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Abstract  

Future cyber threats will include high volumes of 
sophisticated machine speed cyber-attacks that are 
able to evade and overwhelm traditional cyber 
defenders. In support of social good and global 
security we take the exceptional approach of 
summarising a large body of Defence research 
applying Reinforcement Learning (RL) to 
automated cyber defence decision making i.e., what 
action(s) do we take when a cyber-attack is 
detected? Promising concepts include two 
contrasting Multi Agent RL (MARL) approaches, 
deep RL combined with heterogenous Graph Neural 
Networks (GNNs), and a Cyber First Aid 
demonstrator. To achieve this we have matured 
simulators and tools including development of 
advanced adversaries to improve defender 
robustness. We have demonstrated that autonomous 
cyber defence is feasible on ‘real’ representative 
networks and plan to quadruple the number of high 
fidelity projects in the next year. 

1. Introduction 

Cyber-attackers are increasingly using Machine Learning 
(ML) approaches to launch high volumes of sophisticated 
machine speed cyber-attacks that can evade and overwhelm 
traditional cyber defenders (Kaloudi et al., 2020), (Guembe, 
et al., 2022). Furthermore, human cyber defenders are in high 
demand and cannot be located with all cyber systems. ML is 
a mature technology for anomaly detection, and commercial 
Security Orchestration and Automated Response (SOAR) 
platforms have begun implementing ML driven cyber 
defence decision making capability (i.e., what action do we 
take when an attack is detected). However, they are not 
mission or context aware, which is of particular concern in a 
Defence application, where it is often impractical to deploy 
large numbers of skilled cyber defenders to the front line.  
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Autonomous Resilient Cyber Defence (ARCD) is a Defence 
research programme, funded by the Defence Science and 
Technology Laboratory (Dstl). We aim to use ML 
technologies to develop self-defending, self-recovering 
cybersecurity concepts for generation after next military 
operational platforms and technologies. An example of the 
benefits of this project are increased cyber resilience and 
reducing the time taken to respond to cyber incidents in 
systems without co-located cyber responders. Our intended 
outcomes are: 

• Demonstrators for autonomous response to cyber-attacks 
in military-relevant contexts.  

• Greater understanding of the strengths and limitations of 
ML and their application to cyber defence. 

• Improved national skills and knowledge to support 
combined ML and cyber innovation. 

Our research focus is the respond and recover functions 
within the National Institute of Standards and Technology 
cybersecurity framework (Fig 1).  

 

Figure 1 - NIST Cybersecurity functions. This paper’s focus is post-

detection response and recovery. 

RL has emerged as a highly relevant approach for cyber 
defence (discussed in more detail at Section 3.1). This paper 
summarises a body of our high maturity RL cyber defence 
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research, focussed on accelerating real-world application13. 
Our main contributions can be summarised as follows: 

• We provide a largely unpublished body of knowledge14, 
exploring the research question: “To what extent can RL 
driven cyber defence decision making capabilities be 
demonstrated in a representative environment15, and how 
might this apply or be transferred to the real-world?”. We 
take the exceptional approach of publishing this large 
body of Defence research with the intent of contributing 
to social good and security in the face of a rapidly 
evolving cyber threat landscape. 

• We summarise six maturing research projects and 
provide discussion exploring overall findings, 
recommendations, and future challenges. Our headline 
outcomes include a successful proof of concept for RL 
driven autonomous defence against cyber-attacks in a 
range of representative environments; Multi agent 
approaches outperforming single agents; Outperforming 
rules-based cyber defenders developed by human 
experts; End-to-end machine speed cyber defence 
against a ‘real’ cyber-attack on a ‘real’ network; RL red 
agents learning realistic cyber-attack strategies to 
support training of robust cyber defenders and reflect 
future threats; and, generalising to be able to defend 
network topologies that were not seen in training. 

2. Related Work 

MLsec, the intersection of ML and cybersecurity has two 
main areas: the use of ML in security applications, and the 
security of machine learning systems and algorithms. MLsec 
applications include malware classification, Domain Name 
System (DNS) analysis, vulnerability detection, cyber 
defence, and penetration testing (Ford et al., 2014), (Bilge et 
al., 2011) (Antonakais, et al., 2012) . These applications 
generally detect and highlight suspicious patterns, artefacts, 
and potential incursion, except for cyber defence and 
penetration testing applications that suggest or implement 
actions that change the state of a network or system. 
(Standen, et al., 2022) defines Autonomous Cyber Operations 
(ACO) as “the parallel development of automated 
red(attacker) and automated blue (defender) agents within a 
networked system that combat one another in a game-playing 
scenario” (Vyas et al., 2023). Autonomous Cyber Defence 
(ACD) focusses on training blue agents, e.g., to 
autonomously defend a system against cyber attacks 

 
13 Low maturity state of the art ML techniques, autonomous cyber 

threat intelligence, and anomaly detection are subject to their own 

research areas and will inform our future work. 
14 Three projects have already published. We include their key 

findings in this paper to support our overall conclusions and 

provide an updated position. 
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(Applebaum, et al., 2022). Early ACD work includes 
(Beaudoin et al., 2009). 

Programmes supporting ACO work include: DARPA Grand 
Challenge16 (2014-2016); NATO IST-152 (Pechoucek et al., 
2017) (Kott, et al., 2019) (2016-2019); Autonomous 
Intelligent Cyber Agents (AICA) (Blakely et al., 2023) 
(2020-2022); The Technical Cooperation Program (TTCP) 
working group on Cyber Autonomy Gym for 
Experimentation (CAGE)17; Autonomous Resilient Cyber 
Defence (ARCD)18,19 (2021-2025); Cyber Agents for 
Security Testing and Learning Environments (CASTLE)20 
(2022-2025). ICML-22 included the ML4Cyber workshop 
“to build a mutual comprehensive awareness of the problem 
and solution spaces across the greater ML community and the 
Cybersecurity/ML for Cybersecurity communities”. 

