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Abstract

The Schneider Electric industrial control systems architecture consists of Modicon PLCs which com-
municate with an engineering station and SCADA HMI on one side, and control industrial systems on
the other side. After reverse-engineering the cryptographic protocol, we identify vulnerabilities through
which we are able to masquerade as the engineering station to the PLC, cryptographically sign messages,
and inject any messages favourable to the attacker. Moreover, we identify additional vulnerabilities in
the PLC’s memory management. We demonstrate that these primitives lead to remote code execution,
installation of persistent root-kits, and potential re-programming the boot firmware over the network.

1 Introduction

Programmable Logic Controllers (PLCs) are widely used in Industrial Control Systems (ICSs), where they
perform essential process control functions. These controllers manage key equipment such as thermostats,
barometers, valves, engines, and generators. ICSs are used to oversee critical infrastructure, including
power generation facilities, chemical processing plants, water treatment facilities, railways, and other vital
transportation systems essential to contemporary life.

Since 2010, ICSs, and in particular their configuration and monitoring interfaces, have become popular
targets for cyber attacks, the most well known of which is Stuxnet [20, 6]. In response, vendors hardened
these interfaces by adding cryptographic protection.

PLCs are available from multiple vendors, including Siemens, Allen-Bradley, Mitsubishi, Schneider Electric,
and others. Each vendor provides unique firmware, programming languages, communication protocols, and
maintenance software. Nonetheless, the fundamental architecture is quite similar: the PLC manages its
inputs and outputs using internal variables and logic. Programming for the PLC is done on an engineering
workstation using the vendor’s specific control language. This code is compiled into an executable format and
then transferred to the PLC. The PLCs are monitored and controlled through dedicated systems running
Human Machine Interface (HMI) software. While modern PLCs, HMIs, and engineering stations all use
TCP/IP for communication, they generally operate with proprietary higher-level protocols.

Our focus in this paper is Schneider Electric’s line of Modicon Programmable Logic Controllers (PLCs),
which are ranked among the top ten most popular PLCs by their market share, with estimated sales revenue
of around one billion US dollars from their PLC business [24]. Along with the PLCs, Schneider Electric’s
product line features the ‘EcoStruxure Control Expert’ software platform. This platform serves as both
an engineering station and, optionally, as a Human-Machine Interface (HMI). The Control Expert, or the
HMI, communicates with the PLCs using the UMAS network protocol, which is an extension to the popular
Modbus protocol. The latest versions of the UMAS protocol incorporate cryptographic measures to secure
communication, including cryptographic signing of UMAS messages through dynamic nonces exchanged
during the authentication process. Our objective is to gain access to a reserved session with the capability to
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sign privileged messages, ultimately allowing us to inject a rootkit shellcode and remotely execute it via the
UMAS network. Our use-case for achieving our objectives is the Modicon M340 PLC product line.

1.1 Related Work
The Modbus/TCP protocol [1] is well understood, and has been studied by the research community for many
years, cf. [7, 13]. However, the proprietary UMAS extensions over Modbus, are less well understood. What
is known was discovered via protocol reverse engineering. We can point out the research of [11] that was
among the first to uncover the parsing of the UMAS protocol. Subsequent researches [16, 17, 23] furthered
the understanding and updated the parsing to reflect the protocol patches introduced in firmware updates
(such as appending signature to reserved UMAS messages).

Insights into the authentication process and its evolution through firmware updates until version 3.50 are
detailed in [3, 17, 23, 27].

Studies on exploiting vulnerabilities and implementing remote code execution in Schneider Electric Modicon
PLCs are detailed in [3, 27, 16, 14, 21].

We can also point out the very useful UMAS wireshark [28] dissector [4]. However, in our research we
discovered that this dissector has some shortcomings and is unable to parse certain UMAS messages, hence
we needed to update it. We plan to release our revised dissector to the community.

The flavor of work described here in is analogous to the work of Biham et al. [5] which analyzed the S7
protocol used between the Siemens TIA management system and Siemens S1200/S1500 PLCs.

1.2 Contributions
Prior research [17] demonstrated a pass-the-hash attack against Modicon PLCs (CVE-2021-22779). In re-
sponse, Schneider Electric released firmware v3.60, which claims to mitigate the attack. Against this back-
drop our contributions are as follows:

• By reverse engineering the PLC we identified that the main change in v3.60 is the introduction of
a Diffie-Hellman key exchange, and the elimination of the cleartext exchange of the password hash
(pwdhash).

• We discovered a new vulnerability through which the adversary can steal the password hash by sniffing
the project upload or download messages (CVE-2024-8933). With pwdhash in hand we are able to
revive the pass-the-hash attack, i.e., we bypass the mitigations introduced against CVE-2021-22779
[3].

• We observed that even if the project is encrypted, the transmission occurs in cleartext during upload
or download. Additionally, we discovered that the encryption password hash and its salt are visibly
transmitted, similar to the pwdhash.

• The Diffie-Hellman exchange used in v3.60 is a plain-vanilla exchange. so it is vulnerable to a Man-in-
the-Middle (MITM) attack. We demonstrate such an attack that is able to steal the management unit
and PLC nonces, use them to calculate the signature for authenticating reserved UMAS messages—and
thereby achieve the ability to inject arbitrary signed UMAS messages to the PLC (CVE-2024-8935).

• We identify a new vulnerability in which via the MITM attack, and using a signed message, we are able
to modify a critical variable in the PLC memory—the addressReadLimiter (CVE-2024-8936). Once it
is overwritten the attacker can read all the restricted memory areas using public unsigned read requests
sent over UMAS traffic, without needing to execute the MITM attack again, until the PLC is rebooted:
i.e., we bypass the mitigations against CVE-2020-7537 [3]. This allows reading the pwdhash and other
cryptographic data whenever the attacker wishes.

