
#BHUSA @BlackHatEvents

How to Secure Unique Ecosystem
Shipping 1 Billion+ Cores?

Adam ‘pi3’ Zabrocki, Marko Mitic

#BHUSA @BlackHatEvents

/usr/bin/whoarewe

Adam ‘pi3’ Zabrocki:

• NVIDIA (currently – Director of Offensive Security)

• Leading Offensive Security Research efforts
• RISC-V (Vice-Chair of J-ext, author: PM, HW CFI, MTE,

more)

• Security architect for GPU and next-gen NVIDIA products

• Phrack author

• Bughunter (Hyper-V, KVM, RISC-V ISA, Intel uCode, Linux

kernel, FreeBSD, OpenSSH, Apache, gcc SSP/ProPolice,

more) – CVEs

• Creator and a developer of Linux Kernel Runtime Guard

(LKRG)

• Speaker at BlackHat, DEF CON, BSides, Confidence,

Open-Source Tech more

• The Pwnie Awards nominee (x2)

Private contact:

http://pi3.com.pl

pi3@pi3.com.pl
Twitter: @Adam_pi3

Marko Mitic

• Software Security Architect & System Software

Manager at NVIDIA

• Leads NVIDIA’s Core RISC-V team

• GPU Product Security & Risk Officer, PSIRT lead

Private contact:

markomitic.net

linkedin.com/markomitic
Twitter: @markomitic

http://pi3.com.pl/
mailto:pi3@pi3.com.pl
https://twitter.com/Adam_pi3
http://markomitic.net/
https://www.linkedin.com/in/markomitic/
https://www.linkedin.com/in/markomitic/
https://www.linkedin.com/in/markomitic/
https://x.com/markomitic

#BHUSA @BlackHatEvents

Why this talk?

#BHUSA @BlackHatEvents

Why this talk?

#BHUSA @BlackHatEvents

Why this talk?

#BHUSA @BlackHatEvents

Why this talk?

#BHUSA @BlackHatEvents

Why this talk?

“There is nothing hidden under the sun”

#BHUSA @BlackHatEvents

• Each NVIDIA chipset may include ~10-50 microcontrollers (MCUs)

• Function Level Controllers (e.g., Codecs, Memory Controllers, Chip2Chip Interfaces, more)

• Chip/System Level Control (e.g., Resource Management, PMU, Security, more)

• Data Processing including packet routing in networking

Why this talk?

#BHUSA @BlackHatEvents

• Each NVIDIA chipset may include ~10-50 microcontrollers (MCUs)

• Function Level Controllers (e.g., Codecs, Memory Controllers, Chip2Chip Interfaces, more)

• Chip/System Level Control (e.g., Resource Management, PMU, Security, more)

• Data Processing including packet routing in networking

• Legacy Falcon (internal proprietary RISC ISA) were difficult to scale

• Sufficient at that time… requirements and expectation changed

• Security layer needed to be updated to fulfill modern and future(!) expectations

Why this talk?

#BHUSA @BlackHatEvents

• Each NVIDIA chipset may include ~10-50 microcontrollers (MCUs)

• Function Level Controllers (e.g., Codecs, Memory Controllers, Chip2Chip Interfaces, more)

• Chip/System Level Control (e.g., Resource Management, PMU, Security, more)

• Data Processing including packet routing in networking

• Legacy Falcon (internal proprietary RISC ISA) were difficult to scale

• Sufficient at that time… requirements and expectation changed

• Security layer needed to be updated to fulfill modern and future(!) expectations

• NVIDIA chip must meet the demand

• Not only AI workloads is booming – NVIDIA processors are crucial

• Opportunity to redesign the ecosystem

• In secure manner that will be scalable in the future!

Why this talk?

#BHUSA @BlackHatEvents

Why RISC-V

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Performance

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Enable fast & flexible HW/SW co-design, custom extensions

Performance

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Enable fast & flexible HW/SW co-design, custom extensions

Performance

Layered security isolation primitives

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Enable fast & flexible HW/SW co-design, custom extensions

Performance

Layered security isolation primitives

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Enable fast & flexible HW/SW co-design, custom extensions