2.1. Cyber Defence Frameworks 

The MITRE ATT&CK® Tactics, Techniques and Procedures 
(TTP) and D3FEND® frameworks describe and label the 
behaviours of cyber adversaries (Strom, et al., 2018), 
(Alexander et al., 2020) and defenders (Kaloroumakis et al., 
2021) respectively. We use these frameworks to provide 
structure and consistency between projects. The MITRE 
Adversarial Threat Landscape for Artificial-Intelligence 
Systems21 (ATLAS™) (NIST, 2024) and Microsoft STRIDE 
frameworks are useful in assessing potential cyber hardening 
needs for RL systems (Shevchenko, 2018).  

3. Application 

We first characterise the ML considerations of the automated 
cyber defence problem, and detail the suitability of RL 
(Section 3.1), we then outline our evaluation criteria (Section 
3.2) and summarise two studies exploring the challenges and 
opportunities relating to high dimensionality and 
combinatorial action spaces in cyber defence (Section 0).  

3.1. Characterisation 

There are limitations in applying supervised or unsupervised 
learning to cyber defence as the overwhelming majority of 
large, high quality cyber security datasets (CICIDS, 2018) 
(KDD, 1999) (NDsec-1, 2016) relate to detection rather than 
response and recovery (Figure 1). Cyber defence suits RL as 
it involves interaction with a dynamic environment, 
potentially containing adversaries, along with an ability to 
solve challenges which require sequential decision making 

16 https://www.darpa.mil/program/cyber-grand-challenge  
17 https://github.com/cage-challenge  
18 https://www.fnc.co.uk/arcd  
19 https://www.qinetiq.com/en/what-we-do/services-and-

products/autonomous-resilient-cyber-defence  
20 https://www.darpa.mil/news-events/2022-10-24  
21 https://atlas.mitre.org/  
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(Figure 2). Previous work had highlighted Proximal Policy 
Optimisation (PPO) as an approach showing early promise 
for autonomous cyber defence (Foley et al., 2022). 

 

Figure 2 – The agent–environment interaction in a Markov 

decision process (Sutton & Barto, 2020) 

Due to the nature of network traffic, the defence context and 
agent actions, cyber defence is a high dimensional action and 
observation space. Therefore, an ability to scale is a key 
challenge for successful cyber defence concepts. 

Cyber Defence agents typically do not have full visibility of 
the state space so the problem can be formulated as a Partially 
Observable Markov Decision Process (POMDP) (Oliehoek et 
a., 2016). Further, centralised decision-making during 
runtime will be near impossible on a large cyber network due 
to permissions, boundaries, and risk of high impact 
vulnerabilities. Multi-agent reinforcement learning (MARL) 
approaches show great promise within a Decentralised 
POMDP (Dec-POMDP) or Partially Observable Markov 
Game if the red agent is also learning. Multi-agent action 
spaces will need to be heterogeneous due to variable factors 
such as agent(s) location and visibility (Sengupta et al., 
2020). 

Cyber-attacks typically present as a combination of bursts of 
high impact activity, and longer campaigns of stealthy 
activity, within extended periods of otherwise benign system 
behaviour. Cyber defence therefore features sparse rewards 
and difficulties with credit assignment (Arulkumaran et al., 
2017). Attack detection inputs are also imperfect, with high 
levels of uncertainty e.g., false positive anomaly detection 
alerts. This means that large amounts of data generation and 
curation is required to ensure optimal coverage of 
observation-action spaces to learn from and respond to.  

3.2. Evaluation 

Evaluation of ML approaches is a complex, multi-faceted 
challenge. Evaluation criteria definition is covered elsewhere 
in our research programme10 but is informed most notably by 
(NIST, 2023). High priority considerations include: 

• Tractability (ability to manage real-world large 
combinatorial action & vast high dimensional 
observation spaces) 

• Mission-level rewards (focus on real-world outcomes, 
rather than low level rewards) 

• Generalisability (ability to deploy to unknown networks, 
or against new, and potentially learning, adversaries) 

• Avoidance of new vulnerabilities (limit exploitability by 
attacks on AI systems. 

• Explainability (logging and understanding reasoning for 
actions is essential to build trust). 

• Scalability in terms of compute power and data handling. 

While the above are still considered open problems, the RL 
literature provides many solutions towards solving them. 

3.3. High Dimensionality Inputs and Combinatorial 

Action Spaces 

Two studies were completed that explored the high 
dimensionality cyber defence problem. The first explored 
emerging novel techniques for managing high dimensionality 
and scalability (Morarji, 2023)6. Recommended RL 
dimensionality reduction approaches were offline RL, 
function approximation (e.g., neural networks), action 
masking (Tang et al., 2020) and sample-based planning 
(sampling). Recommended RL scaling approaches were 
parameter sharing (Christianos et al., 2021) (Gronauer et al., 
2022), transfer learning (Zhuang, et al., 2020), hierarchical 
learning (Botvinick, 2012) (Yang et al., 2020), curriculum 
learning (Narvekar et al., 2020) (Gronauer et al., 2022) , 
mean-field methods (Yang, et al., 2018)., and meta-RL 
(Hafner et al., 2023). 

