
#BHEU @BlackHatEvents

Make Agent Defeat Agent :

Automatic Detection of Taint-Style Vulnerabilities in LLM-based Agents

Speakers：

Fengyu Liu (LFY) Ke Li (yuligesec)

#BHEU @BlackHatEvents

About Speakers

Fengyu Liu (@LFY)

• Ph.D @ Fudan University

• BlackHat USA & EU Speaker

• CTFer @ Whitzard & r3kapig

Ke Li (@yuligesec)

• Bytedance Security Engineer

• AI/Web Security Researcher

• Author of APIKit

#BHEU @BlackHatEvents

Outline

1. Background Overview
2. Research Challenges & Solutions
3. AgentFuzz Approach
4. Experimental Evaluation

#BHEU @BlackHatEvents

LLM-based Agent

Prompt mutation must
preserve meaning and meet
code constraints.

1. User inputs a prompt 2. The agent combines the user prompt with the

built-in system prompt and forwards it to the LLM

3. LLM returns specific

instructions based on the prompt

4. The agent parses the instructions and

executes the corresponding actions

#BHEU @BlackHatEvents

Taint-Style Vulnerabilities in Agents

RCE in BiSheng

#BHEU @BlackHatEvents

Vulnerability Root Cause Analysis

Agent developers lack defensive programming awareness for LLM outputs!

#BHEU @BlackHatEvents

Existing Detection Approaches: Static Analysis

• Common Practice: Conduct data

flow analysis from Source to Sink.

• Defect 1: False Negatives Caused by
Indirect Calls.

• Defect 2: False Positives Caused by
Sanitizers.

#BHEU @BlackHatEvents

• Practice: Generate structured inputs with

byte-level mutations (BitFlip).

• Defect 1: Inability to generate Natural

Language Prompts required by Agents.

• Defect 2: Inability to mutate the semantics

of Natural Language Prompts.

Taint-style vulnerability detection tailored for LLM-based agents is urgently needed!

Existing Detection Approaches: Greybox Fuzzing

#BHEU @BlackHatEvents

Outline

1. Background Overview
2. Research Challenges & Solutions
3. AgentFuzz Approach
4. Experimental Evaluation

#BHEU @BlackHatEvents

Ideas and Challenges

Prompts are natural
language, hard for traditional
toos to generate.

Prompt mutation must
preserve meaning and meet
code constraints.

• The Core Problem of Taint-Style Vulnerability Detection in Agents.

• Fuzzing is effective for taint-style vulnerabilities, and detecting such

vuln is essentially a sink-directed greybox fuzzing (DGF) problem

• However, it is extremely difficult to apply traditional DGF to agents!

• Traditional Solutions: AFLGo, Driller, ...

#BHEU @BlackHatEvents

Ideas and Challenges
Challenge 1:

Seed Generation

Prompts are natural lang-

uage, hard for traditional

tools to generate.

Indirect calls make CFG-

based distance inaccurate

for seed evaluation.

Prompt mutation must

preserve meaning and

meet code constraints.

Challenge 2:
Seed Scheduling

Challenge 3:
Seed Mutation

#BHEU @BlackHatEvents

1. LLM-assisted Seed Generation

• Uses static analysis and LLM to generate prompts that trigger target modules.

AgentFuzz Solution

#BHEU @BlackHatEvents

2. Feedback-driven Seed Scheduling

• Ranks seeds by semantics and distance to favor those likely reaching sinks.

AgentFuzz Solution

#BHEU @BlackHatEvents

AgentFuzz Solution
3. Sink-guided Seed Mutation

• Mutate seed based on context and constraints in both language and code.

#BHEU @BlackHatEvents

LLM-assisted Seed Generation

Call Chain: Elastic...Check.search → eval

Use Elasticsearch to find doc.

AgentFuzz Running Example

#BHEU @BlackHatEvents

Sink-guided Seed Mutation

Use Elasticsearch to find doc.

Functionality
Mutator

Use ElasticSearch for similarity search
with permission check to find doc.

Use Elas.. with permission check to
find doc with ‘source_doc:print(1)’.

Argument
Mutator

AgentFuzz Running Example

#BHEU @BlackHatEvents

#BHEU @BlackHatEvents

Outline

1. Background Overview
2. Research Challenges & Solutions
3. AgentFuzz Approach
4. Experimental Evaluation

#BHEU @BlackHatEvents

Module 1: LLM-assisted Seed Generation

Step 1. Static Analysis to Extract Call Chains

• Models common sensitive functions in Python,

such as code execution (see left).

• Uses CodeQL to trace backward from sink,

gathering semantic info from method names.

#BHEU @BlackHatEvents

Module 2: Feedback-driven Seed Scheduling
• Distance Score (DS)

• Measures the shortest control-flow distance from methods in call chain to the sink

• Closer paths score higher, indicating proximity to trigger conditions.

• Semantic Score (SS)

• Compare runtime trace with sink call chain;

Use LLM to verify invoked component.

• Penalty Score (PS)

• Penalizes seeds scheduled

frequently to avoid local optima.

#BHEU @BlackHatEvents

Module 2: Feedback-driven Seed Scheduling

Multifaceted feedback is essential!

#BHEU @BlackHatEvents

Module 3: Sink-guided Seed Mutation

Argument Mutator&Functionality Mutator

#BHEU @BlackHatEvents

Outline

1. Background Overview
2. Research Challenges & Solutions
3. AgentFuzz Approach
4. Experimental Evaluation

#BHEU @BlackHatEvents

Experimental Setup
• Dataset

• 20 open-source agents from

GitHub (each >1,000 Star)

• Test Model

• GPT-4o

• Evaluation

• Detection precision and recall

• Comparison experiments

#BHEU @BlackHatEvents

Vulnerability Detection

• Detected 34 vulnerabilities

across 14 agent (23 CVEs)

• 7 of these apps have over

10,000 stars, including critical

issues like RCE and SSRF

#BHEU @BlackHatEvents

Comparison Experiment

• Compared Tool: LLMSmith

• Use PyCG to back-trace sinks and mark each call chain as a vulnerability.

• Result Overview

• Precision rate improved by 33x

• Recall rate improved by about 3x

#BHEU @BlackHatEvents

Real World Vulnerability Analysis

SSTI in AutoGPT (180k+ Stars)

Blue Section: Prompt Injection

• Injected prompts bypass LLM defenses.

Red Section: Sink-Triggering PoC

• Crafted prompt lead the LLM to invoke a

template rendering component (jinja2)

Green Section: Malicious Payload

• The green part flows into the sink and is

ultimately executed, achieving RCE.

#BHEU @BlackHatEvents

Source Code:
https://github.com/LFYSec/AgentFuzz

White Paper:
https://lfysec.github.io/paper/agentfuzz-security25.pdf

Any Question:
fengyuliu23@m.fudan.edu.cn

#BHEU @BlackHatEvents

Thanks !