Performance

Layered security isolation primitives

Common configurable foundation for all MCUs across all products

#BHUSA @BlackHatEvents

Why RISC-V

Retire proprietary Falcon architecture

Enable fast & flexible HW/SW co-design, custom extensions

Performance

Common configurable foundation for all MCUs across all products

Scale up and out and build only for what is needed

Layered security isolation primitives

#BHUSA @BlackHatEvents
HW/SW Design IP Adoption

Turing

Ampere

Hopper

Blackwell

Rubin

Feynman

Security Hardening

~10-50 RISC-V cores per GPU

~1 Billion RISC-V cores shipping in 2024 NVIDIA chips

2018 2020 2022

Ada

2024

Performance & Scaling

RISC-V Cores & Apps in NVIDIA

#BHUSA @BlackHatEvents

From Silicon to Software: Foundational
elements for Secure Execution

#BHUSA @BlackHatEvents

• Memory Protection and Isolation

• Hardware Security Mitigations

• BootROM

• TEE

• (TEE) Operating Systems

• Formal Verification

• OSR

• …

• HW Root of Trust

• Secure Storage

• Crypto Accelerator

• Tamper Detection

• Crypto Libraries

• Key Management

• Secure Software Development Lifecycle

• …

From Silicon to Software: Foundational
elements for Secure Execution

#BHUSA @BlackHatEvents

• Memory Protection and Isolation

• Hardware Security Mitigations

• BootROM

• TEE

• (TEE) Operating Systems

• Formal Verification

• OSR

• …

• HW Root of Trust

• Secure Storage

• Crypto Accelerator

• Tamper Detection

• Crypto Libraries

• Key Management

• Secure Software Development Lifecycle

• …

From Silicon to Software: Foundational
elements for Secure Execution

#BHUSA @BlackHatEvents

RISCV Core
SW

Task Task

OS

U mode

S mode

M mode

PMA

PMP

Devices

Control Bus

Data Bus

Memory

I/O

IO-PMP

IO-PMP

NV MPU

M-mode SW

• Each mode has Control and Status Registers

(CSRs)

RISC-V Modes

Level Name Abbr.

0 User/Application U

1 Supervisor S

2 Hypervisor HS

3 Machine M

Supported Combinations of Modes

1 M

2 M. U

3 M, S, U

4 M, HS, (V)S, (V)U

RISC-V Intro – Privilege Modes

#BHUSA @BlackHatEvents

RISCV Core
SW

Task Task

OS

U mode

S mode

M mode

PMA

PMP

Devices

Control Bus

Data Bus

Memory

I/O

IO-PMP

IO-PMP

NV MPU

M-mode SW

• PMP – Physical Memory Protection

• IO-PMP – PMP for I/O and devices

• Ability to lock a region until reset

Locked Region

User Mode Context

(RWX)

Shared data

eXecute only

S-mode context

RISC-V Intro – Memory Protection

#BHUSA @BlackHatEvents

NVRISC-V

NV-RISCV

NV MPU

PMP

L1 Cache

Interrupt Controller

Trace Buffer

In-Circuit Debug

External Interrupt

Boot and Control
Registers

Local Control Plane

Local Data Plane

PMA

Examples of NVIDIA custom security extensions

Secure Debug with ICD

ROM memory protection extension

DCLS

ePMP (draft 0.7)

TBI/PM (Draft 0.7)

Secure I/0 (Exception on bus error)

Halt extension (via CSR)

NV Priv. level extension (via CSR)

NV-RISCV32 NV-RISCV64 NV-RVV

RV32I-MU

Multiplication
Compression
Float

RV64I-MSU

Multiplication
Compression
Float

Bit manipulation
Atomics

RV32I-MU

Multiplication
Compression
Float

Vector

In Order

Single Issue
1.8 CM/MHz
1.8 GHz

Out of Order

Dual Issue
5 CM/MHz
2 GHz

SMP

NV-RISCV32 +

vector extension
(1024-bit)

#BHUSA @BlackHatEvents

Peregrine

NVRISCV + Peripheral devices

Single and multi-core MCUs

RISC-V extensions may be present or not

Configurable peripherals (crypto, channels)

Cache and TCM sizes parameterized

Optional DCLS (Dual Core Lock Step)

Peregrine

Memory
System

Interrupt
Controller

TRNG Key Store Timer

NVRISCV Core

ICACHE DCACHE

ROM ITCM DTCM

DMA
RSA/
PKA

Engine

AES
Engine

Hashing
Engine

Local Data Plane

Local Control Plane Control
Plane

#BHUSA @BlackHatEvents

One Core Strategy – Peregrine Ecosystem

• Unified embedded HW and SW across all

NVIDIA products

Partitions

Separation Kernel

S
P

A
R

K

Confidential Compute vGPU

O
ff

s
e
c

Measurement &

Attestation
Power managementSecure Boot

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

DRM

Partition OS Baremetal Applications

or

NVRISCV SDK

#BHUSA @BlackHatEvents

One Core Strategy – Peregrine Ecosystem

• Unified embedded HW and SW across all

NVIDIA products

• Configurable architecture, easily adapted to

different products, features and deployments

• Uniform attack mitigations; In-depth offensive

security efforts investments

Separation Kernel

S
P

A
R

K

O
ff

s
e
c

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

or

Partitions

Confidential Compute vGPU

Measurement &

Attestation
Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

#BHUSA @BlackHatEvents

One Core Strategy – Peregrine Ecosystem

• Unified embedded HW and SW across all

NVIDIA products

• Configurable architecture, easily adapted to

different products, features and deployments

• Uniform attack mitigations; In-depth offensive

security efforts investments

• Partition architecture is the foundation for

running mixed-criticality applications on

NVRISCV

• Peregrine/NVIRSCV architecture foundation for

GPU SW Security

Separation Kernel

S
P

A
R

K

O
ff

s
e
c

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

or

Partitions

Confidential Compute vGPU

Measurement &

Attestation
Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

#BHUSA @BlackHatEvents

One Core Strategy – Peregrine Ecosystem

• Architectural flexibility: Great for innovation,

but there are still challenges

Separation Kernel

S
P

A
R

K

O
ff

s
e
c

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

or

Partitions

Confidential Compute vGPU

Measurement &

Attestation
Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

#BHUSA @BlackHatEvents

• Open-source and flexibility

• Despite undeniable advantages, there are drawbacks:

• Fragmentation

• Remediations: Profiles, RISC-V Foundation

• Not as mature SW ecosystem

• Remediations: RISC-V Dev Partners, Extension TG/SIG

• Profiles

• Addresses fragmentation but they may NOT be mutually compatible

• E.g., RVB23 != RVA23

• RVA profiles are trying to be backward compatible but there are caveats

• “Custom” extensions might be costly (contribute to RISC-V!)