We also explored the challenges for cyber defence at scale 
(Palmer et al., 2023)5. The study explored cyber defence 
benchmarking environments, and broader environments with 
similar challenges. The most scarce of these challenges, but 
one which is core to cyber defence, is the presence of graph-
based dynamics. Approaches for combinatorial action spaces 
were also explored. Recommended approaches were proto 
actions (Dulac-Arnold et al., 2015), action decomposition 
(Tavakoli et al., 2018), action elimination (Zahavy et al., 
2018, hierarchical RL (Wei et al. 2018), and curriculum 
learning (Farquhar, et al., 2020). Finally, the non-stationary 
adversarial learning challenge was considered, where red and 
blue agents adjust their approach over time. Further work was 
recommended relating to limiting blue agent exploitability, 
including Approximate Best Response (ABR) techniques 
(Lanctot, et al., 2017). 

4. Results 

Twenty research projects have been undertaken in our 
mature concepts area, covering different ML technologies 
and military use cases. Here we summarise the approaches 
and results for six notable projects that use RL. 
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4.1. RL Agent Proof of Concept4, 6 

A PPO agent was deployed in a simple denial of service 
attack scenario within the PrimAITE cyber training 
environment10. Results were benchmarked against a random 
action defender and a rules-based defender, developed with a 
human cyber expert with >10 years’ experience. Results 
provided a strong early proof of concept for RL cyber 
defenders: 

• The PPO agent average episode reward outperformed the 
rules-based agent in ~50% of cases, and the random 
agent in 100% of cases; 

• The PPO agent was quickly able to achieve near-perfect 
performance following an upgrade to the environment’s 
defensive action space. The effort required to adapt the 
rules-based agent was prohibitive, even for a simple 
problem. 

• The PPO agent adapted to an unintentional network 
misconfiguration, which is a plausible risk that was 
missed by the rules-based agent. 

4.2. Co-operative Decision Making for Cybersecurity8 

The ‘Co-Decyber’ project applies cooperative MARL (co-
MARL) to a military platooning use case, where the lead 
logistics vehicle is manned and the remaining logistics 
vehicles autonomously follow the leader (Cheah, et al., 
2023). The attack-defence tree methodology has been 
employed to scope the action space (Figure 2) (Jhawar et al., 
2016) (Kordy et al., 2010). This approach translates 
conceptually to the decision-making breakdown and 
underpins the multi-agent architecture (Figure 3). The Co-
Decyber architecture maps to a vehicle architecture, to aid 
deployment into a real system. Recent scenarios exploring 
denial of service on inter-vehicle communications include 
approximately thirty defence actions, some requiring 
sequential ordering. 

 

Figure 3 – Attack-Defence tree model for a generic cyber-attack. 

Attack action in red, defence actions in green (see Figure 4).  

 

Figure 4 – A Co-Decyber Node with defence actions assigned to 

individual, but interconnected RL agents (defence actions in italics).  

Rewards are assigned at mission-level (Table 1), which have 
the advantage of avoiding human bias in determining agent 
policies but increases the challenge of sparse rewards and 
credit assignment. Rewards are currently relatively abstract 
but will be matured with stakeholders in the coming months. 

Table 1 – Co-Decyber rewards scheme. 

Reward Timeliness Cargo Status 

5 For every vehicle on time With cargo 

2 For every vehicle on time Without cargo 

4 For every vehicle arriving late With cargo 

2 For every vehicle arriving late Without cargo 

0 No arrival - 

 
Agents are trained against stochastic scripted attacks (e.g., 
varying entry points). To overcome the challenge of sparse 
rewards and training at scale the following approaches are 
used: 

• Offline RL (Fujimoto et al., 2019). 

• Curriculum Learning (Soviany, 2022). 

• Deep Q-learning (Mnih, et al., 2015).  

Offline RL separates training and exploration, which offers 
scaling benefits vs. online RL, which would require full re-
running of the exploration process if a scenario was to 
change. A challenge with offline RL is the trade-off of 
exhaustive coverage of experience vs. high quality training 
data that provides the most benefit during training. 

Results show that Co-Decyber agents are outperforming 
random reference agents in the cyber-attack scenarios that 
were tested (Figure 5). Further results are presented in the full 
paper for this Project (Cheah, et al., 2023). 
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Figure 5 – Histogram of total rewards achieved in trained and 

random firewall agents, vs. a false fire alarm attack. 

Future work on this project will explore: 

• More complex attack scenarios to improve agent 
sophistication, including sequential problem solving. 

• Training more agents to defend more vehicle 
components (i.e., a broader attack surface). 

• Inclusion of more realistic, noisy, sensing data to 
increase the realism of simulation and agent robustness. 

• Reward shaping to aid agent training, without losing 
mission focus. 

• Engagement with military stakeholders inform future 
system requirements, enabling research exploitation and 
integration of autonomous cyber defence capability. 

4.3. Cyber Defence for Maritime Systems6, 4 

MARL was applied to cyber defence of an Integrated 
Maritime Platform Management System (IPMS) (Wilson, et 
al., 2024). These systems include Operational Technology 
(OT) components, which are relatively vulnerable to cyber-
attacks as security controls are typically inferior to 
Information Technology (IT) equivalents. An IPMS simulator 
was developed, which included network connectivity, and 
local and remote controls of two critical subsystems 
(propulsion and chilled water). Training was conducted 
against combinations of two cyber-attack strategies; viral, 
representing an uninformed attack (random movement), or 
targeted, which represented a sophisticated attack requiring 
system knowledge. The cyber defenders: 

• Have a restricted view of the network. 

• Collect awareness of infection status, primarily from 
alerts received from a simulated Security Information 
and Event Management (SIEM) system based on 
ATT&CK Industrial Control System (ICS) tactic levels. 

• Can apply the following defence actions to a node: 
contain (prevent lateral movement), eradicate (remove 

 
22 https://marllib.readthedocs.io  

infection), recover (restore the node to an operational 
state). 

