
Physical Attacks Against
Smartphones

Christopher Wade

@Iskuri1

Introduction

Modern smartphones employ a high number of measures to protect their security

Despite this, simple techniques can still be used to break physical security

In this talk, we will discuss two case studies:

• Gaining root access to a smartphone with no bootloader unlocking capability

• Gaining code execution in the bootloader of a Samsung smartphone

Case Study 1 - Rooting On A Locked Bootloader

I wanted to root my old smartphone to test mobile applications

On most Android devices, this has a standard approach: bootloader unlocking

While some OEMs place restrictions on this feature, this phone had it disabled
completely

Target Device

A Smartphone From A Chinese OEM

Released in 2019

Uses an OEM-developed fork of Android

Disabled Bootloader Unlock

The device used a special engineering app to permit unlocking

This used a signature stored in a special partition, inaccessible to standard users

It was not publicly available, and required an approved user account

Disabled Bootloader Unlock

When bootloader unlocking isn’t available, an exploit is generally required to
escalate privileges

With no direct access to the bootloader USB interface, a vulnerability was needed
in the Android fork

The Android fork contained a high number of custom System-level apps and Root-
level services which could potentially be exploited

Finding An Exploit

The Android fork had a service running as root, which could be called by System-
level applications

The purpose of the service was to facilitate archiving of App data on a remote
server

Brief analysis of the service binary found a command injection vulnerability, which
would provide immediate root access

This could be exploited by archiving a file with backticks in the name

SELinux Protection

Android uses SELinux to control access between
software components

This can be used to prevent a process with root
access from accessing other components of the
Operating System

The root command injection vulnerability was
extremely locked down, only allowing access to all
application data, but nothing else on the device

Alternative Attack Vectors

SELinux was well configured throughout the OS

Most vulnerabilities would be limited to the SELinux context, and useless without a
Kernel exploit

As the bootloader was locked down, and any OS exploits would be useless on their
own, focus was placed on the next most available target: Recovery Mode

Custom Recovery Mode

Recovery mode in Android uses a standard architecture to
full-fledged Android, and often uses the same Kernel built
for the main OS

Recovery mode is usually basic, covering a few menu options
controlled by the phone’s volume buttons

In the OEM’s Android fork, this had been replaced with a
fully-featured interface

Finding An Update Image

In order to find a vulnerability in Recovery mode, the firmware image would be
useful

Downloading an update .zip for the device found that it didn’t contain the recovery
image at all

Several iterations of updates were downloaded, and Recovery was not in any of
them

Recovery Mode Menu

With no recovery image to reverse engineer, basic attacks
were attempted

The menu included the option to load encrypted
firmware updates from external storage

A vulnerability in this feature would be the easiest to
exploit

Finding An Exploit

Due to the command injection vulnerability in the Android fork, a similar attack
was attempted

A legitimate encrypted update file was renamed to contain a command:

`sleep 30000`.zip

This caused the update process to hang, demonstrating that it was vulnerable to
command injection somewhere

Disclosure

Both command injection vulnerabilities were disclosed to the OEM

They were swiftly remediated, and new versions of the software were released

As the Recovery Mode command injection was likely to run as root, and have no
restrictions, this would be the basis for gaining root access to Android

Root Cause Analysis

By checking the running processes, the injection point could be identified

A sha1sum command was in use by the Recovery process

In the /sbin/recovery binary, the command was present

Exploiting Command Injection

As there was a command injection vulnerability in the filename, this could be used
to execute a more complex script

By altering the name to include a base64 encoded command, piped into
/system/bin/sh, a shell script could be read from the filesystem and executed:

`echo Y2F0IC9kYXRhL21lZGlhLzAvYmFja2Rvb3Iuc2ggfCBzaAo= | busybox base64 -d

- | sh`.zip

Exploiting Command Injection

The filesystem used by Android’s userdata does not support all special characters

Due to this, a MicroSD Card was formatted to EXT4, allowing for extra characters

Android does not typically support EXT4, but the custom Recovery Mode did

Getting A Shell

To gather more information, a script was used which wrote key information about the
OS to a file

This included the fact that the recovery process was running as root, and that SELinux
could be disabled completely

With the capability to run a shell script from Recovery Mode, ADB was also reenabled

Switching To Android

Root access in Recovery mode gave full access to the device

This would allow for modification of some data, but not control over the core
Android OS upon a reboot