• Modicon M340 PLCs are built on ARMv4T processors which do not have a “Non-Execute” bit over
memory regions. Hence by using signed messages we are able to inject shellcode into unused memory
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regions. We identify two new vulnerabilities through-which we can trigger the injected shellcode and
achieve code execution, at will, using unsigned messages (CVE-2024-8937 and CVE-2024-8938).

The content of this paper was disclosed to Schneider Electric prior to publication. Schneider officially con-
firmed our findings on November 12, 2024 and registered them under the five CVE numbers mentioned
above: CVE-2024-8933, CVE-2024-8935, CVE-2024-8936, CVE-2024-8937, and CVE-2024-8938. In parallel
to the registration of the CVEs Schneider Electric released firmware update 3.65 to address the addressRead-
Limiter overwrite and the two code-execution vulnerabilities. They also published mitigations against the
other vulnerabilities.

2 Basics

2.1 EcoStruxure Control Expert
EcoStruxure Control Expert (previously named Unity Pro) is a software platform developed by Schneider
Electric as part of their EcoStruxure architecture. It is designed for programming and managing Modicon
PLCs and PACs (Programmable Automation Controllers). It provides a set of tools for creating, simulating,
debugging, and maintaining control applications.

2.1.1 Control Expert Project and Application Project Binary

As reported by [27], all the information pertaining to the control logic running in a given PLC is organized in
an application project. The application project is created and compiled in the Control Expert software, and
is stored as an STU file: the STU file is a zipped archive that contains the application project binary file,
APX, and other data files. The APX files are binary files structured into sections with multiple subsections.
Each section has a header with details such as the section type, ID, offset, and size, followed by the actual
data subsection. These subsections can vary in content. The data subsection of each section, is constructed
as memory blocks different types (such as data/executable/constants etc.) and are loaded into the PLC
memory. The blocks’ metadata is stored in a Relocation Table (RT) in the APX file, which specifies the
address, size, and attributes for each block ([27, 25]). Each block is identified by a 1-byte Block ID. As we
shall see, the contents in certain APX blocks is readable (over the network) by specifying their Block ID and
an offset within the block.

2.1.2 Control Expert Project User-Defined Protection

When creating a new project, the software suggests the owner to set application and file encryption passwords.
Both passwords are set only once when creating the project and they remain unchanged even if the project
is modified.

2.1.2.1 Project Password

The project password (pwd) is used to establish a secured connection between the management unit using
the Control Expert software and the PLC. Moreover, it is required in order open the project file in the
Control Expert software.

2.1.2.2 Project Encryption Password

As observed by [27], the project encryption password (enc_pwd) is used to encrypt (AES-CBC-256) the
project STU file (2.1.1) in order to prevent malicious file corruption or theft of the intellectual property.
The file encryption password is not required for openning the STU file or for establishing a secured UMAS
connection.

2.2 Modicon M340 Firmware
Modicon M340 firmware files can be downloaded from the Schneider Electric website as LDX files. An LDX
file is a zipped archive containing the firmware BIN file and other ftp commands and web files. Schneider also
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UMAS Session UMAS Data
header key function code
0x5A 0x00 ... ...
1 Byte 1 Byte 1 Byte Variable size

Table 1: The structure of non-reserved UMAS message request

UMAS Session ACK/NACK Data
header key code
0x5A rsvID 0xFE/0xFD ...
1 Byte 1 Byte 1 Byte Variable size

Table 2: The structure of non-reserved UMAS message response

allows to download older firmware versions (as it is possible to downgrade the PLC firmware). In our study
we refer our findings to firmware versions from v3.01 and above, in which Schneider started implementing
a password protection mechanism over UMAS protocol. In particular we show undiscovered findings and
approaches to handle with the recent firmware version v3.60.

3 The UMAS Protocol

UMAS (Unified Messaging Application Services) is a specialized Schneider Electric protocol designed for the
configuration and monitoring of Schneider Electric PLCs by the Control Expert software. It is embedded
within the Modbus protocol, and uses a propriety Modbus RTU function code: ‘0x5A’ (in the scope of
this article we named it the ‘UMAS header’). In other words the UMAS messages are transmitted over
the Modbus/TCP protocol, using TCP port 502 [1]. Modbus is a request-response protocol: every message
exchange is initiated by the management unit (the Control Expert) which sends a request, and the PLC
sends a response to that request. The PLC never initiates a transmission. The UMAS extension of Modbus
retains this basic behavior.

A UMAS communication session between the management unit and a PLC can be in one of two states.
After the management unit authenticates to the PLC, the session becomes reserved. A reserved session
has a unique reservation ID, and UMAS messages in a reserved session include a signature derived from
the message data and session-specific cryptographic data. Reserved signed UMAS messages are required
for privileged PLC operations (such as writing to memory, running control logic, performing application
management tasks etc.). Before authentication the session is called non-reserved, and messages sent in such
a session are called public. Public messages can be sent either on reserved on non-reserved sessions. Note
that there can only be a single reserved session established with a PLC at any point in time.

As reported by [16, 17, 23, 11], from the PLC’s point of view, UMAS messages can have one of the following
structures, which are detailed in subsections below:

• Non-reserved UMAS request messages.

• Non-reserved UMAS response messages.

• Reserved UMAS request messages.

• Reserved UMAS response messages.

• Signature error UMAS response messages.