A literature review compared eleven MARL algorithms with 
the cyber defence application (see Characterisation). 
Experimentation selected Multi-Agent PPO22 (MAPPO), 
with a centralised critic, and Independent PPO (IPPO22), with 
independent critics, as the most performant options. During 
tuning the hyperparameters found to be the most sensitive to 
change were the learning rate, batch size, lambda, and clip 
parameter values. Reward shaping (e.g., assigning costs to 
actions) was also found to accelerate learning, mitigating the 
otherwise sparse global rewards (win/lose). Experimentation 
with MAPPO and IPPO showed: 

• Multi agent defenders out-performing single agents, 
which were rarely able to win an episode (Wilson, et al., 
2024). 

• The defender was able to develop winning strategies 
over 95% of the time when only 75% of alerts on the 
network were observed by the defender (Figure 6). 

• The defenders could still develop successful defensive 
policies even when defence action success probability 
was as low as 50% (Figure 7). 

• Emergent behaviour where different agents would adopt 
different cyber defence roles (Figure 8). 

In the next year the project aims to train in a more realistic 
simulator, and deploy to a ‘real’ test rig, defending against 
real cyber-attacks on representative maritime IPMS hardware 
and software. This would represent a significant step towards 
demonstrating the ability to deploy RL cyber defenders to a 
real system. Action masking and curriculum learning will be 
applied to support scaling. A parallel project is exploring 
sophisticated attack paths on an IPMS environment, which 
would improve agent robustness. 

 

Figure 6 – Mean episode outcome for varied cyber alert success 

probabilities. An outcome of 1 means the defender wins, 0 is an 

attacker win, 0.5 is a draw (Wilson, et al., 2024). 

https://marllib.readthedocs.io/
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Figure 7 – Mean episode outcome for varied cyber defence action 

success probabilities (Wilson, et al., 2024). 

 

Figure 8 – Agents assumed defence roles. Agent 1 (top) became the 

‘container’ and Agent 2 (bottom) became the ‘eradicator’. 

4.4. A Virtual Incident Response Analyst (VIRA)9 

VIRA is a RL-based system aiming to offer first-aid to cyber-
physical targets in the field, analysing threat alerts, and 
triggering or recommending understandable containment 
actions to a non-expert operator, to provide crucial time for 
detailed remediation and recovery, thus reducing operational 
risk and impact. 

VIRA employs a novel method of system environment 
abstraction for efficient and accurate model training. 
Environment simulation parameters, such as network, asset, 
attacker, and detection source profiles are instantiated into a 
set of in-memory objects that are continuously updated 
during simulation to represent realistic system interactions 
and dependencies. The abstraction is underpinned by creating 
a system-agnostic state space in which its RL models train. 
The state space uses a configurable taxonomic schema for 
translating attack and detection telemetry into a fixed set of 
criteria for tractable RL training and response action 
convergence. The abstraction method also supports 
transferability to different networks/target systems. 

Defender agents were trialled on a physical testbed including 
IoT sensors, cyber-physical OT (a ROSbot), and IT systems 
(servers, laptops, etc.). During trials the agent was deployed 
against a ‘real’ cyber-attack, and machine speed defensive 
actions were observed to be comparable to those a human 
cyber defender (Table 2). 

Table 2 – Example defensive actions during a cyber-attack. The 

agent took a precise, low-risk approach by blocking the connectivity 

from the offending hosts to the target hosts.  

Attack Stage Defence Action Suitable Response? 

Command and 

Control (C2) 

Channel 

Implant 

“dismiss” alert 

followed by 

block_destination_pro

to_port_default” 

Yes –precise block on 

attack destination from 

source for specific attack 

vector 

Reconnaissance 

(Network 

Scanning) 

“block_proto_port_ext

ended” 

Yes – given the host 

already exhibited 

malicious C2 activity prior 

to scanning activity 

SSH Bruteforce 

Login 

“dismiss” alert 

followed by 

“block_destination_pr

oto_port_default” 

Yes – precise block on 

attack destination from 

source for specific attack 

vector 

The VIRA prototype was successfully demonstrated on a real 
cyber-physical system including initial training of an agent 
through to live deployment & testing. VIRA achieved 
machine-speed, automated, detection, response and recovery 
against a real cyber-attack. Future work will explore 
automated environment learning and deployment to a 
representative military network and edge device. 

4.5. Automating Generalised Cyber Defence12 

Our research projects had typically been limited to ≤5 
network topologies or adversaries, which led to overfitting. 
Generalisability is a desirable cyber defence property to 
provide robustness against factors including unseen 
adversaries and varying TTPs, network topologies, initial 
network states and starting information (e.g., information 
gathered through Open-Source Intelligence (OSINT) or from 
previous breaches, or even zero-days). 

A population of red and blue cyber agents were built to 
generalise to unseen network topologies using coevolution 
within a new cyber defence simulator. The network to defend 
was treated as a heterogeneous graph where training occurs 
by combining Deep Reinforcement Learning with 
Heterogeneous GNNs. There were two distinct graphs: one 
for red and one for blue. The red agent needs to explore and 
discover the graph, whereas the blue agent had full visibility 
excluding any undetected red activity. A large language 
model (GPT-4) was used to produce 80 synthetic networks, 
60 for training and 20 for evaluation, with outputs reviewed 
by cyber security specialists to ensure suitable realism for our 
intended application of tactical networks. 
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A curriculum learning approach was adopted for red agents 
as it has shown promise in Meta RL. A simple curriculum was 
created; red agent training always started at step 3 to allow 
blue agents to place decoys, with only positive rewards for 
reading or exfiltrating files to explore non-zero-sum games in 
population training. Red agents learned reconnaissance, 
scanning, and how to read files, exploit services and create 
sessions while competing against the AI trained blue agent. 
Increasing the number of network topologies used for 
training was shown to have a positive impact on performance, 
demonstrating promise of our approach for improving 
generalisability (Figure 9). Future work will investigate the 
benefits of Meta RL (Beck, et al., 2023), Domain Adaptation 
(Yadav et al., 2022) and Domain Randomisation (Chen et al., 
2022) to support scaling to a virtualised network. 