• Your custom (private) extension may become incompatible with the officially ratified one

• New extension may solve your problem in a better (or not) way

• Custom HW means custom SW support

RISC-V challenges

#BHUSA @BlackHatEvents

NVRISC-V

Peregrine chiplet (packet)

NVRISC-V

How to secure this new execution environment?

Learn from the past (e.g., No ASLR).
Peregrine must consider inner-”outside” peregrines

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but…

NVRISC-V

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but… RISC-V did not support that (not at that time) :(

NVRISC-V

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but… RISC-V did not support that (not at that time) :(

• RISC-V Pointer Masking (PM) extension

• NVIDIA aimed to add HWASAN (and later MTE) to its RISC-V ecosystem

• Including M-mode (unusual), S-mode and U-mode support

• Bare mode support (unusual)

• With and without OS layer support

NVRISC-V

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but… RISC-V did not support that (not at that time) :(

• RISC-V Pointer Masking (PM) extension

• NVIDIA aimed to add HWASAN (and later MTE) to its RISC-V ecosystem

• Including M-mode (unusual), S-mode and U-mode support

• Bare mode support (unusual)

• With and without OS layer support

• We developed a custom extension and brought it to the RISC-V International (TEE group)

NVRISC-V

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but… RISC-V did not support that (not at that time) :(

• RISC-V Pointer Masking (PM) extension

• NVIDIA aimed to add HWASAN (and later MTE) to its RISC-V ecosystem

• Including M-mode (unusual), S-mode and U-mode support

• Bare mode support (unusual)

• With and without OS layer support

• We developed a custom extension and brought it to the RISC-V International (TEE group)

• Independently, Google was working on own “Pointer Masking”

NVRISC-V

#BHUSA @BlackHatEvents

• How to effectively find software vulnerabilities (the BIGGEST attack surface)?

• NVIDIA Offensive Security Research (OSR)

• Manual Vulnerability Research is a *must have* but not a sufficient neither a scalable solution

• Automatic vulnerability detection (fuzzing) is a crucial piece – how to increase the effectiveness?

• Address Sanitizers and instrumentation (code-coverage) can help but… RISC-V did not support that (not at that time) :(

• RISC-V Pointer Masking (PM) extension

• NVIDIA aimed to add HWASAN (and later MTE) to its RISC-V ecosystem

• Including M-mode (unusual), S-mode and U-mode support

• Bare mode support (unusual)

• With and without OS layer support

• We developed a custom extension and brought it to the RISC-V International (TEE group)

• Independently, Google was working on own “Pointer Masking”

• We decided to unite our use-cases and promote a single standard for all.

NVRISC-V

#BHUSA @BlackHatEvents

• RISC-V Pointer Masking extension

• Serves as a framework

• PM supported multiple use-cases:

• HWASAN (later a base for HW MTE)

• Pointer Authentication (PAC)

• HW Memory Sandboxing (PM introduced 2 CSRs: actual_address = (requested_address & ~mpmmask) | mpmbase

NVRISC-V

in-process memory sandbox

#BHUSA @BlackHatEvents

• RISC-V Pointer Masking extension

• Serves as a framework

• PM supported multiple use-cases:

• HWASAN (later a base for HW MTE)

• Pointer Authentication (PAC)

• HW Memory Sandboxing (PM introduced 2 CSRs: actual_address = (requested_address & ~mpmmask) | mpmbase

• Ratified version – HWASAN only + ISA integration

• Current equation for VA:

transformed_effective_address = {{PMLEN{effective_address[XLEN-PMLEN-1]}}, effective_address[XLEN-PMLEN-1:0]}

• Current equation for PA:

transformed_effective_address = {{PMLEN{0}}, effective_address[XLEN-PMLEN-1:0]}

• No new CSRs, PMLEN in *envcfg (2 bits, supports top 7 or 16 bits of masking)

NVRISC-V

in-process memory sandbox

#BHUSA @BlackHatEvents

• RISC-V Pointer Masking extension

• Serves as a framework

• PM supported multiple use-cases:

• HWASAN (later a base for HW MTE)

• Pointer Authentication (PAC)

• HW Memory Sandboxing (PM introduced 2 CSRs: actual_address = (requested_address & ~mpmmask) | mpmbase

• Ratified version – HWASAN only + ISA integration

• Current equation for VA:

transformed_effective_address = {{PMLEN{effective_address[XLEN-PMLEN-1]}}, effective_address[XLEN-PMLEN-1:0]}

• Current equation for PA:

transformed_effective_address = {{PMLEN{0}}, effective_address[XLEN-PMLEN-1:0]}

• No new CSRs, PMLEN in *envcfg (2 bits, supports top 7 or 16 bits of masking)

• RISC-V included PM as part of the profiles!

