
#BHUSA @BlackHatEvents

Uncovering Supply Chain Attack with
Code Genome Framework

Dhilung Kirat, Jiyong Jang, Doug Schales, Ted Habeck, Ian Molloy, JR Rao

#BHUSA @BlackHatEvents 2

AI Supply Chain Security Team
IBM Research

Dhilung Kirat Jiyong Jang

#BHUSA @BlackHatEvents

$ foo install bar
– Signed with a certificate.
– Lists dependencies.

– Do you trust it?

3

#BHUSA @BlackHatEvents

“You can’t trust code that you did
not totally create yourself.”

—Ken Thompson

TURING AWARD LECTURE

Reflections on Trusting Trust
To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON

INTRODUCTION
I thank the ACM for this award. I can' t help but feel
that I am receiving this honor for t iming and serendip-
ity as much as technical merit. UNIX 1 swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to "settle" for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, "Dance with the one that
brought you," which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the
work of others. Therefore, I am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

That brings me to Dennis Ritchie. Our collaboration
has been a thing of beauty. In the ten years that we
have worked together, I can recall only one case of
miscoordination of work. On that occasion, I discovered
that we both had wri t ten the same 20-line assembly
language program. I compared the sources and was as-
tounded to find that they matched character-for-char-
acter. The result of our work together has been far
greater than the work that we each contributed.

I am a programmer. On my 1040 form, that is what I
put down as my occupation. As a programmer, I wri te

1 UNIX is a trademark of AT&T Bell Laboratories.

©1984 0001-0782/84/0800-0761 75¢

programs. I would like to present to you the cutest
program I ever wrote. I will do this in three stages and
try to bring it together at the end.

STAGE I
In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to wri te a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, I urge you to try it on your own.
The discovery of how to do it is a revelat ion that far
surpasses any benefit obtained by being told how to do
it. The part about "shortest" was just an incentive to
demonstrate skill and determine a winner.

Figure 1 shows a self-reproducing program in the C 3
programming language. (The purist will note that the
program is not precisely a self-reproducing program,
but will produce a self-reproducing program.) This en-
try is much too large to win a prize, but it demonstrates
the technique and has two important properties that I
need to complete my story: 1) This program can be
easily wri t ten by another program. 2) This program can
contain an arbi trary amount of excess baggage that will
be reproduced along with the main algorithm. In the
example, even the comment is reproduced.

August 1984 Volume 27 Number 8 Communications of the ACM 781

4

#BHUSA @BlackHatEvents

Supply Chain Attacks

SolarWinds (2019-2021) est. cost > $100B
• Malicious code (backdoor) pushed out through updates

Dependency confusion (Feb 2021)
• Private vs public packages (npm, PyPi, RubyGems)

Codecov (Apr 2021)
• DevOps tool. Vulnerability in CI. Bash uploader modified

Kaseya (Jul 2021) ransom $70M
• IT solutions, including VSA (remote monitoring and

management software) to deliver REvil ransomware

Protestware (Mar 2022)
• Popular NPM package wiped files in Russia and Belarus

3CX (Mar 2023)
• Backdoor implanted into Windows and macOS due to

secondary supply chain attack

5

#BHUSA @BlackHatEvents

xz Backdoor

6

Thomas Roccia

https://securelist.com/xz-backdoor-story-part-1/112354/

https://www.openwall.com/lists/oss-security/2024/03/29/4

systemd
OpenSSH

Semantic gap between compiled code behavior and its metadata

#BHUSA @BlackHatEvents

Supply Chain Security: Industry approach to protecting CI/CD pipelines

Developer

Release Deploy

User
CISO

Develop Source
code

Distributed
code

Compiled
code

author open source
proprietary code

Provenance
(list of components)

SBOM

Integrity
(reproducible CI)

Security
(vulnerability)

Build

7

#BHUSA @BlackHatEvents

User
CISO

Supply Chain Security: Open security issues and residual risks

Developer

Release DeployDevelop Source
code

Distributed
code

Compiled
code

author open source
proprietary code

Provenance
(list of components)

SBOM

Integrity
(reproducible CI)

Security
(vulnerability)

Build

How easy to replicate
10yr old dev environment?

Security of toolchain? (XCodeGhost)
Compromise dev
(SolarWinds hack,
xz backdoor)

bug

Compromised/stolen
certificate? revocation?
(NVIDIA leak)

How to verify the
completeness/correctness?
(copyright, DejaVu)

How to inspect
closed/legacy code?

Where else the code or
library deployed?
(broader dependency
analysis, e.g., log4j)

SLSAv4 requires
significant human
resources

8

#BHUSA @BlackHatEvents

Code Genome

9

#BHUSA @BlackHatEvents

The Semantic Gap

10

Code

Metadata

Unknown

Code

Metadata

Known

Code Genome

Build chain of trust
by following code equivalency

#BHUSA @BlackHatEvents

ff

11

Disassembly

FunctionsCode IR

Lift
Optimize

Generalize

Canonical IR

Embedding
Extraction

Genome

Code Genome Pipeline

f

#BHUSA @BlackHatEvents

Code Genome Pipeline

12

Code

f2

f1

f3

Optimize

Canonical IR

Canonicalization
LLVM Pass

SigMal

Genome

Trojan.Ramnit

Resize Gabor
Filters

Sub-block
Averaging

Feature
Vector

B x B sub-blocks

SigMal pipeline

LLVM IR

RetDec

Input Module Shadow Module

Canonicalization pipeline

• O3 optimization
• dependency

extraction
• global vars
• structs
• other functions

• renaming
• sorting

Ingredients for
Function Gene

f1
f2 f3

#BHUSA @BlackHatEvents

Code Genome Pipeline

Gene can be constructed from closed-source/legacy code
where source code is not easily available.