 

Figure 9 – Rudimentary sensitivity analysis exploring average blue 

rewards for agents trained on 1, 5 and 20 network topologies, then 

evaluated in 20 unseen topologies against a common population of 

red agents.  

4.6. Project Odin7 

Early experimentation identified generalisability limitations, 
where blue agents overfit to hard-coded adversaries. These 
adversaries also required re-work when changing variables 
such as network topology. An exploratory project was 
initiated to understand the benefits and challenges in 
developing an abstract RL-based red agent as an adversary 
that would be used to train blue agents. 

Red agent strategies were developed in partnership with 
defensive cyber teams from a national telecom provider 
(Figure 10). These were used to design reward functions that 
would consider aspects such as stealth, effort and persistence. 
At this stage red agent actions were limited to network 
discovery, system discovery and exploit.  

Originally attacks targeted the same node. To improve 
generalisability the “fastest time to target” agent trained 
against random target nodes. Initially, the agent became stuck 
in local optima and repeatedly selected the same action. The 
introduction of learning rate schedules, which decayed 
linearly over time overcame this issue. On a 10-node 
network, training was shown to improve performance of a 
PPO red agent by reducing both the number of invalid actions 
and steps taken to reach the target node (Figure 11). 

 

Figure 10 – Example strategies showing a red agent moving from 

the entry point (left) to a target (right). The ‘steathy persistence’ goal 

is to remain undetected. 

 

Figure 11 – Evaluation of red agent actions at different levels of 

training during a 30-step episode. Actions are classed as invalid 

(red), duplicated (amber), valid (green), target reached (*). The 

untrained agent failed to reach its target.  

The project is now looking to scale the red agent (in terms of 
network size and variety, sophistication of action and 
strategies), curriculum learning (Narvekar, et al., 2020) and 
train blue agents using co-evolution (Klijn et al., 2021).  

5. Discussion 

5.1. Findings 

The headline outcome against our research question is a 
successful proof of concept for RL driven autonomous 
defence against cyber-attacks across a range of representative 
environments. Our research has demonstrated instances of: 

• Multi agent approaches outperforming single agents, and 
independently adopting cyber defence roles e.g., 
container and eradicator (Figure 8). 

• Out-performing rules-based cyber defenders, which 
reflect human expert input, including mitigation of 
network misconfiguration, which is a realistic risk within 
IT and OT networks. 

• End-to-end machine speed cyber defence against a ‘real’ 
cyber-attack on a ‘real’ network. 

• RL red agents learning realistic cyber-attack strategies to 
support training of robust cyber defenders and reflect 
future threats. 

• Generalising to be able to defend network topologies that 
were not seen in training. 
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We consider several of these findings to be novel with limited 
evidence of such outcomes in current ML and cyber security 
literature (Section 2). 

5.2. Limitations, Challenges & Opportunities 

We acknowledge considerable limitations to our findings. To 
date most research has been conducted in simulators of 
varying sophistication for an initial proof of concept. Moving 
to an emulated or real network requires a step change in 
scaling and dimensionality of the observation and action 
spaces. We have summarised our review of emerging 
approaches to overcome this challenge, but within our 
research curriculum learning, reward shaping (and controls) 
(Devlin et al., 2014), learning rate schedules and action 
masking have been used as practical mitigations to high 
dimensionality, with all projects utilising at least one of these 
approaches. More state-of-the-art research elsewhere in our 
programme has shown Meta RL (Beck et al. 2023) and World 
Models (Hafner et al., 2023) have promise and will continue 
to be explored in future work.  

In the next year we are aiming to deploy at least three of the 
concepts described in this paper into representative ‘real’ 
environments, with little abstraction, including virtualised 
networks and test rigs comprising hardware and software 
equivalent to that used in operational platforms. Transfer 
learning, where agents are trained in simulators, then 
deployed or refined in real systems, has emerged as the most 
promising method for this challenge. The move to higher 
fidelity environments will also support exploration of the 
real-world deployment challenges (i.e., how will an agent 
actuate actions and best capture observation data within a real 
system). Another scaling issue is network size, the largest 
network our trained blue agents have successfully defended 
is in the order of twenty nodes, whereas real networks could 
be hundreds or thousands of nodes. Projects will also need to 
increase realism by accounting for uncertainty in real world 
observations such as false positive rates from intrusion 
detection systems (Alahmadi et al., 2022). 

Whilst generalisability has been explored in depth in one 
project (Section 4.5), most projects are still limited in terms 
of generalisability e.g., the number of network topologies or 
adversary TTPs. Further work is progressing in this space 
from consideration of ‘super’ agents, which are highly 
generalisable, to ensembles of expert agents (Foley et al., 
2022), that fingerprint a cyber-attack, or consider multiple 
recommendations and deploy the most suitable defence 
action. Most projects will also explore more variable network 
topologies i.e., deployment to a wide variety of applications 
and topologies, or realistic dynamic runtime changes, such as 
the adding or removal of nodes. Our state-of-the-art focus 
area has active research implementing and adapting 
DeepMind’s Gato (Reed, et al., 2022), which is aiming to 
develop an environment agnostic generalist cyber defence 
agent. Near-term future work is also commencing to explore 

the application of foundation models such as transformers 
and large language models as alternative approaches to RL. 