NVRISC-V

in-process memory sandbox

• RVA23:
• Supm, Ssnpm – mandatory for RVA23S64
• Sspm – optional for RVA23S64

• RVB23:
• Supm – optional for RVB23U64
• Ssnpm and Sspm – optional for RVB23S64

#BHUSA @BlackHatEvents

• RISC-V Pointer Masking extension

• 4+ years of work

• Pointer Masking – umbrella for 5 extensions

• Split per priv-level:

• Ssnpm – A supervisor-level extension for the next lower privilege

• Smnpm – A machine-level extension for the next lower privilege

• Smmpm – A machine-level extension for M-mode

• Additionally, 2 extensions describing an execution environment – no bearing on HW implementations.

• Sspm – PM support available in supervisor mode

• Supm – PM support available in user mode

• SW ecosystem got support for it

• LLVM/GCC compilers, binutils, Linux kernel, Qemu, SPIKE, SAIL and more

• We added HWASAN support for NVIDIA SW ecosystems

NVRISC-V

• Fuzzing GSP firmware (under Partition OS)
• Preparing to fuzz bare-metal microcode
• More in progress

• Fuzzing RM
• Preparing to fuzz firmware under RTOS

#BHUSA @BlackHatEvents

• RISC-V Pointer Masking extension

• 4+ years of work

• Pointer Masking – umbrella for 5 extensions

• Split per priv-level:

• Ssnpm – A supervisor-level extension for the next lower privilege

• Smnpm – A machine-level extension for the next lower privilege

• Smmpm – A machine-level extension for M-mode

• Additionally, 2 extensions describing an execution environment – no bearing on HW implementations.

• Sspm – PM support available in supervisor mode

• Supm – PM support available in user mode

• SW ecosystem got support for it

• LLVM/GCC compilers, binutils, Linux kernel, Qemu, SPIKE, SAIL and more

• We added HWASAN support for NVIDIA SW ecosystems

NVRISC-V

• Fuzzing GSP firmware (under Partition OS)
• Preparing to fuzz bare-metal microcode
• More in progress

• Fuzzing RM
• Preparing to fuzz firmware under RTOS

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

NVRISC-V

…

0x12345678

0xdeadbeef

0x87654320

0xabadbabe

0xaabbccd0

…

0x12345678

…

…

0x12345678:
pop %rcx <--- %rcx = 0xdeadbeef
ret

…

0x87654320:
pop %rax <--- %rax = 0xabadbabe
ret

…

0xaabbccd0:
mov (%rax),%rcx
ret ^----- *0xabadbabe = 0xdeadbeef

…
pop %r8 <--- %rax = 0x12345678
jmp *%r8

…

Fake stack

Original stack

…

Function 1

Legit value

Function 2

Legit value

…

Function N

Legit value

…

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfiss – Control Flow Integrity Shadow Stack

• Enforces backward-edge control flow integrity

• Creates a new region “shadow stack” which keeps a copy of RA only

• New reg (SSP) and instructions for “shadow stack” management

• Preserves the original stack ABI

• Before return, the RA is verified against the “shadow stack” copy

• Function can only return to its original caller

• If verification failed, SW-check exception is raised – “Shadow Stack Fault (code=3)”

NVRISC-V

…

0x12345678

0xdeadbeef

0x87654320

0xabadbabe

0xaabbccd0

…

0x12345678

…

…

0x12345678:
pop %rcx <--- %rcx = 0xdeadbeef
ret

…

0x87654320:
pop %rax <--- %rax = 0xabadbabe
ret

…

0xaabbccd0:
mov (%rax),%rcx
ret ^----- *0xabadbabe = 0xdeadbeef

…
pop %r8 <--- %rax = 0x12345678
jmp *%r8

…

Original stack

…

Function 1

Legit value

Function 2

Legit value

…

Function N

Legit value

…

Shadow stack

…

Function 1

Function 2

…

Function N

…

Fake stack

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfiss – Control Flow Integrity Shadow Stack

• Enforces backward-edge control flow integrity

• Creates a new region “shadow stack” which keeps a copy of RA only

• New reg (SSP) and instructions for “shadow stack” management

• Preserves the original stack ABI

• Before return, the RA is verified against the “shadow stack” copy

• Function can only return to its original caller

• If verification failed, SW-check exception is raised – “Shadow Stack Fault (code=3)”

NVRISC-V

…

0x12345678

0xdeadbeef

0x87654320

0xabadbabe

0xaabbccd0

…

0x12345678

…

…

0x12345678:
pop %rcx <--- %rcx = 0xdeadbeef
ret

…

0x87654320:
pop %rax <--- %rax = 0xabadbabe
ret

…

0xaabbccd0:
mov (%rax),%rcx
ret ^----- *0xabadbabe = 0xdeadbeef

…
pop %r8 <--- %rax = 0x12345678
jmp *%r8

…

Original stack

…

Function 1

Legit value

Function 2

Legit value

…

Function N

Legit value

…

Shadow stack

…

Function 1

Function 2

…

Function N

…

Fake stack

==?