3.1 Non-Reserved UMAS Request Messages
Such messages can be sent from the management unit to the PLC without authentication, regardless of
whether the PLC is reserved or not. Table 1 shows the general structure of non-reserved public UMAS
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UMAS Session UMAS sign Magic Signature UMAS Session UMAS Data
header key function code key function code
0x5A rsvID 0x38 0x01 ... 0x5A rsvID ... ...
1 Byte 1 Byte 1 Byte 1 Byte 32 Bytes 1 Byte 1 Byte 1 Byte Variable size

Table 3: The structure of reserved UMAS message request

UMAS Session ACK Magic Signature UMAS Session ACK/NACK Data
header key code header code
0x5A rsvID 0xFE 0x01 ... 0x5A rsvID 0xFE/0xFD ...
1 Byte 1 Byte 1 Byte 1 Byte 32 Bytes 1 Byte 1 Byte 1 Byte Variable size

Table 4: The structure of reserved UMAS message response

messages. The messages include: the ‘UMAS header’, a propriety Modbus function byte used in all UMAS
messages; The ‘Session key’, a byte that carries the reservation ID. If the PLC is not reserved, then the
‘Session key’ value is ‘0x00’. Then there is the ‘UMAS function code’, and variable length ‘Data’ that
corresponds to the function type.

3.2 Non-Reserved UMAS Response Messages
Table 1 shows the structure of non-reserved response messages, which are sent by the PLC in response to
messages from the management unit. They include an ‘ACK/NACK’ field, and an optional response ‘Data’
field.

3.3 Reserved UMAS Request Messages
Reserved messages that are sent during a reserved session include additional fields, see Table 3. Beyond
the fields present in non-reserved public messages, reserved signed messages have a non-zero ‘Session key’,
a special ‘UMAS sign function code’ and a cryptographic ‘Signature’ fields. The signature calculation is
described in Section 4.4, and it requires the nonces exchanged in the authentication messages (see Section 4.2).
Only correctly signed messages will be accepted by the PLC. Note that the reserved message is effectively
formatted as two concatenated UMAS messages, one with the ‘sign’ function code 0x38, and the other with
whatever function code is being sent. The ‘Session key’ is duplicated to retain the format.

3.4 Reserved UMAS Response Messages
Table 4 shows the structure of reserved UMAS response messages. They have a structure similar to that
of the non-reserved UMAS message response (Table 1), but with the added signature, following the format
shown in Table 3 for reserved UMAS request messages.

3.5 Signature Error UMAS Response Messages
In our research we discovered the structure of the (undocumented) UMAS message response sent by the
PLC when it receives a reserved UMAS message with an incorrect signature, see Table 5. It only includes
a 1-byte ‘UMAS error header’ with value 0xDA to indicate a signature error, and a 1-byte constant ‘Error
data’ field with value 0x04. This response is independent of the content of the UMAS request message from
the management content and is solely related to the incorrect signature.

4 UMAS Authentication

A project in the management unit’s Control Expert software is password-protected. As described by [16],
when such a project is created, the Control Expert prompts the user to select a password (pwd), and generates
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UMAS Error
error header data

0xDA 0x04
1 Byte 1 Byte

Table 5: The structure of UMAS message response for incorrectly signed UMAS message request

Cryptographic
data exchange Nonces exchange

Authentication
secret and session
key transmission

Figure 1: The authentication process stages

a 16 bytes salt value (pwdsalt). It then calculates the password hash (pwdhash) as follows:

pwdsalt = randomBytes(16)

pwdhash = SHA256(pwdsalt||pwd) (1)

Both pwdsalt and pwdhash are saved in the APX binary in Base64 encoding. The plaintext password pwd
itself is not stored.

Figure 1 shows a high-level view of the the authentication handshake that occurs whenever the management
unit establishes a session with the PLC. The handshake assumes that the APX binary is already present
on the PLC. The handshake consists of three stages: a cryptographic data exchange, nonces exchange, and
authentication secret and session key transmission.

The general structure of the handshake has not changed by the firmware updates since v3.01. However,
Schneider did enhance the protection of the stages’ implementation on each firmware update to make it
successively harder to attack. In the following sections we will go into more detail for each stage, and discuss
the changes in their implementation for the different firmware versions.

4.1 Cryptographic Data Transmission
In the first stage of the handshake the management unit requests cryptographic data from the PLC regarding
the project password. As mentioned above, the pwdhash and pwdsalt are stored in the APX binary in Base64
encoding, but the plaintext password is not. The management unit uses the non-reserved UMAS function
‘ReadMemoryBlock’ (0x20) to read the values it needs for the handshake from an APX block, see Figures 6
and 7 in the Appendix.

4.1.1 Versions v3.01 to v3.50

As described in CVE-2021-22779 [17], in versions v3.01 up to v3.50, one could send a ‘ReadMemoryBlock’
UMAS message and obtain both the pwdhash and pwdsalt by reading offsets within block 0x14 of the APX
(recall Section 2.1.1). Figure 2) shows the UMAS messages used to obtain the pwdhash and pwdsalt from
the PLC.

Thus the management unit prompts the user for pwd, recalculates pwdhash as in equation (1) using the
pwdsalt it read from the PLC, and compares the result with the pwdhash it read from the PLC. From the
PLC’s perspective, in this stage of the handshake the management unit is not authenticated and the session
is not reserved yet.