A method would be required for switching from Recovery to Android without
rebooting

Kexec

Kexec is a part of the Linux Kernel which allows for booting a new Kernel from the
current one

While this would be the perfect solution, it is not typically compiled into Android,
and could not be loaded as a Kernel module due to signature verification

A userspace-only solution was required

Ptrace

Ptrace is a system call allowing a process to
observe and control another

Typically, this is used for debugging purposes, but
is extremely useful for exploitation

Even W^X memory can be overwritten and
executed

Ptrace could be used to override and replace the
“init” process, restarting it in a new context

Overriding Init

Ptrace can be configured to immediately pause the process

The subsequent operations can then be altered to execute execve to run commands

Using execve will cause the PID to remain as 1

switch_root

switch_root is used to switch to a new root filesystem

This is a common feature on Linux-based devices, to switch from the RAMDisk to
the main root filesystem

We could use this to switch from the Recovery RAMDisk to Android’s

Init Process

Init Process

Shared Mounts

A core component of switch_root is the remounting of mounted folders

Remounting does not work on folders mounted as “shared”, including standard
Android partitions

This could trivially be resolved by switching all folders to “private”

Patching out SELinux Checks

The init binary checks /proc/cmdline for whether the image requires SELinux

If it does, and it is disabled, init forcibly reenables it

Ptrace could be used to override the “read” syscall, removing the parameter

Fixing Kernel Panics

Init also executes all of the .rc scripts

This included initialising hardware which Recovery had already initialised

The second initialisation caused a Kernel panic in many cases, crashing the device

This could be trivially remediated by using Ptrace to return an empty script for all
hardware initialisation .rc files

Reinitialising Services

Once Android had started, services were still running in the Recovery context

This prevented PIN unlocking from operating

This could be trivially resolved by killing the processes before the new version of
init started

Replacing Read-Only Files

The System partition of the Android OS uses dm-verity to ensure it cannot be
modified

Despite this, system files can be overlayed using the “mount –bind” command

This can allow for modification of System services, as well as other core files

By replacing core apps and frameworks, bloatware and root-access checks can be
removed

Demo

Hidden RAMDisk

For debugging purposes, a Busybox Telnetd server was started within
Recovery, but after Android had started, the server was still running

Logging into it found that the Recovery RAMDisk was still in place, but
empty

Using Busybox, the standard tools could be repopulated

Hidden RAMDisk

The Recovery RAMDisk was hidden from Android

CDing/Chrooting to the directory /proc/1/root from Recovery would access the
Android rootfs as root

The same hidden context could be used to add a Debian chroot, independent of
Android, with access to all hardware and hidden control over Android

Conclusion

Root access via this method was found to work consistently

The tool manipulating init via Ptrace continued to operate in the background, with
no impact to the device

Rebooting the phone had no ill effects, and it could operate normally, without
persistent root access

Ptrace should never be required on a standard Android device, and only serves to
assist attackers

Case Study 2 – Exploiting An Exynos
Secondary Bootloader
Exynos-based devices have had significant research performed on Download mode
in their secondary bootloader

This all focused on the high-level Download protocol, and not on the USB stack
itself

I wanted to find a vulnerability in the core USB stack

Target Device

Samsung Galaxy A04S

Released In August 2022

Exynos 850 Chipset

Sboot

The Exynos secondary bootloader has multiple features:

 Standard boot

 Download mode

 Fastboot mode

 Upload mode

All of this is encompassed in a single firmware binary: sboot.bin

This meant the USB protocol of the three modes would likely use the same core
USB stack

USB Control Transfers

Control Transfers are used to send and receive information about a USB device

Use standard parameters:

 bmRequestType

 bRequest

 wValue

 wIndex

 Buffer

 Buffer Size

Fuzzing USB Control Transfers

Control Transfers are mostly stateless

Basic fuzzing can be achieved just by randomising all
parameters

Unsuccessful requests can be easily filtered out

Initial Fuzzing Attempts

Sending purely random data caused the device to
reboot into a failure mode

This occurred when an 0xf6 value was in the
bRequest parameter

The failure mode was recoverable using Download
mode tools, and 0xf6 values were filtered out

Causing A Crash

Continued fuzzing found that the device would crash and reboot after a certain set
of transfers