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfilp – Control Flow Integrity Landing Pads

• Enforces forward-edge control flow integrity

• Indirect branch *must* be a landing pad instruction (LPAD)

• 20-bit encoded label instruction

• Each hart maintains an expected landing pad (ELP) state

• If ELP == LP_EXPECTED a SW exception is raised if

• PC of next instruction is not 4-bytes aligned or is not an LPAD

• A label does not match the expected landing pad label in bits 31:12 of the x7 register

• If verification failed, SW-check exception is raised – “Landing Pad Fault (code=2)”

NVRISC-V

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfilp – Control Flow Integrity Landing Pads

• Enforces forward-edge control flow integrity

• Indirect branch *must* be a landing pad instruction (LPAD)

• 20-bit encoded label instruction

• Each hart maintains an expected landing pad (ELP) state

• If ELP == LP_EXPECTED a SW exception is raised if

• PC of next instruction is not 4-bytes aligned or is not an LPAD

• A label does not match the expected landing pad label in bits 31:12 of the x7 register

• If verification failed, SW-check exception is raised – “Landing Pad Fault (code=2)”

NVRISC-V

…

Function_A:
…

lw x5, 4(sp) # Load pointer to Function_B
lui x7, 0xABCDE # Set Label
jalr ra, x5 # indirect branch to Function_B

…

…

Function_B:
lpad 0xABCDE
lui
jalr

…
ecall

…
Function_C:

lpad 0xAB123
…

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfilp – Control Flow Integrity Landing Pads

• Enforces forward-edge control flow integrity

• Indirect branch *must* be a landing pad instruction (LPAD)

• 20-bit encoded label instruction

• Each hart maintains an expected landing pad (ELP) state

• If ELP == LP_EXPECTED a SW exception is raised if

• PC of next instruction is not 4-bytes aligned or is not an LPAD

• A label does not match the expected landing pad label in bits 31:12 of the x7 register

• If verification failed, SW-check exception is raised – “Landing Pad Fault (code=2)”

NVRISC-V

…

Function_A:
…

lw x5, 4(sp) # Load pointer to Function_B
lui x7, 0xABCDE # Set Label
jalr ra, x5 # indirect branch to Function_B

…

…

Function_B:
lpad 0xABCDE
lui
jalr

…
ecall

…
Function_C:

lpad 0xAB123
…

• CFI as part of the RISC-V profiles

• SW ecosystem got support for it
• LLVM/GCC, binutils, Linux kernel, Qemu, more

• We are adding SW support for CFI
• We are committed to bringing CFI support for

HW and SW in “Rubin” chips (GR20x)
• We are considering adding “Zicfiss” to M-mode

#BHUSA @BlackHatEvents

• RISC-V Control Flow Integrity (CFI) extension

• CFI tries to protect against code reuse attacks (e.g., ret2libc, ROP, COP/JOP, etc)

• CFI is actually 2 sub-extensions

• Zicfilp – Control Flow Integrity Landing Pads

• Enforces forward-edge control flow integrity

• Indirect branch *must* be a landing pad instruction (LPAD)

• 20-bit encoded label instruction

• Each hart maintains an expected landing pad (ELP) state

• If ELP == LP_EXPECTED a SW exception is raised if

• PC of next instruction is not 4-bytes aligned or is not an LPAD

• A label does not match the expected landing pad label in bits 31:12 of the x7 register

• If verification failed, SW-check exception is raised – “Landing Pad Fault (code=2)”

NVRISC-V

…

Function_A:
…

lw x5, 4(sp) # Load pointer to Function_B
lui x7, 0xABCDE # Set Label
jalr ra, x5 # indirect branch to Function_B

…

…

Function_B:
lpad 0xABCDE
lui
jalr

…
ecall

…
Function_C:

lpad 0xAB123
…

• CFI as part of the RISC-V profiles

• SW ecosystem got support for it
• LLVM/GCC, binutils, Linux kernel, Qemu, more

• We are adding SW support for CFI
• We are committed to bringing CFI support for

HW and SW in “Rubin” chips (GR20x)
• We are considering adding “Zicfiss” to M-mode

#BHUSA @BlackHatEvents

• (NV)RISC-V extensions – what’s next?

• RISC-V Memory Tagging extension (MTE)

• RISC-V CFI M-mode Shadow Stack sub-extension

• RISC-V Hardware Fault Isolation (HFI)

NVRISC-V

#BHUSA @BlackHatEvents

• (NV)RISC-V extensions – what’s next?

• RISC-V Memory Tagging extension (MTE)

• Hardware-assisted Memory Tagging – addresses performance issues with HWASAN

• We are actively contributing to RISC-V MTE. Beta spec released in June 2025.

• NVRISC-V ecosystem (HW and SW) support when ratified

• RISC-V CFI M-mode Shadow Stack sub-extension

• RISC-V Hardware Fault Isolation (HFI)

NVRISC-V

#BHUSA @BlackHatEvents

• (NV)RISC-V extensions – what’s next?

• RISC-V Memory Tagging extension (MTE)

• RISC-V CFI M-mode Shadow Stack sub-extension

• CFI Shadow Stack (Zicfiss) is not defined for M-mode

• NVIDIA and RISC-V are working on Zicfiss for M-mode to enhance protection of the critical M-mode SW.

• Landing Pads (Zicfilp) is defined for all modes (include M-mode) already

• RISC-V Hardware Fault Isolation (HFI)

NVRISC-V

#BHUSA @BlackHatEvents

• (NV)RISC-V extensions – what’s next?

