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whoami

• Shachar Menashe

• Classically - Binary reverse engineer

• In practice - Full-time CVSS assigner :)

• Leading JFrog’s security research teams

• 0-day, CVE, malware research

• Presenting recent research from our 0-day team

• Ori Hollander, Natan Nehorai, Uriya Yavnieli
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Org High Value Targets
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This talk

• Breaking down MLOps platforms to distinct features

• How can each feature be attacked?

• Chaining MLOps attacks for total domination

• l33t “ML Worm” demo

• How to avoid these attacks



#BHUSA @BlackHatEvents

What can MLOps do for YOU
The ML software supply chain

Pretrained Model

ML Pipeline Model 

Registry

Model 

Serving
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What can MLOps do for YOU

ML Pipeline

Data Input Data Cleaning Pre-processing Model Training Deployment
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What can MLOps do for YOU
@dsl.pipeline(

name='XGBoost Trainer',
)
def xgb_train_pipeline(

output='gs://your-gcs-bucket',
project='your-gcp-project',
train_data='gs://ml-pipeline-playground/sfpd/train.csv',
eval_data='gs://ml-pipeline-playground/sfpd/eval.csv',

...
):
...

_analyze_op = dataproc_analyze_op(
).after(_create_cluster_op).set_display_name('Analyzer')

_transform_op = dataproc_transform_op(
).after(_analyze_op).set_display_name('Transformer')

_train_op = dataproc_train_op(
).after(_transform_op).set_display_name('Trainer’)

...
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What can MLOps do for YOU

CV_model 1.2

My_dev_model 0.1
ChatGPT 4.5
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What can MLOps do for YOU
Model Registry
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What can MLOps do for YOU

Embedding

Serving
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What can MLOps do for YOU

Embedding

Serving

$ kubectl apply -f - << END
apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: iris-model
namespace: seldon

spec:
name: iris
predictors:
- graph:

implementation: SKLEARN_SERVER
modelUri: gs://seldon-models/v1.19.0-dev/sklearn/iris
name: classifier

END

Model Serving / Model as a Service / Inference Server



#BHUSA @BlackHatEvents

What can MLOps do for YOU

Auxiliary features

(also, we didn’t break these yet ☺)

“Core” MLOps

• Pipelining / Training

• Model Registry

• Model Serving

• Dataset Registry

• Experiment tracking

• Model Evaluation
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Which frameworks were evaluated?
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Inherent vs. Implementation Vulns
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Inherent vs. Implementation Vulns
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Inherent vs. Implementation Vulns

But ML is a new field…
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Inherent – Malicious Models

(Some) Models are code!!!

Code execution on load

Pickle Dill Joblib Numpy TorchScript Keras H5

Protobuf SafetensorsTFLite

SavedModel

MsgPack PMML
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Inherent – Malicious Models

from keras.models import load_model
m = load_model('vgg16_light/tf_model.h5')
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Inherent – Malicious Datasets

• Datasets are just CSVs, right?

• Check your formats and APIs!
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Inherent – Malicious Datasets

from datasets import load_dataset
ds = load_dataset("hails/mmlu_no_train")
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Inherent – Malicious Datasets
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Inherent – Malicious Datasets

from datasets import load_dataset
ds = load_dataset("hails/mmlu_no_train")
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Inherent – Jupyter Sandbox Escape
Notebooks are invaluable for developing ML models
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Inherent – Jupyter Sandbox Escape
Simple DOM manipulation JS payload

• Add new code cell

• Fill cell with Python code

• Run the cell
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Inherent – Jupyter Sandbox Escape
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Inherent – Jupyter Sandbox Escape

So - just don’t run untrusted code in Jupyter, right?
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Inherent – Jupyter Sandbox Escape

from mlflow.recipes import Recipe
recipe = Recipe(profile="local").run()

recipe: "classification/v1"
target_col: "<script>alert('pwned!');</script>"

Data Scientist

Shady Server
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Inherent – Jupyter Sandbox Escape
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Let’s talk MLOps implementation issues

• Not inherent due to used formats

• Classic issues that are more likely to plague MLOps

• Or – cause heightened severity

• Unlike inherent, should have a CVE

• Spoiler – chains nicely with inherent issues
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Implementation – Lack of authentication

@dsl.pipeline(
name='XGBoost Trainer',

)
def xgb_train_pipeline(

output='gs://your-gcs-bucket',
project='your-gcp-project',
train_data='gs://ml-pipeline-playground/sfpd/train.csv',
eval_data='gs://ml-pipeline-playground/sfpd/eval.csv',

...
):
...