4.1.2 Versions v3.50 and above

Starting from version v3.50, the pwdhash is no longer stored in publicly-readable block 0x14. However, as
observed by [17], block 0x14 still stores the pwdsalt. By reversing the firmware binary we discovered that
pwdhash is still stored in the APX file, but now it is located in read-protected block X (detail omitted). Block
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Control Expert v16 PLC
v3.01 to v3.50

[0x20] Read from memory block 0x14, ReadMemoryBlock

[0xFE] Extract pwdhash and pwdsalt from block 0x14

Figure 2: Reading pwdhash and pwdsalt using ‘ReadMemoryBlock’ UMAS message

Control Expert v16 PLC
v3.51 and below

[0x6E] NoncePC , enhancedRsvMngt

[0xFE] NoncePLC , enhancedRsvMngt

Figure 3: Exchanging nonces between management unit and PLC using ‘enhancedRsvMngt’ UMAS message

X data is inaccessible via the ‘ReadMemoryBlock’ UMAS message: the firmware code denies this request
and replies with a NACK UMAS message.

Hence in the v3.50 and above, the management unit just calculates pwdhash based on the user-provided
pwd and the pwdsalt extracted from the UMAS traffic. Note that at this stage the software cannot know
whether the pwd given by the user is correct or not since it does not have the expected pwdhash to compare
with.

4.2 Nonces Exchange
At this stage, the management unit sends a request for nonces exchange via UMAS message 0x6E to the
PLC. Two nonces are exchanged, one sent by the PC and one by the PLC. As we shall see below, these
nonces participate in the calculation of the authentication secret.

4.2.1 Version v3.51 and Below

Figure 3 shows the nonces exchange over UMAS traffic as implemented up to version 3.51: the two nonces,
NoncePC and NoncePLC , are exchanged using the ‘enhancedRsvMngt’ UMAS message. The packet struc-
tures of request and response ‘enhancedRsvMngt’ UMAS messages are shown in Tables 8 and 9 in the
Appendix. The ‘Mode’ field [0x02] indicates that the handshake function in use is ‘enhancedRsvMngt’. The
‘Reserver ID’ field uniquely identifies the reserver: i.e., the management unit.

In the PLC response (Table 9) we also observe the ‘ACK/NACK code’ [0xFE] and a ‘Magic’ [0xAAAA]
which indicates that the NoncePC was received properly in the PLC. (recall Section 3.3). Note that in these
software versions v3.01 to v3.51 the two nonces are sent in plaintext.

By the end of this stage both the management unit and the PLC share both NoncePC and NoncePLC .

4.2.2 Version v3.60

In versions up to v3.51 the nonces were exchanged in plaintext, and as such were accessible to a passive
eavesdropping adversary. Schneider Electric addressed this vulnerability with version v3.60. However, details
of the changes they introduced were not published until now. In our research we shed light on the new nonce-
exchange procedure.

By reversing the PLC firmware v3.60, we established that the main modification to the nonce exchange
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Control Expert v16 PLC
v3.60

[0x6E] PC Diffie-Hellman Public key ga, preEncryptedRsvMngt

[0xFE] PLC Diffie-Hellman Public key gb, preEncryptedRsvMngt

[0x6E] Enc_NoncePC and AES_salt, encryptedRsvMngt

[0xFE] Enc_NoncePLC , encryptedRsvMngt

Figure 4: Exchanging nonces between management unit and PLC using v3.60 two-stage UMAS nonces
handshake messages

is the introduction of a textbook Diffie-Hellman key exchange to generate an ephemeral shared value
(‘DH_shared‘), from which a salted shared ephemeral AES key (‘AES_secret’) is derived. The nonces
are transmitted encrypted with AES-CBC-256 using ‘AES_secret’ as the key. Figure 4 shows the message
flow.

We identified that the cryptographic computations in the PLC are based on the mbedtls_dhm library, a
component of the mbedtls cryptographic open-source library [22]. The modular exponential (MODP) group
used for Diffie-Hellman calculations is the RFC-3526 [18] 2048-bit MODP group:

g = 2 (2)
p = 22048 − 21984 − 1 + 264 · [(21918π) + 124476]

Tables 10 and 11 in the Appendix describe the structure of the two Diffie-Hellman (‘preEncryptedRsvMngt’)
messages exchanging the public DH values ga (mod p) and gb (mod p). Note that in the message from the
management unit to the PLC (Table 10) there is a ‘Reserver ID’ field, a 4 bytes that uniquely identifies the
management unit, that is sent in plaintext. At this point, both parties calculate the Diffie-Hellman shared
key

DH_shared = gab (mod p). (3)

The management unit now generates a random 16-byte AES_salt, and derives a shared AES_secret
by

AES_secret = SHA256(AES_salt||DH_shared) (4)

The management unit encrypts its NoncePC using AES-CBC-256 (using a fixed IV = 0), with AES_secret
as the key:

Enc_NoncePC = AES-CBC-256AES_secret(NoncePC)

and sends Enc_NoncePC together with AES_salt as an ‘encryptedRsvMngt’ message to the PLC. With
the received AES_salt the PLC also derives AES_secret according to equation (4), encrypts its own
NoncePLC , and sends it to the management unit. Tables 12 and 13 in the Appendix show the structure
of the two ‘encryptedRsvMngt’ messages. At the end of this exchange both sides decrypt the other party’s
nonce.

4.3 Authentication Secret and Session Key Transmission
Regardless of the firmware version, at this stage both sides have pwdhash (equation (1)), pwdsalt, and both
nonces. This is all the information that is required to elevate the session to a ‘reserved’ state and calculate
its Session Key. Both sides calculate the auth_secret, as discussed by [17][16] (CVE-2021-22779):

auth_secret = SHA256
(
NoncePLC ||Base64(pwdsalt)||′\r\n′||Base64(pwdhash)||′\r\n′||NoncePC

)
(5)
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The management unit encodes auth_secret with UTF-8 and sends it to the PLC using the ‘TryReserve’
UMAS function (0x10). If the received auth_secret is equal to the value calculated by the PLC, it re-
sponds with a reservation session key. Tables 14 and 15 in the Appendix show the structure of these two
messages.