• RISC-V Memory Tagging extension (MTE)

• RISC-V CFI M-mode Shadow Stack sub-extension

• RISC-V Hardware Fault Isolation (HFI)

• Addresses in-process Memory Sandbox

• No TG yet

• We are evaluating benefits of bringing HFI sandbox to our SW ecosystem (Partition OS, Separation Kernel)

• HFI introduce a user-mode concept of memory regions. Any access “outside” of the predefined region generates a trap.

NVRISC-V

0 base1 base2 ... … baseN 2^64

Base, length, attributes

Base, length, attributes

Base, length, attributes

.

.

.

hfi_enter

hfi_set_region

hfi_exit

#BHUSA @BlackHatEvents

• (NV)RISC-V extensions – what’s next?

• RISC-V Memory Tagging extension (MTE)

• RISC-V CFI M-mode Shadow Stack sub-extension

• RISC-V Hardware Fault Isolation (HFI)

• Additional areas of interest:

• Post Quantum Cryptography (PQC)

• Side-channel protection / hardening

• CHERI

• Enhanced Hardware Fault Injection protection

NVRISC-V

Building the Secure Software Foundation on
RISC-V

#BHUSA @BlackHatEvents

Peregrine / NVRISCV Multi-Partition Software
Architecture

Partition

Task Task

Partition OS

Supervisor RT

Partition

Supervisor RT

Baremetal app

U-mode

S-mode

M-mode
Separation Kernel

Hardware

BootROM

Partition

Policies

Manifest

• Multiple Independent Levels of Security/Safety (MILS)

architecture

#BHUSA @BlackHatEvents

Partition

Task Task

Partition OS

Supervisor RT

Partition

Supervisor RT

Baremetal app

U-mode

S-mode

M-mode
Separation Kernel

Hardware

BootROM

Partition

Policies

Manifest

• Multiple Independent Levels of Security/Safety (MILS)

architecture

• Fine-grained access control to HW defined by

manifest and partition policies

uC SW Privilege

Partition
Privilege

Task
Privilege

Partition
Privilege Task

Privilege

Peregrine / NVRISCV Multi-Partition Software
Architecture

#BHUSA @BlackHatEvents

Partition

Task Task

Partition OS

Supervisor RT

Partition

Supervisor RT

Baremetal app

U-mode

S-mode

M-mode
Separation Kernel

Hardware

BootROM

Partition

Policies

Manifest

• Multiple Independent Levels of Security/Safety (MILS)

architecture

• Fine-grained access control to HW defined by

manifest and partition policies

• Partition is defined by partition configurations – partition policies

• Manifest and policies are signed static configuration sets

uC SW Privilege

Partition
Privilege

Task
Privilege

Partition
Privilege Task

Privilege

Peregrine / NVRISCV Multi-Partition Software
Architecture

#BHUSA @BlackHatEvents

Foundation for running mixed-criticality
applications

Separation Kernel

Policy 0 Policy 1 Policy N…

Manifest BootROM

Peregrine
Peripherals

Engine MMIO

External MMIO

Memory

Active Partition
S/U Mode

Hardware
Access

Controls
…

Partition OS

Task Task

Partition 0 Partition N

Baremetal
app

Partition OS

Task Task

SBI SBI SBI SBI

• All information flow in/out partitions is

access controlled

#BHUSA @BlackHatEvents

Foundation for running mixed-criticality
applications

Separation Kernel

Policy 0 Policy 1 Policy N…

Manifest BootROM

Peregrine
Peripherals

Engine MMIO

External MMIO

Memory

Active Partition
S/U Mode

Hardware
Access

Controls
…

Partition OS

Task Task

Partition 0 Partition N

Baremetal
app

Partition OS

Task Task

SBI SBI SBI SBI

• All information flow in/out partitions is

access controlled

• Separation Kernel (not a Hypervisor):

• Controls what HW is exposed to partition

• Does not abstract HW

• Small and formally verified to be free of runtime

errors

#BHUSA @BlackHatEvents

NVIDIA’s custom RISC-V extensions to enforce
secure boot

• Immutable BootROM
Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

#BHUSA @BlackHatEvents

• Immutable BootROM

• mromprot (NV extension), XOM

Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

NVIDIA’s custom RISC-V extensions to enforce
secure boot

#BHUSA @BlackHatEvents

• Immutable BootROM

• mromprot (NV extension), XOM

• No return address spill on stack

Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

NVIDIA’s custom RISC-V extensions to enforce
secure boot

#BHUSA @BlackHatEvents

• Immutable BootROM

• mromprot (NV extension), XOM

• No return address spill on stack

• External MMIO Lockdown

Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

NVIDIA’s custom RISC-V extensions to enforce
secure boot

#BHUSA @BlackHatEvents

• Immutable BootROM

• mromprot (NV extension), XOM

• No return address spill on stack

• External MMIO Lockdown

• DEF CON 29: “Glitching RISC-V chips:

MTVEC corruption for hardening ISA”

Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

NVIDIA’s custom RISC-V extensions to enforce
secure boot

#BHUSA @BlackHatEvents

• Immutable BootROM

• mromprot (NV extension), XOM

• No return address spill on stack

• External MMIO Lockdown

• DEF CON 29: “Glitching RISC-V chips:

MTVEC corruption for hardening ISA”

• DCLS

Dual Core Lock Step (DCLS)

NVRISCV
Partition

Task Task

Partition OS

Supervisor RT

U mode

S mode

M mode

PMA

PMP

Lockdown

Devices
Crypto Engine

BootROM TCM

DRAM

Control Bus

Data Bus

External

Memory

I/O

Device Map

IO-PMP

Secret Control

Debug control

BootROM
Separation

Kernel

NV MPU

Compare

Main Core

Shadow Core

n-cycle-delay

PC

PC

Compare

Main Core

Shadow Core

n-cycle-delay

PC

PC

ROB

ROB

Error Error

Glitch!