Decentralised approaches, such as MARL with 
communication (comm-MARL) (Zhu et al., 2022) offer great 
promise. Our early research into Adaptive Social Learning 
(ASL) (Bordignon et al., 2021) has shown exciting early 
results, particularly in terms of generalisability and scaling11. 
Agents with ASL beliefs used as input to a PPO trained policy 
model (ASL/PPO agents) were trained in a 9-node network, 
and deployed into a new 9-node network with a different 
topology, achieving comparable win rates to ASL/PPO agents 
that were trained in the new network (93.5% vs. 94.4%). 
Indicative results in January 2024 showed ASL/PPO agents 
trained in a 9-node network achieving an 88.4% win rate 
when transferred to a 50-node network. Training time and 
performance level benefits over PPO were also observed and 
increased as the network sizes grew. Further work is being 
considered to ratify these initial results. 

Current work has focussed on autonomous approaches. 
Within a safety-critical Defence application, human 
involvement will be required to build trust in an RL-based 
system. Future work will explore human machine teaming, 
indeed Doctrine states “The winner of the robotics revolution 
will not be who develops this technology first or even who 
has the best technology, but who figures out how to best use 
it.” (Ministry of Defence, 2018). Explainability is required to 
help build trust and is a key focus elsewhere in our 
programme, with approaches such as Theory of Mind (Akula, 
et al., 2019), Structured Causal Modelling (Pawlowski, et al., 
2020) and Shapley Q-Values (Wang, et al., 2022) under active 
research (Revell et al., 2023). Findings from this work will 
continue to influence our direction.  

Another difficulty is in comparing performance of concepts 
training and evaluating in different environments. Our 
evaluation framework is under development (Section 3.2). 
Training logs have been provided by the Co-Decyber project 
for beta testing of the evaluation approach (Section 4.2). 

A parallel programme is also researching ML techniques to 
autonomously generate Cyber Threat Intelligence (CTI) 
(Little, et al., 2023). This aims to generate enriched CTI 
observations to blue agents above network traffic including 
dynamic identification of critical assets, attribution of attacks, 
and prediction of targets. 

6. Conclusion  

Future cyber threats will include high volumes of 
sophisticated machine speed cyber-attacks that can evade and 
overwhelm traditional cyber defenders. Within this paper we 
summarise our body of research exploring RL as an approach 
to automate cyber defence decision making (i.e., what action 
do we take when an attack is detected). We do so with the 
intent of contributing to global social good and security in the 
face of a rapidly evolving cyber threat landscape. 
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Our research provides an increasingly high-fidelity proof of 
concept that RL can be applied to cyber defence. We present 
RL applications and outcomes that we consider to be novel in 
the field of cyber defence: notably two sophisticated, but 
contrasting, MARL approaches and combining deep RL with 
heterogenous GNNs. We have also conducted end-to-end 
machine speed cyber defence against a ‘real’ cyber-attack on 
a ‘real’ network using RL. As we approach our final 
demonstration for this phase of research in February 2025, 
our future direction includes more detailed evaluation in 
highly representative cyber-physical environments. We 
recommend further research, but also considerations for 
adoption, particularly relating to human aspects. 

6.1. Recommendations 

Our simplified recommendations are as follows: 

• Continue maturing autonomous cyber defence concepts 
and identify rapid exploitation routes to mitigate 
emerging machine speed cyber threats. 

• Incorporate emerging ML approaches to address known 
limitations and improve performance. 

• Continue open knowledge sharing of autonomous cyber 
defence research to encourage social good outside of 
defence. This includes building our body of publications, 
providing the deep technical content required to replicate 
results and enhance approaches. 

• Build understanding of how such systems can be 
deployed e.g., Human-Machine Teaming. 

Acknowledgements  

Research funded by Frazer-Nash Consultancy Ltd. on behalf 
of the Defence Science and Technology Laboratory (Dstl) 
which is an executive agency of the UK Ministry of Defence 
providing world class expertise and delivering cutting-edge 
science and technology for the benefit of the nation and allies. 
The research supports the Autonomous Resilient Cyber 
Defence project within the Dstl Cyber Defence Enhancement 
programme.  

 

References 

Akula, Liu, Saba-Sadiya, Lu, Todorovic, Chai, & Zhu. 
(2019). X-ToM: Explaining with Theory-of-Mind 
for Gaining Justified Human Trus. 

Alahmadi, Axon, & Martinovic. (2022). 99% False 
Positives: A Qualitative Study of SOC Analysts' 
Perspectives on Security Alarms. Proceedings of 
the 31st USENIX Security Symposium.  

Alexander, Belisle, & Steele. (2020). MITRE ATT&CK® for 
Industrial Control Systems: Design and 
Philosophy. The MITRE Corporation. 

Antonakais, Perdisci, Nadji, Vasiloglou, Abu-Nimeh, Lee, & 
Dagon. (2012). From Throw-Away Traffic to Bots: 
Detecting the Rise of DGA-Based Malware. 21st 
USENIX Security Symposium (USENIX Security 
12), (pp. 491-506). 

Applebaum, Dennler, Dwyer, Moskowitz, Nguyen, Nichols, 
. . . Wolk. (2022). Bridging Automated to 
Autonomous Cyber Defense: Foundational 
Analysis of Tabular Q-Learning. AISec'22: 
Proceedings of the 15th ACM Workshop on 
Artificial Intelligence and Security.  

Arulkumaran, Deisenroth, Brundage, & Bharath. (2017). A 
Brief Survey of Deep Reinforcement Learning. 
IEEE Signal Processing Magazine, Special Issue 
on Deep Learning for Image Understanding (arXiv 
extended version). 