_analyze_op = dataproc_analyze_op(
).after(_create_cluster_op).set_display_name('Analyzer')

_transform_op = dataproc_transform_op(
).after(_analyze_op).set_display_name('Transformer')

_train_op = dataproc_train_op(
).after(_transform_op).set_display_name('Trainer’)

...

Pipeline AKA “Code execution as a feature”

Dockerized? Platform dependent

What about authentication?
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Implementation – Lack of authentication

Pipelines? Built-in Auth?
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Implementation – Lack of authentication

Ray, as stated in its documentation, is not intended for 
use outside of a strictly controlled network 
environment
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Implementation – Lack of authentication

Exposed to WAN No Auth RCE as a feature
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Implementation – Container escape
Container escape has heightened impact on MLOps platforms

Code execution is expected

Editing pipeline requires high privileges (?)

Code execution is a side-effect

Regular users can upload models
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Implementation – Container escape
Container escape has heightened impact on MLOps platforms

Lateral movement in organization

Access to other users’ resources 
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Implementation – Container escape

Upload malicious model
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Implementation – Container escape

Upload malicious model

“Best PyPI package 

for CV?”

“MyCoolRAT v99.9”

Other stuff™

Exfiltrate
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Implementation – Container escape
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Implementation – Still immature

• MLOps platforms are still fresh

• AI experts are NOT security experts

15 Critical

23 High

2 Critical

9 High

CVEs in the past 2 years

20 ML/AI CVEs 

13 different components

JFrog 2024 external disclosures
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Attacker’s view – Putting it all together
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Chain1 – Client-side malicious models

Org Network

Model RegistryModel Registry
Breach registry

No auth

Stored creds

Exploitation

Data Scientist

ML Inference

ML Pipeline

Infected ML Models

Request latest ML 

model

Data 

Scientist

Upload model

Request 

malicious 

model# Download & load model from HF
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("evildoer/badmodel")
model = AutoModelForCausalLM.from_pretrained("evildoer/badmodel")

# Fetch & load latest model version (mlflow example)
import mlflow.pyfunc
model_name = "some_model"
model_alias = "some_alias"
model = mlflow.pyfunc.load_model(model_uri=f"models:/{model_name}@{model_alias}")export MLFLOW_TRACKING_URI="http://10.90.120.74:1234"

export MLFLOW_TRACKING_USERNAME="data"
export MLFLOW_TRACKING_PASSWORD="science"
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Chain2 – Server-side malicious models

Org Network #1 / WAN

Inference Server

Serving 

Container

Upload malicious model

Org Network #2

Container Escape

CVE

Platform-specific
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Mapping features to attacks

MLOps Feature How to Exploit Post Exploitation
Known 

Victims

Model Registry

Dataset Registry

Model Serving

ML Pipeline

Lack of authentication

Stored credentials

CVE / 0-day

Client RCE 

(malicious model)

Server RCE 

(malicious model)

Server RCE 

(auth bypass)

Client RCE 

(malicious dataset)

Container Escape

Container Escape

Same as above
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DEMO TIME – Let’s exploit a 0-day*!

Model Registry

Remote PrivEsc

Data Scientist
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What about some good news?
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Data scientists rejoice! Jupyter XSSGuard
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Hugging Face Datasets safe by default
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Sound Bytes for deploying MLOps

• Using Pipelines / Model serving / Model registry?

• Check containerization

• Check and enable auth

• Models are code!

• Model serving privs == code execution privs

• Prefer working with safe model formats (ex. Safetensors)

• Brief anybody that loads ML models

• Scan models - picklescan

• Using Jupyter? Consider installing XSSGuard

• Org’s MLOps platform is a high value target!
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Thank you!
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