NVIDIA’s custom RISC-V extensions to enforce
secure boot

#BHUSA @BlackHatEvents

Language-based security: formally verified
components

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

Language-based security: formally verified
components

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Language-based security: formally verified
components

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Language-based security: formally verified
components

Procedure Do_Operation(X : in out Integer; Y : in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Language-based security: formally verified
components

Procedure Do_Operation(X : in out Integer; Y : in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

begin

X := X - V;

Y := Y + V;

end Do_Operation;

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Ada/SPARK Code with Contracts

(Preconditions, Postconditions, etc.)

Static Analysis

Converts code/contracts to logical statements

SMT Solver (Z3, Alt-Ergo, CVC5)

(Automatic mathematical proofs)

Verification Conditions (VCs)

(Logical mathematical claims)

Proof successful

Manual intervention

(Improve assertions,

code refactor, etc.)

Language-based security: formally verified
components

Procedure Do_Operation(X : in out Integer; Y : in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

begin

X := X - V;

Y := Y + V;

end Do_Operation;

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Start with requirements

Write/Refine Specification (.ads)

- Add contracts (pre, post, invariants)

Run GNATprove

- Prove properties using static analysis

Write/Refine Implementation (.adb)

- Implement to meet the specified contracts

All proofs succeed

→ Component is verified

GNATprove reports issues

→ Analyze & refine

spec/code

Analyze Results

Language-based security: formally verified
components

Procedure Do_Operation(X : in out Integer; Y : in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

begin

X := X - V;

Y := Y + V;

end Do_Operation;

#BHUSA @BlackHatEvents

• Tests can only prove bugs exist, not that they don’t

• SPARK uses contracts and formal verification to prove whole

classes of bugs cannot happen

Tested Procedure

Proven Procedure

Preconditions

are tested

Postconditions

are proven

Proven Procedure

Tested Procedure

Preconditions

are proven

Postconditions

are tested

Start with requirements

Write/Refine Specification (.ads)

- Add contracts (pre, post, invariants)

Run GNATprove

- Prove properties using static analysis

Write/Refine Implementation (.adb)

- Implement to meet the specified contracts

All proofs succeed

→ Component is verified

GNATprove reports issues

→ Analyze & refine

spec/code

Analyze Results

Language-based security: formally verified
components

Procedure Do_Operation(X : in out Integer; Y : in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

begin

X := X - V;

Y := Y + V;

end Do_Operation;

#BHUSA @BlackHatEvents

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

• Why not do all this with C, Ada, Rust..?

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Machine states

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Correct States

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

Ada

C

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Correct States

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

Ada

C

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Correct States
SPARK

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

Ada

C

Correct States
SPARK

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Language states

Machine states

Ada

C

Correct States
SPARK

*What is Safety-Critical Software, and How Can Ada and SPARK Help?

Tested Procedure

Proven Procedure

Preconditions

are tested

Postconditions

are proven

Proven Procedure

Tested Procedure

Preconditions

are proven

Postconditions

are tested

Procedure Do_Operation(X : in out Integer; Y :

in out Integer; V : in Integer)

Precondition:

V > 0

X >= V

Postcondition:

X = X'Old - V

Y = Y'Old + V

Language-based security: formally verified
components

https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK
https://www.youtube.com/watch?v=auhxFAdzlck&list=PLG6bbI1sP9-KoIWPb6cVSVI8Jbd6uoDBK

#BHUSA @BlackHatEvents

Foundation for running mixed-criticality
applications

• Partitions are isolated execution environments

where applications run

• Core SW formally verified to be free of runtime

errors (AoRTE)

Separation Kernel

S
P

A
R

K

O
ff

s
e
c

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

or

Partitions

Confidential Compute vGPU

Measurement &

Attestation
Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

#BHUSA @BlackHatEvents

• Partitions are isolated execution environments

where applications run

• Core SW formally verified to be free of runtime

errors (AoRTE)

• Hardware never speculates past privilege mode switch

• Hardware never speculates past CSR read

• Speculative D cache refill is disabled

• Branch predictor partitioned between privilege modes

Separation Kernel

S
P

A
R

K

O
ff

s
e
c

BootROM

Peregrine IP

RISC-V Core(s)