Beaudoin, Japkowicz, & Matwin. (2009). Autonomic 
Computer Network Defence using Risk State and 
Reinforcement Learning. Cryptology and 
Information Security Series. 

Beck, Vuorio, Liu, Xiong, Zintgraf, Finn, & Whiteson. 
(2023). A Survey of Meta-Reinforcement Learning. 

Bilge, Kirda, Kruefel, & Balduzzi. (2011). Exposure: 
Finding malicious domains using passive DNS 
analysis. Network and Distributed System Security 
Symposium, (pp. 1-17). 

Blakely, Horsthemke, Evans, & Harkness. (2023). Case 
Study A: A Prototype Autonomous Intelligent 
Cyber-Defense Agent. In Kott, Autonomous 
Intelligent Cyber Defence Agent (AICA) - A 
Comprehensive Guide (pp. 395–408). Springer. 

Bordignon, Matta, & Sayed. (2021). Adaptive Social 
Learning. IEEE TRANSACTIONS ON 
INFORMATION THEORY VOL 67. 

Botvinick. (2012). Hierarchical reinforcement learning and 
decision making. 

Cheah, Stone, Haubrick, Bailey, Rimmer, Till, . . . Dorn. 
(2023). CO-DECYBER: Co-operative Decision 
Making for Cybersecurity using Deep Multi-agent 
Reinforcement Learning. Proceedings of the 28th 
European Symposium on Research in Computer 
Security (ESORICS) Workshop on Security and 
Artificial Intelligence (SECAI).  

Chen, Hu, Jin, Li, & Wang. (2022). Understanding Domain 
Randomization for Sim-to-Real Transfer. 



Reinforcement Learning for Autonomous Resilient Cyber Defence 

 10 

Christianos, Papoudakis, Rahman, & Albrecht. (2021). 
Scaling Multi-Agent Reinforcement Learning with 
Selective Parameter Sharing. 38th International 
Conference on Machine Learning (ICML).  

CICIDS. (2018). Retrieved from 
https://www.unb.ca/cic/datasets/ids-2018.html 

Devlin, Yliniemi, Kudenko, & Tumer. (2014). Potential-
based difference rewards for multiagent 
reinforcement learning. Proceedings of the 2014 
international conference on Autonomous agents 
and multi-agent systems, (pp. 165-172). 

Dulac-Arnold, Evans, Sunehag, & Coppin. (2015). 
Reinforcement Learning in Large Discrete Action 
Spaces.  

Farquhar, Gustafson, Lin, Whiteson, Usunier, & Synnaeve. 
(2020). Growing Action Spaces. Proceedings of the 
37th International Conference on Machine 
Learning, (pp. 3040-3051). 

Foley, Hicks, Highnam, & Mavroudis. (2022). Autonomous 
Network Defence using Reinforcement Learning. 
ASIA CCS '22: Proceedings of the 2022 ACM on 
Asia Conference on Computer and 
Communications Security.  

Ford, & Ambareen. (2014). Applications of machine 
learning in cyber security. Proceedings of the 27th 
international conference on computer applications 
in industry and engineering. Vol. 118.  

Fujimoto, Meger, & Precup. (2019). Off-policy deep 
reinforcement learning without exploration. 
International conference on machine learning, (pp. 
2052-2062). 

Gronauer, & Diepold. (20222). Multi-agent deep 
reinforcement learning: a survey. Artificial 
Intelligence Review, Volume 55, pp. 895-943. 

Guembe, Azeta, Misra, Osamur, Fernandez-Sanz, & 
Pospelova. (2022). The Emerging Threat of Ai-
driven Cyber Attacks: A Review. Applied Artificial 
Intelligence, Vol 36, Issue 1. 

Hafner, Pasukonis, Ba, & Lillicrap. (2023). Mastering 
Diverse Domains through World Models. 

Jhawar; Mauw; Zakiuddin. (2016). Automating cyber 
defence responses using attack-defence trees and 
game theory. European Conference on Cyber 
Warfare and Security , (p. 163). 

Kaloroumakis, & Smith. (2021). Toward a Knowledge 
Graph of Cybersecurity Countermeasures. The 
MITRE Corporation. 

Kaloudi, & Li. (2020). The AI-Based Cyber Threat 
Landscape: A Survey. ACM Computing Surveys, 
Volume 53, Issue 1, 1-34. 

KDD. (1999). Retrieved from 
https://archive.ics.uci.edu/ml/datasets/kdd+cup+19
99+data 

Klijn, & Eiben. (2021). A Coevolutionary Approach to Deep 
Multi-Agent Reinforcement Learning. 

Kordy, Mauw, Melissen, & Schweitzer. (2010). Attack–
Defense Trees and Two-Player Binary Zero-Sum 

Extensive Form Games Are Equivalent. Decision 
and Game Theory for Security. GameSec.  

Kott, Theron, Drasar, Dushku, LeBlanc, Losiewicz, . . . 
Gaspari, D. (2019). Autonomous Intelligent Cyber-
defense Agent (AICA) Reference Architecture 
Release 2.0.  

Lanctot, Zambaldi, Gruslys, Lazaridou, Tuyls, Pérolat, . . . 
Graepel. (2017). A unified game-theoretic approach 
to multiagent reinforcement learning. Advances in 
Neural Information Processing Systems, (pp. 4190-
4203). 

Little. (2023). Applying Machine Learning to Attribute 
Cyber Attacks (Poster). Conference on Applied 
Machine Learning for Information Security 
(CAMLIS). Retrieved from 
https://www.fnc.co.uk/arcd 

Ministry of Defence. (2018). Joint Concept Note 1/18: 
Human-Machine Teaming. 

Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, . . . 
others. (2015). p. 529. 