Through reverse engineering the code, we discovered how the PLC generates the 1-byte Session Key for
the reserved session: if the PLC was not reserved before then it picks a random value for the Session Key.
Otherwise in increments the previous value by 1 (modulo 256).

We note that having a 1-byte Session Key seems to be weak—however, this value is exchanged in plaintext
in all subsequent messages, and knowing it seems not to provide much value to an attacker since there can
only be one reserved session at a time.

4.4 Signing Reserved UMAS Messages
As described in Section 3, reserved UMAS messages are signed. The signature algorithm was been researched
in prior firmware versions [16, 27]. We can confirm that the signature algorithm remains unchanged up to
the latest firmware updates, and is done as follows. Let

Msg = ‘UMAS header’||‘Session key’||‘UMAS function code’||‘Data’

be the request UMAS message content to be signed (for response UMAS message, the ‘UMAS function
code’ is replaced by the ‘ACK/NACK code’); it is a concatenation of all “non-reserved” fields in a UMAS
message. The signature computation is symmetric. To sign Msg, the signing party uses the two nonces from
Section 4.2, hashes each nonce with the PLCID, and calculates the signature as follows:

NoncePCID
= SHA256(PLCID||NoncePC)

NoncePLCID
= SHA256(PLCID||NoncePLC)

Signature = SHA256
(
NoncePCID

||Msg||NoncePLCID

)
(6)

The PLCID is a 4-byte identifier for the PLC that can be obtained by public UMAS messages.

Interestingly, this unusual signature algorithm does not use auth_secret (equation (5)), and in fact does not
depend on the project password pwd nor its hash pwdhash in any way. The algorithm has remained the same
in all firmware updates since version v3.01. We argue that this is a significant design weakness: an attacker
that learns the two nonces and some public or easy-to-sniff values is able to sign messages at will, without
needing to know the project password. As we shall see in Sections 6 and 7, this weakness is an enabler to
our advanced attacks leading to code execution.

In our opinion, using a standard symmetric signature like HMAC [19], using a shared key derived from
auth_secret, would be much stronger than the current method, and would mitigate some aspects of our
attacks.

5 Attacks: Reaching a Reserved Session

In this session we describe two new network-level attacks on the latest firmware version v3.60 and later,
despite the new Diffie-Hellman addition to the UMAS authentication handshake. The attacks allow the
attacker to steal the password hash, mount a pass-the-hash attack to achieve a reserved session, steal the
nonces, and allow signing messages at will. One of the attacks is based on a new vulnerability we found; the
other is based on the known susceptibility of Diffie-Hellman key exchange to Man-in-the-Middle (MITM)
attacks. We implemented both attacks and demonstrated their effectiveness.
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5.1 Getting the Password Hash over UMAS
In this section, we show how to capture the pwdhash through passive sniffing of UMAS traffic. This attack
is based on the following:

Vulnerability 1 (CVE-2024-8933): The pwdhash is transmitted in plaintext during project upload from
or download to the PLC.

UMAS includes function codes to download a project from the management unit to the PLC, and to upload
a project from the PLC. Both are reserved commands that need to be signed. However, our research shows
that the upload or download traffic transfers the full APX binary, and is not encrypted. As described in
Section 4, the APX binary includes both the pwdhash and pwdsalt. Therefore, a passive attacker can capture
these two parameters by sniffing the traffic when a legitimate upload or download process is occurring.

When the management unit performs a project upload from the PLC, it sends an ‘UploadPacket’ reserved
UMAS message (0x34). The structure of this message and the PLC’s response appear in Tables 16 and 17
in the Appendix.

Similarly, UMAS supports the project upload, in the opposite direction: The management unit sends a
‘DownloadPacket’ reserved UMAS message (0x31). The structure of this message and the PLC’s response
appear in Tables 18 and 19 in the Appendix.

An immediate implication of stealing the pwdhash and pwdsalt from the upload/download UMAS traffic
is that cracking the password from the password hash becomes possible: As an example, we modified the
popular hashcat [15] password cracker to support the hash calculation of Equation (1) and successfully
cracked our own projects’ password.

5.1.1 Notes Regarding Encrypted Projects

In addition to a project password, the Control Expert software also supports a project encryption password
enc_pwd (recall Section 2.1.2.2). We discovered two important points worth mentioning regarding encrypted
projects:

• Even if the project file is encrypted on the PC, it is transferred (both downloaded and uploaded) in
cleartext over the UMAS traffic. The project is only kept in encrypted form on the PC in the STU
file. Thus by sniffing the traffic during project upload or download, one can retrieve the complete APX
binary, including pwdhash and pwdsalt, even if the project is encrypted.

• The SHA256 hash of the enc_pwd (2.1.2.2) and its corresponding salt are also located in the APX
binary alongside pwdhash and pwdsalt.

5.2 Pass-the-Hash and Creating a Reserved Session
Once the attacker successfully acquires the pwdhash and pwdsalt it can establish an authenticated reserved
session via a “pass-the-hash” attack. This was demonstrated against versions 3.51 and below in CVE-2021-
22779 ([3, 17, 16]). We demonstrate that this is possible also against the updated handshake in v3.60
by following the steps described in Section 4.2. The flow transmission diagram of the attack is shown in
Figure 5.