Boot Plugin

or

Partitions

Confidential Compute vGPU

Measurement &

Attestation
Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

Foundation for running mixed-criticality
applications

#BHUSA @BlackHatEvents

Practical takeaways from designing and
deploying a billion-core secure system

• Think Holistically

• HW/SW Co-Design is a must

• Standardize When You Can, Innovate When You Must

• Memory Safety is a Hardware Problem Too

• No Silver Bullets – Layered Defense is Essential

Partitions

Core/Boot SW

S
P

A
R

K

Confidential

Compute
vGPU

O
ff

s
e
c

Measurement &

Attestation Power managementSecure Boot

DRM

Partition OS Baremetal Applications

NVRISCV SDK

Peregrine IP

#BHUSA @BlackHatEvents

• Hardware extensions are not enough

• The BIGGEST attack surface is software

• HW and SW must cooperate to create a secure ecosystem (HW CFI, MTE, HFI, more)

Lessons learned

#BHUSA @BlackHatEvents

• Hardware extensions are not enough

• The BIGGEST attack surface is software

• HW and SW must cooperate to create a secure ecosystem (HW CFI, MTE, HFI, more)

• Formally verified languages (like Ada/SPARK) and memory safe languages (like Rust) are great!

• Significant security ROI but costs are substantial

• It is likely to have “hybrid” software for a while

• Non-memory safety vulnerabilities still exist and affect both type of languages

• DefCon 30: Adam Zabrocki, Alex Tereshkin - Exploitation in the era of Formal Verification
https://www.youtube.com/watch?v=TcIaZ9LW1WE

Lessons learned

https://www.youtube.com/watch?v=TcIaZ9LW1WE

#BHUSA @BlackHatEvents

• Hardware extensions are not enough

• The BIGGEST attack surface is software

• HW and SW must cooperate to create a secure ecosystem (HW CFI, MTE, HFI, more)

• Formally verified languages (like Ada/SPARK) and memory safe languages (like Rust) are great!

• Significant security ROI but costs are substantial

• It is likely to have “hybrid” software for a while

• Non-memory safety vulnerabilities still exist and affect both type of languages

• DefCon 30: Adam Zabrocki, Alex Tereshkin - Exploitation in the era of Formal Verification
https://www.youtube.com/watch?v=TcIaZ9LW1WE

• Creating innovative ecosystems demands a forward-thinking mindset:

• Flexibility should support adaptation to ecosystem evolution forecasting in both HW and SW

• Something which is not a problem today, can be a critical vulnerability tomorrow (e.g., side channels)

• Being part of various initiatives/organizations is important

• It helps identify industry trends and make informed predictions, even if the signals aren't always obvious.

• Scalability, flexibility, performance, reliability and security should be considered collectively, not separately.

• Hybrid attacks (not just pure SW or pure HW) are likely to be rising (Rowhammer, speculative execution, etc.)

Lessons learned

https://www.youtube.com/watch?v=TcIaZ9LW1WE

#BHUSA @BlackHatEvents

Q&A

Private contact:

http://pi3.com.pl

pi3@pi3.com.pl
Twitter: @Adam_pi3

Marko Mitic

Private contact:

markomitic.net

linkedin.com/markomitic

Twitter: @markomitic

Adam ‘pi3’ Zabrocki

http://pi3.com.pl/
mailto:pi3@pi3.com.pl
https://twitter.com/Adam_pi3
http://markomitic.net/
https://www.linkedin.com/in/markomitic/
https://x.com/markomitic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Why RISC-V
	Slide 12: Why RISC-V
	Slide 13: Why RISC-V
	Slide 14: Why RISC-V
	Slide 15: Why RISC-V
	Slide 16: Why RISC-V
	Slide 17: Why RISC-V
	Slide 18: Why RISC-V
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: NVRISC-V
	Slide 26: Peregrine
	Slide 27: One Core Strategy – Peregrine Ecosystem
	Slide 28: One Core Strategy – Peregrine Ecosystem
	Slide 29: One Core Strategy – Peregrine Ecosystem
	Slide 30: One Core Strategy – Peregrine Ecosystem
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Peregrine / NVRISCV Multi-Partition Software Architecture
	Slide 58: Peregrine / NVRISCV Multi-Partition Software Architecture
	Slide 59: Peregrine / NVRISCV Multi-Partition Software Architecture
	Slide 60: Foundation for running mixed-criticality applications
	Slide 61: Foundation for running mixed-criticality applications
	Slide 62: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 63: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 64: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 65: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 66: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 67: NVIDIA’s custom RISC-V extensions to enforce secure boot
	Slide 68: Language-based security: formally verified components
	Slide 69: Language-based security: formally verified components
	Slide 70: Language-based security: formally verified components
	Slide 71: Language-based security: formally verified components
	Slide 72: Language-based security: formally verified components
	Slide 73: Language-based security: formally verified components
	Slide 74: Language-based security: formally verified components
	Slide 75: Language-based security: formally verified components
	Slide 76: Language-based security: formally verified components
	Slide 77: Language-based security: formally verified components
	Slide 78: Language-based security: formally verified components
	Slide 79: Language-based security: formally verified components
	Slide 80: Language-based security: formally verified components
	Slide 81: Language-based security: formally verified components
	Slide 82: Language-based security: formally verified components
	Slide 83: Language-based security: formally verified components
	Slide 84: Foundation for running mixed-criticality applications
	Slide 85: Foundation for running mixed-criticality applications
	Slide 86: Practical takeaways from designing and deploying a billion-core secure system
	Slide 87
	Slide 88
	Slide 89
	Slide 90

