10362822 #BHAS @BlackHatEvents



Incident response

- The worst-case scenario, where attackers create a "botnet" and disconnect devices from remote management would demand coordinated incident response
- There may be no way to stop the attack without physically disconnecting the inverters
 - Maybe a C&C server takedown, but that can take a long time and servers can be resilient
- Disconnecting devices during the day may be harmful
 - If you don't know what is infected, disconnecting the "clean" devices will only harm generation capacity further
 - At night, utilities can prepare for the next day, knowing what the impacted generation capacity will be
- Need for incident response plans involving utilities, regulators and manufacturers
 - Maybe dedicated APIs that utilities can use to control devices in case of an attack?

Responsible disclosure

Sungrow fixed all issues

- Very collaborative during the whole process
- Calls to better understand the vulnerabilities
- Asked us to test patches and provide recommendations
- CISA involved for coordination

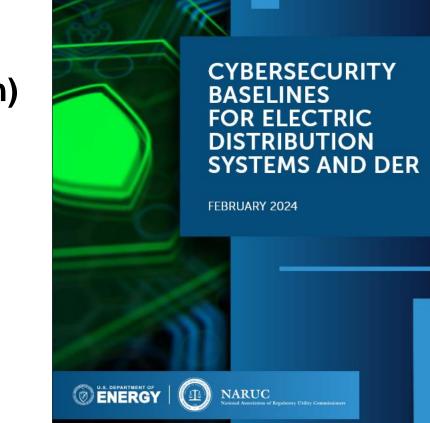
SMA fixed their issue on time

- Single issue on the website/infra, so no need to touch firmware
- CERT@VDE involved for coordination

Growatt also fixed, but much less reactive

- Promised fixes by Feb 14, then implemented partially Feb 27 and finally done by March 13
- They were known to leave other issues unfixed in previous research
- CISA involved for coordination
- Overall, some vendors in this market seem to be just starting to pay attention to security
 - Similar to OT security a few years ago, but need this needs to go much faster than OT security adoption

security urity adoption


Recommendations – users

Residential and commercial users

- Change default passwords and credentials
- Use role-based access control
- Configure the recording of events in a log
- Update software regularly
- Backup system information
- **Disable unused features**
- Protect communication connections

Commercial and utility installations (in addition) •

- Include security requirements into procurement considerations
- Conduct a risk assessment when setting up devices
- Ensure network visibility into solar power systems
- Segment these devices into their own sub-networks
- Monitor those network segments

NIST Interagency Report **NIST IR 8498**

Cybersecurity for Smart Inverters

Guidelines for Residential and Light Commercial Solar Energy Systems

Final

James McCarthy Jeffrey Marron Don Faatz Daniel Rebori-Carretero Johnathan Wiltberger Nik Urlaub

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8498

Recommendations – manufacturers

- **Keep in mind**: Inverters are part of critical infrastructure!
 - Security requirements should be higher than general use IoT

Development •

- Devices: holistic security architecture including secure boot, binary hardening, anti-exploitation features, permission separation etc
- Applications: proper authorization checks on web applications, mobile applications and cloud backends

Testing •

- Regular penetration testing on applications and devices
- Consider bug bounty programs

Monitoring

- Web Application Firewalls
- Remember that a WAF does not protect against logical flaws

Requirements

Risk

Assessment

Design

Threat

Review

NISTIR 8259

Foundational Cybersecurity Activities for IoT Device Manufacturers

Michael Fagan Katerina N. Megas Karen Scarfone Matthew Smith

Takeaways

- Solar power is growing massively and so is the attack surface \bullet
- Several components have vulnerabilities and they are starting • to get targeted by opportunistic attackers
- There is potential for more targeted attacks that impact grid • stability or utilities directly
- Risk mitigation depends on actions from users, installers, • utilities, regulators and others
- The time to fix these problems is now! •
- Read the full report on <u>forescout.com/research</u>

SUN:DOWN

Destabilizing the Grid via Orchestrated **Exploitation of Solar Power Systems**

March 27, 2025

black hat ASIA 2025

Thank you!

Questions?

daniel.dossantos@forescout.com francesco.laspina@forescout.com