First, the attacker selects an arbitrary 4-byte reserverID and a 32-byte private z, and computes its corre-
sponding gz (mod p), constructs and sends the ‘preEncryptedRsvMngt’ message (Table 10 in the Appendix).
The PLC responds with its gb (mod p) ‘preEncryptedRsvMngt’ message. The attacker can now calculate
DH_shared according to equation (3). Next it selects an arbitrary 16-byte AES_salt and a 32-byte
NonceAttacker and derives the AES_secret according to equation (4). It encrypts NonceAttacker using
AES_secret and sends it to the PLC along with the reserverID and AES_salt, using the ‘encrypte-
dRsvMngt’ message (Table 12 in the Appendix). Once it receives the encrypted nonce Enc_NoncePLC

from the PLC it decrypts it to NoncePLC with the AES_secret. At this point, with the stolen pwdhash and
pwdsalt the attacker has all the information to calculate the auth_secret according to equation (5). The
attacker sends the auth_secret using the ‘TryReserve’ message alongside an arbitrary PC_name and the
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Control Expert v16 PLC
v3.60

[0x6E] Attacker Diffie-Hellman Public key gz, preEncryptedRsvMngt

[0xFE] PLC Diffie-Hellman Public key gb, preEncryptedRsvMngt

[0x6E] Enc_NonceAttacker and AES_salt, encryptedRsvMngt

[0xFE] Enc_NoncePLC , encryptedRsvMngt

[0x10] auth_secret, TryReserve

[0xFE] Session key rsvID, TryReserve

Figure 5: Authenticated reservation process initiated by an attacker (firmware v3.60)

reserverID (Table 14). Upon completion of the process, the attacker establishes an authenticated reserved
session with the PLC.

We implemented this attack in python and demonstrated that it works successfully against our PLC.

5.3 Man-in-the-Middle Attack against Diffie-Hellman
Independently of whether the attacker obtained pwdhash or not, if it can attain a Man-in-the-Middle
(MITM) network position, it can steal the nonces due to the well-known vulnerability of unprotected Diffie-
Hellman:

Vulnerability 2 (CVE-2024-8935): The nonce exchange is vulnerable to a Man-in-the-Middle attack.

We can mount a man-in-the-middle (MITM) attack against the Diffie-Hellman nonce exchange to gain access
to a reserved session in firmware v3.60. Our objective is to obtain the decrypted nonces exchanged during
the process and utilize them to sign reserved messages within the session. We base on the authentication
process theory shown in Section 4.

A MITM network position can be reached in various ways depending on the attackers level of access, including
taking over a network router on the path, injecting interception software into a virtualization platform
hypervisor, DNS poisoning, etc. In our demonstration we chose to achieve a MITM position using ARP
spoofing, assuming that the management unit PC and the PLC are on the same IP subnet and that the
attacker has network access to that same subnet. As in [2] we used the ettercap [12] package for this purpose.
The message flow of the attack is shown in Figure 6.

First, the attacker mounts an ARP poisoning attack to establish a MITM network position. Then the
attacker intercepts the ‘preEncryptedRsvMsg’ message transmitted from the management unit to the PLC
as a trigger. It implements two separate DH exchanges, one with the management unit and the other
with the PLC, establishing two DH_shared values (gaz (mod p) and gzb (mod p) following the notation in
Figure 6).

It then intercepts the management unit’s ‘encryptedRsvMsg’ message, extracts the AES_salt, computes
the AES_secretPC towards the management unit, and decrypts the NoncePC .

The attacker then reuses the AES_salt it received with gzb to derive AES_secretPLC toward the PLC and
uses it to encrypt the NoncePC . The attacker transmits EncPLC_NoncePC alongside AES_salt to the
PLC. Then, the PLC replies with EncPLC_NoncePLC . The attacker decrypts it using AES_secretPLC , and
encrypts it to EncPC_NoncePLC using AES_secretPC . Finally, the attacker transmits to the management
unit the EncPC_NoncePLC .

By the end of this stage, all three sides have the same nonces, NoncePC and NoncePLC . Note that the reuse
of the AES_salt and NoncePC is not mandatory, the attacker can select its own salt and nonce toward
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Control Expert v16
IPPC A

MACPC a

Attacker
IPAttacker C

MACAttacker c

PLC v3.60
IPPLC B

MACPLC b

[ARP] IP B has MAC c

[ARP] IP A has MAC c

[0x6E] PC DH Public key ga

[0x6E] Attacker DH Public key gz

[0xFE] PLC DH Public key gb

[0xFE] Attacker DH Public key gz

[0x6E] EncPC_NoncePC and AES_salt

[0x6E] EncPLC_NoncePC and AES_salt

[0xFE] EncPLC_NoncePLC

[0xFE] EncPC_NoncePLC

[0x10] auth_secret

[0x10] auth_secret

[0xFE] Session key rsvID

[0xFE] Session key rsvID

Figure 6: A MITM attack using ARP spoofing against the nonce exchange

the PLC, but reusing the values sent by the management unit allows the attacker to avoid re-signing all
subsequent messages.

In the last 2 ‘TryReserve’ messages the attacker simply forwards the messages between the management unit
and the PLC, leaving the packets unchanged.

The implication of this attack is that now the attacker has both nonces of an active reserved session, and
is able to inject arbitrary signed messages into the session. In and of itself this attack does not provide the
pwdhash, since it is not exchanged in the handshake—however, as we already noted above, only the nonces
are needed to forge reserved message signatures.

6 From a Reserved Session to Full Memory Read Access

Given the ability to inject signed reserved messages into a session, we now elevate the attack privileges in
two ways:

• Read all memory over UMAS messages: in other words, bypassing the mitigations to CVE-2020-7537
introduced in v3.30 ([8]).

• Write to all the PLC data memory via UMAS messages: i.e., exploit CVE-2019-6829, which remains
unmitigated in v3.60

We do so using two UMAS messages: the non-reserved public message ‘ReadPhysicalAddress’ (0x28) to read
memory, and the reserved signed message ‘WritePhysicalAddress’ (0x29) to modify memory.

