
#BHEU @BlackHatEvents

#BHEU @BlackHatEvents

HODOR: Reducing Attack Surface on
Node.js via System Call Limitation

Speakers: Wenya Wang, Xingwei Lin

Contributors: Wenya Wang, Xingwei Lin, Jingyi Wang, Wang Gao, Dawu GuM

#BHEU @BlackHatEvents
Information Classification: General

Agenda

• Introduction

• Previous work & Remaining challenges

• HODOR: system call level protection system for Node.js applications

• Evaluation

• Conclusion & Takeaways

3

#BHEU @BlackHatEvents
Information Classification: General

Node.js is an open-source, cross-platform JavaScript

runtime environment.

✓Asynchronous and Event-Driven

✓Single-Threaded

✓Cross-Platform

✓NPM (Node Package Manager)

✓ JavaScript Everywhere

Node.js

Netflix

LinkedIn

Uber

Paypal

Walmart

Microsoft

Yahoo

Ebay

4

#BHEU @BlackHatEvents
Information Classification: General

Node.js

architecture
✓ Node.js Applications (JS)
✓ Built-in Module Layer (JS)
✓ Binding Module Layer (C++)
✓ Dependency Module Layer (C)

5

#BHEU @BlackHatEvents
Information Classification: General

➢NPM is a package
manager with over 1 million
packages →The key to the
success of Node.js

➢19.63% of packages in the
NPM ecosystem depend
on vulnerable packages,
such as gadget chain
attacks, inject-related
attacks, and supply chain
attacks. → Most of them
may lead to ACE attacks.

➢Arbitrary Command/Code
Execution: the attackers
can perform arbitrary
dangerous critical
operations

• mail `cat / etc /passwd`
• mail `nc −l −e /bin/bash

8001`
• mail `su root`
• …

Motivation

Growl Application (v1.8.0)

6

#BHEU @BlackHatEvents
Information Classification: General

Agenda

• Introduction

• Previous work & Remaining challenges

• HODOR: system call level protection system for Node.js applications

• Evaluation

• Conclusion & Takeaways

7

#BHEU @BlackHatEvents
Information Classification: General

How to reduce the attack surface of
ACE attacks for Node.js applications?

8

#BHEU @BlackHatEvents
Information Classification: General

How to reduce the attack surface of
ACE attacks for Node.js applications?
Threat Model
✓ Consider an attacker with ACE ability

✓ Not considered: preventing ACE, code vulnerabilities in binding layer/dependency layer,

race condition, DOS attack, etc

9

#BHEU @BlackHatEvents
Information Classification: General

Existing Works: Software Debloating
• Use program analysis to cut the useless code

✓ (USENIX Sec’19) RAZOR: A Framework for Post-deployment Software Debloating
✓ (USENIX Sec’19) Less is More: Quantifying the Security Benefits of Debloating Web Applications
✓ (Usenix Sec’20) Slimium: Debloating the Chromium Browser with Feature Subsetting
✓ (RAID’20) Mininode: Reducing the Attack Surface of Node.js Application

What is software debloating? (educative.io)

10

https://www.educative.io/answers/what-is-software-debloating

#BHEU @BlackHatEvents
Information Classification: General

Existing Works: System Call Limitation
• Restrict the system calls that can be used by the application

✓ (USENIX Sec’20) Temporal System Call Specialization for Attack Surface Reduction

✓ (RAID’20) Confine: Automated System Call Policy Generation for Container Attack Surface Reduction
✓ (RAID’20) sysfilter: Automated System Call Filtering for Commodity Software
✓ (PLDI’20) BlankIt Library Debloating Getting What You Want Instead of Cutting What You Don’t
✓ (USENIX Sec’21) Saphire: Sandboxing PHP Applications with Tailored System Call Allowlists

11

#BHEU @BlackHatEvents
Information Classification: General

Remaining Challenges
1. Cross-language mapping requirement

✓ JS code layer & C/C++ code layer
2. Integration with Node.js framework

✓ Node.js runs in a single process that creates two kinds of threads.

https://medium.com/preezma/node-js-event-loop-architecture-go-
deeper-node-core-c96b4cec7aa4

12

#BHEU @BlackHatEvents
Information Classification: General

Problem Formulation
• The number of all system calls provided by the system:

• The number of system calls in the whitelist:

• The degree of attack surface reduction in the system call level:

Goal: minimize the attack surface in the system call level to prevent malicious critical operations,

while not affecting the application’s normal execution

13

#BHEU @BlackHatEvents
Information Classification: General

Agenda

• Introduction

• Previous work & Remaining challenges

• HODOR: system call level protection system for Node.js applications

• Evaluation

• Conclusion & Takeaways

14

#BHEU @BlackHatEvents
Information Classification: General

Our approach: Hodor

A lightweight runtime protection system.