Compile

Lift

Canonicalize

bitcode

Convert

Code Genemachine-code “raw” IR

canonical IR

Convert
source code

(optional)

Embedding

13

#BHUSA @BlackHatEvents

Same Gene

Code Genome: Semantically meaningful fingerprint

14

#BHUSA @BlackHatEvents

Advantages and Challenges

Advantages
– Across multiple architectures (x86, ARM, …)
– Across multiple compilers (gcc, clang, …)
– Across multiple optimization levels
– Handling obfuscation

Challenges
– Disassembly is undecidable
– Function boundary identification
– Loss of architecture specific nuances
– Canonicalization cannot completely recover

high-level abstraction

15

Genome

Ghidra retdec IDAobjdump

#BHUSA @BlackHatEvents

Uncovering Supply Chain Attack

16

#BHUSA @BlackHatEvents

Demo 1: xz backdoor analysis using Code Genome

17

Thomas Roccia

GeneDiff

liblzma.so.5.6.1.github liblzma.so.5.6.1.distro

#BHUSA @BlackHatEvents

Demo 1: xz backdoor analysis using Code Genome

18

#BHUSA @BlackHatEvents

xz backdoor Gene Similarity Analysis using GeneDiff

19

Local vs distribution builds of same version

xz versions

Ge
ne

 S
im

ila
rit

y

#BHUSA @BlackHatEvents

xz backdoor Gene Similarity Analysis using GeneDiff

20

Incremental version similarity in distribution builds

xz versions

Ge
ne

 S
im

ila
rit

y

2007-2009
alpha/beta

2024
Earthquake

#BHUSA @BlackHatEvents

Improving Supply Chain Security

21

#BHUSA @BlackHatEvents

Trust but Verify SBOM: Metadata vs. Code

22

Problem
– Each vendor creates SBOM of their

own software including open-source
and closed-source components.

– How can we verify its correctness
(containing incorrect library
mistakenly/maliciously) and
completeness (missing library)?

$ sbom generation tools

delete dpkg DB

“Unfortunately, some images – such as the official node image on Docker Hub –
incorrectly report the version of OpenSSL that's used by the Node.js runtime.”

https://www.chainguard.dev/unchained/mitigating-critical-openssl-vulnerability-with-chainguard

https://hub.docker.com/_/node

#BHUSA @BlackHatEvents

Knowledge Graph: Gene Granularity

Function
Level

f
f f

f
f

f

f

f f

F F

F
F

F

A
P

data

text

Segment
Level

Pa
ck

ag
e

(e
.g

.,
fo
o.
de
b)

Ar
ch

iv
e

(e
.g

.,
da
ta
.t
ar
.x
z)

File
Level

Fi
le

 (e
.g

.,
/u

sr
/b
in
/f
oo

)

23

P

AA

F

F

Ff f

f

FF

#BHUSA @BlackHatEvents

data

text

f f

f

Knowledge Graph: Gene Granularity

data
File
Level

Function
Level

Segment
Level

F

P

Pa
ck

ag
e

(e
.g

.,
fo
o.
de
b)

Ar
ch

iv
e

(e
.g

.,
da
ta
.t
ar
.x
z)

A

f f

f

A

F

f
f f

f
f

f

f

f f

F

F

F

F F

F
F

F

A
P

Fi
le

 (e
.g

.,
/u

sr
/b
in
/f
oo

)

24

#BHUSA @BlackHatEvents

Demo 2: SBOM generation for an unknown rpm package

Custom rpm package SBOM generated by Code Genome

Integrating with other SBOM analysis platforms

25

#BHUSA @BlackHatEvents

Knowledge Graph: Code Genome and Use Cases

Function File Package Container Device

Unknown

CVE-2020-13790
libjpeg-turbo

Backdoor

mozjpeg

find other
vulnerable code

detect backdoor

code classification

Code Genome KG

wget

26

#BHUSA @BlackHatEvents

Open Sourcing Code Genome

27

#BHUSA @BlackHatEvents

Status and Roadmap

Open-source tools
– Code Genome Framework

• GeneDiff, Basic KG, CLI tools, and GUI
• Currently supported

– Binaries: ELF, PE, Mach-O
– Architectures: x86, x86_64, arm, aarch64, mips, ppc

• Optimized canonicalization
– Jaudit

• JAR file support
• JAR version identification
• CVE annotation

Next steps
– Support

• Packages: deb, rpm, ipa
• Archives: ar, cpio, tar, bzip2, gzip, zstd, xz, rar, 7zip

28

https://github.com/code-genome

code-genome

git clone https://github.com/code-genome/codegenome.git
cd codegenome

make start

#BHUSA @BlackHatEvents

Takeaways

Semantic Gap

29

Code Metadata

Code Genome Supply Chain Security

Inherent sematic gap breaks the
transfer of trust from metadata to code

Now open-sourced Code Genome
Framework can help bridge that gap

Detection of XZ-backdoor demonstrates
framework’s capability in improving

supply chain security

#BHUSA @BlackHatEvents

Dhilung Kirat dkirat@us.ibm.com

Jiyong Jang jjang@us.ibm.com

IBM Research
github.com/code-genome