By default ‘ReadPhysicalAddress’ message is restricted and allows access only to the low addresses of the
data memory. This limitation was introduced in v3.30 to mitigate an information leak CVE-2020-7537 (See
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Schneider’s security notification [8]). We exploit a new vulnerability to remove the limitation and allow full
memory access.

As for modifying memory, ‘WritePhysicalAddress’ can be modify any writable address. This property,
noted in CVE-2019-6829 by Talos ([26]), was exploited to achieve RCE by Armis ([3]). Nonetheless the
‘WritePhysicalAddress’ logic was not changed in v3.60 and it is still capable of modifying any writable
address, which we exploit. As we shall see in Section 7 we also exploit ‘WritePhysicalAddress’ to inject code
to memory in the same manner as Armis did. For this we need to introduce a some additional background
material.

6.1 Background on Modicon M340 Memory Protection
The operating system running on the PLC, VxWorks, includes ‘vmLib’ - an architecture-independent library
for managing virtual memory access permissions. This library provides the ‘vmStateSet’ function, which
is used to modify the state of a page in the processor’s virtual memory. There are three types of states
available:

• ‘VM_STATE_VALID’ or ‘VM_STATE_VALID_NOT’ - used to specify that a memory page is ac-
cessible or not.

• ‘VM_STATE_WRITABLE’ or ‘VM_STATE_WRITABLE_NOT’ - used to specify that a memory
page is writable or write-protected.

• ‘VM_STATE_CACHEABLE’ or ‘VM_STATE_CACHEABLE_NOT’ - used to specify that a mem-
ory page is cacheable or not-cacheable.

In our case, we focus on two categories of memory regions: executable code memory and data memory.
The executable code memory regions (firmware code area and executable application blocks) are protected
against writing (‘VM_STATE_WRITABLE_NOT’ state), while the data memory regions are not protected
(‘VM_STATE_WRITABLE’ state) ([27, 14]). The write protection operates at the internal processor level,
meaning even privileged reserved UMAS messages cannot modify pages protected by ‘vmLib’.

The ARMv4T processor in the PLC does not have the ’Non-Execute’ (NX) bit, a feature meant to restrict
code execution from unintended memory pages.

The implications of these hardware and OS functionalities are twofold:

• PLC data memory regions are writeable;

• PLC data memory regions are executable.

6.2 Memory Read over UMAS
Reading from the PLC memory over UMAS is available using the non-reserved ‘ReadPhysicalAddress’ (0x28)
message. The packet structure sent from the management unit is shown in table 20 in the Appendix, and the
packet structure received from the PLC is shown in table 21. However, the read access using this function is
limited to a specific set of permitted addresses. This restriction is due to the firmware code implementation,
and is not enforced by ‘vmLib’ (recall Section 6.1). Through reverse engineering, we discovered the algorithm
used to set the read limit. There is a variable, which we call addressReadLimiter, located in the PLC data
memory, which is used in conjunction with two parameters we call Base and factor to set the highest address
readable by ‘ReadPhysicalAddress’, as follows:

maxAddressAllowed = Base+ Factor × addressReadLimiter

In our research we discovered the precise value of addressReadLimiter and established that it remains stable
across reboots, and we also have the exact values of the Base and Factor (details are omitted).

However, we discovered the following vulnerability:

Vulnerability 3 (CVE-2024-8936): addressReadLimiter is writeable over UMAS.
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CE v16
IPPC A

MACPC a

Attacker
IPAttacker C

MACAttacker c

PLC v3.01 and above
IPPLC B

MACPLC b

Authorized UMAS message [i] request

Authorized UMAS message [i] response

Unauthorized UMAS message request

Unauthorized UMAS message response

Authorized UMAS message [i+ 1] request

Authorized UMAS message [i+ 1] response

Figure 7: An Injection of unauthorized UMAS message during authorized UMAS session

This is since addressReadLimiter is stored in a writable data memory segment (‘VM_STATE_WRITABLE’
state) and as such it can be modified using a properly signed ‘WritePhysicalAddress’ message.

Modifying the PLC memory over UMAS is available using reserved ‘WritePhysicalAddress’ (0x29) message,
see Tables 22, and 23 in the Appendix. Given that we can sign a reserved ‘WritePhysicalAddress’ message,
and inject it to the PLC, and since the addressReadLimiter is writable—then we can modify its value as
we desire. By doing so we can configure maxAddressAllowed to be the top of memory.

This attack has the following critical implications:

• It is now possible to read the entire memory over UMAS using the public non-reserved ‘ReadPhysical-
Address’ (0x28) message.

• In particular we can extract the pwdhash from the PLC memory (details omitted).

• We can read NoncePLCID
and NoncePCID

from a parallel session (details omitted).

• The new value of addressReadLimiter persists until the PLC reboots.

In other words: the attacker only needs to implement the MITM attack of Section 5.3 once, and within the
hijacked and reserved session, update the addressReadLimiter, and leave. It can now read the pwdhash,
and recreate the pass-the-hash attack of Section 5.2 at will. Furthermore, if when the attacker wishes to
connect there is an active reserved session, it can read that session’s nonces from PLC memory, and is able
to sign reserved messages.

6.2.1 Injecting Unauthorized UMAS Messages

If the attacker stole the nonces from a legitimate active reserved session, it is able to sign messages. Our
research revealed that in order to send such reserved messages to the PLC it is not strictly required to inject
them into the active session. Instead, the attacker can open a separate connection on TCP/502, and send the
signed messages through it. The PLC accepts such UMAS messages as long as the data and the signatures
within the packets are valid. This applies to both non-reserved and reserved sessions. Figure 7 illustrates
an injection UMAS message from an unauthorized and unreserved TCP connection, during an active session
between the PLC and the authorized management unit.