15

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction
➢ JS > complement missing nodes/edges/syscall

✓ Code features of built-in methods

• [1,2,3].map(x => x * 2);

• fs.readFile(filename, CallbackFunc);

✓ Dynamic Analysis Refiner
• let sum = new Function(’a’,’b’,’return a+b’);

• eval(“sum()”);

✓ Dynamic Command Execution
• child_process.exec(“touch new file”);

16

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction
➢ JS > complement missing nodes/edges/syscall

✓ Code features of built-in methods
• [1,2,3].map(x => x * 2);

• fs.readFile(filename, CallbackFunc);

✓ Dynamic Analysis Refiner
• let sum = new Function(’a’,’b’,’return a+b’);

• eval(“sum()”);

✓ Dynamic Command Execution
• child_process.exec(“touch new file”);

17

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction
➢ JS > complement missing nodes/edges/syscall

✓ Code features of built-in methods
• [1,2,3].map(x => x * 2);

• fs.readFile(filename, callbackFunc);

✓ Dynamic Analysis Refiner
• let sum = new Function(’a’,’b’,’return a+b’);

• eval(“sum()”);

✓ Dynamic Command Execution
• child_process.exec(“touch new file”);

18

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction
➢ JS > complement missing nodes/edges/syscall

✓ Code features of built-in methods
• [1,2,3].map(x => x * 2);

• fs.readFile(filename, callbackFunc);

✓ Dynamic Analysis Refiner
• let sum = new Function(’a’,’b’,’return a+b’);

• eval(“sum()”);

✓ Dynamic Command Execution
• child_process.exec(“touch new file”);

➢ Implementation
✓ Reimplement JAM and add in proposed optimizations

• ISSTA’21 Modular call graph construction for security scanning of node.js applications

✓ Combine dynamic call graph tool Nodeprof and Linux strace utility

19

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction

➢ C/C++ call graph > eliminate non-existing
nodes/edges

✓ Partial context-aware analysis for switch-case
statement & function pointer parameter

20

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction

➢ C/C++ call graph > eliminate non-existing
nodes/edges

✓ Partial context-aware analysis for switch-case
statement & function pointer parameter

21

#BHEU @BlackHatEvents
Information Classification: General

Step 1: Call Graph Construction

➢ C/C++ call graph > eliminate non-existing
nodes/edges

✓ Partial context-aware analysis for switch-case
statement & function pointer parameter

➢ Implementation

✓ clang with wllvm > llvm link > SVF ++

22

#BHEU @BlackHatEvents
Information Classification: General

Step 2: Mapping Builder
➢ We build call graph traversal for call graphs of the

Node.js application layer, Binding Module layer, and
Dependency layer.

➢ We build LLVM Pass for the Built-in Module layer.

➢ We get mappings of different layers.

23

#BHEU @BlackHatEvents
Information Classification: General

Step 3: System Call Recorder
➢ Based on mappings, we calculate the system call

whitelists for the Node.js application.

➢ We divide the system call list into the system call list
of main thread and the system call list of the thread
pool.

24

#BHEU @BlackHatEvents
Information Classification: General

Step 4: Hodor Installation
➢ Seccomp Implementation

✓ For thread pool required applications, we first install the filter for the thread pool
thread and then install the filter for the main thread to prevent the thread pool thread
from inheriting the main thread filter.

✓ For thread pool dis-required applications, we only load the main thread filter.

➢ Read/write Permission Restrictions.
✓ Read and write system calls are widely used by Node.js engine.
✓ Chroot mechanism and Switch the ownership.

25

#BHEU @BlackHatEvents
Information Classification: General

Agenda

• Introduction

• Previous work & Remaining challenges

• HODOR: system call level protection system for Node.js applications

• Evaluation

• Conclusion & Takeaways

26

#BHEU @BlackHatEvents
Information Classification: General

Evaluation
➢ Dataset

✓ 169 packages suffered from ACE attacks
✓ Three large-scale real-world applications (koa, express and json-server).
✓ Node.js core tests and 4 well-known web frameworks (koa, fastify, express, and connect).

➢ Total Result
✓ HODOR can reduce the attack surface of Node.js applications to 19.42%.

27

#BHEU @BlackHatEvents
Information Classification: General

Evaluation - Call Graph Construction and

Resulting Protection
✓ The optimization of JS call graph construction helps identify hidden required

system calls for 23.21% packages.

✓ The optimization of C/C++ call graph construction further reduces the system

call permissions by 71.02%.

✓ HODOR reduces the attack surface for the main thread to 19.20%, for the

thread pool thread to 7.73%, while not affecting the application’s normal

operation.

28

#BHEU @BlackHatEvents
Information Classification: General

Evaluation - Exploit Mitigation

✓ We construct different advanced attack payloads to simulate various

dangerous behaviors of attackers, where a variety of critical system calls can be

invoked.

✓ HODOR could effectively mitigate the execution of 73.59% exploits.

29

#BHEU @BlackHatEvents
Information Classification: General

Evaluation - Comparison with Other Techniques

✓ HODOR can defend against a wider spectrum of attacks (additionally covering

arbitrary command execution) with less runtime overhead.

30

#BHEU @BlackHatEvents
Information Classification: General

Evaluation - Runtime Overhead

✓ The runtime overhead of HODOR is 0.61% for Node.js core tests, 2.80% for the
web framework, and 0.39% for all 168 packages.

31

#BHEU @BlackHatEvents
Information Classification: General

Agenda

• Introduction

• Previous work & Remaining challenges

• HODOR: system call level protection system for Node.js applications

• Evaluation

• Conclusion & Takeaways

32

#BHEU @BlackHatEvents
Information Classification: General

Conclusion & Takeaways
1. Attendees will learn a new call graph building methods for JavaScript code and C/C++

code.

2. Attendees will gain knowledge of a novel protection mechanism for Node.js

applications, focusing on thread-level and system call-level security.

3. Attendees will develop an understanding of the hazards associated with vulnerabilities

in the Node.js application ecosystem, with a particular emphasis on system call-level

vulnerabilities.

33

#BHEU @BlackHatEvents

Wenya Wang, Xingwei Lin @xwlin_roy

Thanks & Questions?