Transfers in the sequence were removed until the root cause was identified

One transfer was a malformed GET_DESCRIPTOR request, transferring in the wrong
direction, and the second was a valid GET_DESCRIPTOR request

Descriptor Overwrite

GET_DESCRIPTOR is a core Control Transfer that retrieves
descriptors about the device

This data should always be transmitted to the host, and
never received from it

The first byte of the data is always the size of the buffer

If this can be overwritten, usually the buffer size can be
extended to cover out of bounds memory, as well as alter
the data at that location

Descriptor Overwrite

Most USB stacks do not check the Control Transfer Direction

They are usually protected by how they handle USB transactions

If they don’t verify the direction, but do specify a response direction, they are not
vulnerable

STM32 USBD Stack:

Exploiting Descriptor Overwrite

The size byte of the buffer was overwritten

This was ineffective, and didn’t alter the size of data received

Luckily, there was also a buffer overflow in the Control Transfer buffer

Data next to the buffer could be overwritten, regardless of the size parameter

Brute Forcing Memory

Sending a large buffer caused the device to crash and
reboot

Buffers of increasing byte values and sizes were sent, until
several valid pointers were generated

These were found to be pointers to other Descriptors

Modifying these pointers facilitated arbitrary memory
read/write

Dumping Memory

The pointers in the brute-forced memory were between 0xf9000000 and 0xfa000000

A memory dump was created of data from 0xf8000000 onwards

This included the entire running bootloader and RAM contents, starting at 0xf8800000

DEP Misconfiguration

As the running bootloader was in RAM, attempts were made to override its
opcodes

This caused the device to hang, implying DEP was configured

Attempts to execute code written into unused RAM were successful

Patching In New Functions

C functions can be compiled to object using “gcc –static –nostdlib”

Using the objcopy command, this can be converted to a raw binary

Directly writing these into memory was sufficient to execute them, due to the DEP
misconfiguration

Basic Code Execution

Fastboot mode was used as a base for the exploit

Fastboot uses string-based commands which usually keep function pointers in a table,
simplifying code execution

Modifying this table would allow for easy code execution, without modifying the stack

The getvar: command was chosen for calling other functions

Basic Code Execution

Reimplementing Boot

Code execution in the bootloader meant that secure boot bypass would be possible

No USB-based mode had the capability to boot directly to Android

Directly calling the standard boot function crashed the phone

Reimplementing Boot

There were two options for reimplementing the boot process:

 Copy the entirety of sboot to writeable memory, and call the required
functions

 Reimplement the boot functionality from scratch

The latter choice was chosen, due to a lack of writeable memory available

Reimplementing Boot

Functions in the bootloader can be trivially
called by absolute addresses in C

These could be used to replicate the entire
boot function call flow

Functions could be removed that weren’t
necessary for booting

Boot Debugging

The bootloader contained a huge number of
debug strings

These were written into RAM at address
0xf0000000

By comparing my boot implementation’s
output to a legitimate boot process, debugging
would be possible

Kernel Execution

The boot process ended with calling directly into the Kernel

This included KASLR, with the Kernel base address being stored in memory

Standard debugging of errors would be impossible after execution

Boot Failure

After patching in all of the appropriate functions, a Kernel loaded into memory
could be executed

This hung, and never started Android

The Kernel code could be modified after loading, so each step was altered to return
back to the bootloader, so the function causing the crash could be identified

Boot Failure

The device froze after the Kernel reinitialised the
MMU

This implied that parts of the bootloader were still
executing

The most likely reason was the bootloader
potentially using threads

Bootloader Threads

Most Android bootloaders use a single thread for all functionality

Sboot was found to implement an RTOS to handle all management features

As the Kernel altered the MMU page tables, they were attempting to execute
unmapped memory

Bootloader Threads

Three threads were identified on the device:

 Background Tasks

 USB Control Transfers

 High Level USB Communication

Each one was constantly running, and had no trivial way to disable them
individually

Disabling Threads

A simple solution was required to disable all
threads

Throwing an exception would achieve this

Recovering from the exception would not be
required

The Kernel bootstrapping code could be executed
from an exception

Aarch64 Exceptions

The VBAR_EL1 register points to the exception vector table for Sboot

Every 128 bytes is a different exception type

By pointing VBAR_EL1 to a table with NOPs, followed by the boot code, any
exception would execute the payload

Additional Errors

Even with the Kernel booting, Android still failed to start, reverting to Recovery mode