Morarji, & Casassa-Mont. (2023). Managing High 
Dimensionality in AI Driven Cyber Defence 
Decision Making (Poster). Conference on Applied 
Machine Learning for Information Security 
(CAMLIS).  

Narvekar, Peng, Leonetti, Sinapov, Taylor, & Stone. (2020). 
Curriculum learning for reinforcement learning 
domains: A framework and survey. Journal of 
Machine Learning Research 21(181):, (pp. 1-50). 

Narvekar, Peng, Leonetti, Sinapov, Taylor, & Stone. (2020). 
Curriculum Learning for Reinforcement Learning 
Domains: A Framework and Survey. Journal of 
Machine Learning Research 21(181), 1-50. 

NDsec-1. (2016). Retrieved from https://www2.hs-
fulda.de/NDSec/NDSec-1/ 

NIST. (2023). Artificial Intelligence Risk Management 
Framework (AI RMF 1.0).  

NIST. (2024). Adversarial Machine Learning: A Taxonomy 
and Terminology of Attacks and Mitigations.  

NIST. (2024). The NIST Cybersecurity Framework V2.0.  
Oliehoek, & Amato. (2016). A Concise Introduction to 

Decentralized POMDPs.  
Palmer, Parry, Harrold, & Willis. (2023). Deep 

Reinforcement Learning for Autonomous Cyber 
Operations: A Survey. 

Pawlowski, Castro, & Glocker. (2020). Deep Structural 
Causal Models for Tractable Counterfactual 
Inference. Proceedings of 34th Conference on 
Neural Information Processing Systems (NeurIPS).  

Pechoucek, & Kott. (2017). Intelligent Autonomous Agents 
for Cyber Defence and Resilience. Proceedings of 
the NATO IST-152 Workshop on Intelligent 
Autonomous Agents for Cyber Defence and 
Resilience.  

Qinetiq Training & Simulation Ltd. (2023). PrimAITE. 
Retrieved from https://github.com/Autonomous-
Resilient-Cyber-Defence/PrimAITE 



Reinforcement Learning for Autonomous Resilient Cyber Defence 

 11 

Reed, Zolna, Parisotto, Colmenarejo, Novikov, & al., e. 
(2022). A Generalist Agent. 

Revell. (2023). Can We Trust Autonomous Cyber Defence 
for Military Systems? (Poster). Conference on 
Applied Machine Learning for Information 
Security (CAMLIS).  

Sengupta, S., & Kambhampati, S. (2020). Multi-agent 
Reinforcement Learning in Bayesian Stackelberg 
Markov Games for Adaptive Moving Target 
Defense. 

Shevchenko, Chick, O'Riordan, Scanlon, & Woody. (2018). 
Threat Modelling: A Summary of Available 
Methods.  

Soviany, Ionescu, Rota, & Sebe. (2022). Curriculum 
learning: A survey. International Journal of 
Computer Vision, (pp. 1526-1565). 

Standen, Bowman, Hoang, Richer, Lucas, Tassel, V., . . . 
Collyer. (2022). Cyborg: a gym for the 
development of autonomous cyber agents. 
Retrieved from https://github.com/cage-
challenge/CybORG 

Strom, Applebaum, Miller, Nickels, Pennington, & Thomas. 
(2018). MITRE ATT&CK: Design and Philosophy. 
The MITRE Corporation. 

Sutton, & Barto. (2020). Reinforcement Learning, An 
Introduction (Second Edition). The MIT Press. 

Tang, Liu, Chen, & You. (2020). Implementing action mask 
in proximal policy optimization (PPO) algorithm. 

Tavakoli, Pardo, & Kormushev. (2018). Action branching 
architectures for deep reinforcement learning. 
Proceedings of the AAAI Conference on Artifcial 
Intelligence, (pp. 4131–4138). 

Vyas, Hannay, Bolton, & Burnap. (2023). Automated Cyber 
Defence: A Review. Proceedings of the ACM on 
Measurement and Analysis of Computing Systems, 
Vol. 37, No. 4, Article 111. 

Wang, Zhang, Kim, & Gu. (2022). Shapley Q-value: A 
Local Reward Approach to Solve Global Reward 
Games. Retrieved from 
https://arxiv.org/abs/1907.05707 

Wei, Wicke, & Luke. (2018). Hierarchical approaches for 
reinforcement learning in parameterized action 
space. 

Wilson, Menzies, Foster, Mont, C., Morarji, Turbeyler, & 
Gralewski. (2024). Multi-Agent Reinforcement 
Learning for Maritime Operational Technology 
Cyber Security. Proceedings of the Conference on 
Applied Machine Learning in Information Security 
(CAMLIS) 2023.  

Yadav, Mishra, Lee, & Kim. (n.d.). A Survey on Deep 
Reinforcement Learning-based Approaches for 
Adaptation and Generalization. 

Yang, Borovikov, & Zha. (2020). Hierarchical Cooperative 
Multi-Agent Reinforcement Learning with Skill 
Discovery. Proc. of the 19th International 
Conference on Autonomous Agents and Multiagent 
System.  

Yang, Luo, Li, Zhou, Zhang, & Wang. (2018). Mean Field 
Multi-Agent Reinforcement Learning. ICML.  

Zahavy, Haroush, Merlis, Mankowitz, & Mannor. (2018). 
Learn What Not to Learn: Action Elimination with 
Deep Reinforcement Learning. 

Zhu, Dastani, & Wang. (2022). A Survey of Multi-Agent 
Reinforcement Learning with Communication. 
Proceedings of ACM Conference.  

Zhuang, Qi, Duan, Xi, Zhu, Zhu, . . . He. (2020). A 
Comprehensive Survey on Transfer Learning. 

 
 