The error was within the fs_mgr_mount_all function

This error message suggested that the userdata partition could not be decrypted

This strongly implied that key storage was not enabling properly

Additional Errors

Analysing the logs prior to boot found that multiple hardware initialisations were
being performed twice, including keystorage

This was due to Fastboot requiring them for other purposes

The second initialisation would fail, and break the rest of the process

Additional Errors

Both keystorage and TEE functions were enabled by a large, complex function

This was fully reimplemented, with the functions removed

With the errors removed, the phone could complete booting to Android

Demo

Android Modification

It was possible to modify the Android image at any point prior to Kernel execution

With the arbitrary memory read/write vulnerability, this would be trivial

The Kernel could be modified without triggering protection mechanisms

Final Notes

As the exploit could now be triggered using an exception, any boot mode could be
used

This meant even vulnerable Samsung devices without Fastboot could be exploited

While code execution was possible in the Kernel, there was still a risk of triggering
KNOX

Disclosure

The initial vulnerability was disclosed to Samsung in December 2022

Samsung provided constant updates on progress, and patched the finding within
three months

The target device was updated, and found to no longer be vulnerable to the
Descriptor Overwrite vulnerability

Tools will be released demonstrating the outlined exploit

Conclusion

Most devices will still have exploitable vulnerabilities, despite the resources used to
mitigate against them

Even with basic vulnerabilities, the effort required to go from a proof-of-concept to
a full exploit can be extremely rewarding

Even on targets which have had a huge amount of research performed on them,
there will still be a vector no one else has tried

	Slide 1: Physical Attacks Against Smartphones
	Slide 2: Introduction
	Slide 3: Case Study 1 - Rooting On A Locked Bootloader
	Slide 4: Target Device
	Slide 5: Disabled Bootloader Unlock
	Slide 6: Disabled Bootloader Unlock
	Slide 7: Finding An Exploit
	Slide 8: SELinux Protection
	Slide 9: Alternative Attack Vectors
	Slide 10: Custom Recovery Mode
	Slide 11: Finding An Update Image
	Slide 12: Recovery Mode Menu
	Slide 13: Finding An Exploit
	Slide 14: Disclosure
	Slide 15: Root Cause Analysis
	Slide 16: Exploiting Command Injection
	Slide 17: Exploiting Command Injection
	Slide 18: Getting A Shell
	Slide 19: Switching To Android
	Slide 20: Kexec
	Slide 21: Ptrace
	Slide 22: Overriding Init
	Slide 23: switch_root
	Slide 24: Init Process
	Slide 25: Init Process
	Slide 26: Shared Mounts
	Slide 27: Patching out SELinux Checks
	Slide 28: Fixing Kernel Panics
	Slide 29: Reinitialising Services
	Slide 30: Replacing Read-Only Files
	Slide 31: Demo
	Slide 32: Hidden RAMDisk
	Slide 33: Hidden RAMDisk
	Slide 34: Conclusion
	Slide 35: Case Study 2 – Exploiting An Exynos Secondary Bootloader
	Slide 36: Target Device
	Slide 37: Sboot
	Slide 38: USB Control Transfers
	Slide 39: Fuzzing USB Control Transfers
	Slide 40: Initial Fuzzing Attempts
	Slide 41: Causing A Crash
	Slide 42: Descriptor Overwrite
	Slide 43: Descriptor Overwrite
	Slide 44: Exploiting Descriptor Overwrite
	Slide 45: Brute Forcing Memory
	Slide 46: Dumping Memory
	Slide 47: DEP Misconfiguration
	Slide 48: Patching In New Functions
	Slide 49: Basic Code Execution
	Slide 50: Basic Code Execution
	Slide 51: Reimplementing Boot
	Slide 52: Reimplementing Boot
	Slide 53: Reimplementing Boot
	Slide 54: Boot Debugging
	Slide 55: Kernel Execution
	Slide 56: Boot Failure
	Slide 57: Boot Failure
	Slide 58: Bootloader Threads
	Slide 59: Bootloader Threads
	Slide 60: Disabling Threads
	Slide 61: Aarch64 Exceptions
	Slide 62: Additional Errors
	Slide 63: Additional Errors
	Slide 64: Additional Errors
	Slide 65: Demo
	Slide 66: Android Modification
	Slide 67: Final Notes
	Slide 68: Disclosure
	Slide 69: Conclusion