This behavior may possibly be reasonable for public non-reserved messages, but it makes the attacker’s
task much easier since injecting messages from a separate TCP connection does not require tracking and
compensating the TCP sequence numbers. We argue that accepting signed messages outside the reserved
session is redundant—there should be at most one reserved session at any time.
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PLC receives non-
reserved message

‘Function1’ :
call ‘Function1’1

‘Function1’1:
call ‘Function1’2

‘Function1’1:
call ‘shellcode’

‘Function1’2

‘shellcode’ :
execute; call
‘Function1’2

Figure 8: Two-step function pointer redirection of ‘Function1’. White rectangles are actions within code
memory regions, and grey rectangles are actions within data memory regions.

7 Attacks: Reaching Remote-Code Execution

As noted in Section 6.1, all the executable memory areas in the PLC firmware are write-protected at the
internal processor level. As a result, even valid reserved UMAS write messages cannot inject code into these
area. However, all the PLC data memory is executable, thus injecting shellcode over the network using
UMAS ‘WritePhysicalAddress’ is possible (once the attacker is able to sign messages): we only need to
locate a free writable memory region to store the shellcode. The only remaining challenge to achieve code
execution is the ability to trigger a jump to the shellcode.

Our reverse engineering efforts revealed two vulnerable indirect function calls where the function pointers are
located outside the write-protected code area and are writable: i.e., we found two function pointers in the
code memory that call a secondary function pointer in the writable area, which in turn point to functions
situated in the code memory area. These vulnerabilities are:

Vulnerability 4 (CVE-2024-8937): ‘Function1’1 secondary function pointer overwrite leads to code
execution over UMAS.

Vulnerability 5 (CVE-2024-8938): ‘Function2’ secondary function pointer overwrite leads to code exe-
cution over UMAS.

Both function pointers can be triggered with non-reserved UMAS messages. The exploitation requires over-
writing the secondary function pointers to point to the shellcode (via a reserved signed UMAS ‘WritePhys-
icalAddress’ command), and then sending a triggering non-reserved UMAS message (which varies for each
case).

7.1 Redirecting the Secondary Function Pointers
We discovered that these function are called through a two-step function pointer, where the first pointer
(‘Function1’1/‘Function2’1) is write-protected but the secondary pointer (‘Function1’2/‘Function2’2) is writable.
Details are omitted.

To exploit this, we modify the secondary function pointers (‘Function1’2 and/or ‘Function2’2) to execute our
shellcode, which then calls the original target function ‘Function1’ and/or ‘Function2’ respectively. A flow
diagram is shown in Figure 8 for ‘Function1’ (the same applies for ‘Function2’).

It is crucial to note that this function is in use in all firmware versions since v3.01. Therefore, the vulnerability
associated with exploiting calls to this function affects all these firmware versions.

8 Conclusions

In this paper showed that version v3.60 of the UMAS protocols, which was the most recent at the time
of writing, was vulnerable. We identified vulnerabilities through which we were able to masquerade as the
EcoStruxure Control Expert to the PLC, cryptographically sign messages, and inject any messages favourable

1The real function names in the firmware code are redacted.
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to the attacker. Moreover, we identified additional vulnerabilities in the M340 PLC’s memory management,
which in conjunction with the protocol vulnerabilities could be exploited to create read-anywhere and write-
anywhere primitives over the network. We demonstrated that these primitives could lead to remote code
execution. In many cases we also provided suggestions on how the vulnerabilities we identified might be
mitigated. We disclosed our findings to the vendor.

8.1 Schneider Electric Response
Schneider Electric verified all five reported vulnerabilities (and assigned the CVE numbers) and confirmed
the accuracy of the paper’s content. The company released firmware update 3.65 in November 2024 to
address the read-limit bypass and the two code-execution vulnerabilities, effectively disrupting the attack
chain. Furthermore, Schneider Electric recommend several mitigations: activation of memory protection on
the PLC, blocking unauthorized access to port Modbus/TCP and implementing a VPN, to defend against the
two other vulnerabilities. Two security notifications detailing our findings and the mitigations are published
on the Schneider Electric website: SEVD-2024-317-02 [9] and SEVD-2024-317-03 [10].

We sincerely appreciate Scheneider Electric’s collaboration handling the disclosure these vulnerabilities.
This partnership ensured that the disclosure process was handled responsibly, with a focus on protecting the
systems and the customers.
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A Message Formats

UMAS Session UMAS Block Address Size
header key function code ID offset
0x5A 0x00 0x20 ... ... ...
1 Byte 1 Byte 1 Byte 1 Byte 4 Bytes 2 Bytes

Table 6: The structure of ‘ReadMemoryBlock’ UMAS message request structure

UMAS header Session key ACK/NACK code Data
0x5A 0x00 0xFE ...
1 Byte 1 Byte 1 Byte Variable size

Table 7: The structure of ‘ReadMemoryBlock’ UMAS message response

UMAS header Session key UMAS function code Mode Reserver ID NoncePC Padding
0x5A 0x00 0x6E 0x02 reserverID ... 0x0000
1 Byte 1 Byte 1 Byte 1 Byte 4 Bytes 32 Bytes 2 Bytes

Table 8: The structure of ‘enhancedRsvMngt’ UMAS message

UMAS header Session key ACK/NACK code Magic NoncePLC

0x5A 0x00 0xFE 0xAAAA ...
1 Byte 1 Byte 1 Byte 2 Bytes 32 Bytes

Table 9: The structure of ‘enhancedRsvMngt’ UMAS message response

UMAS header Session key UMAS function code Mode Reserver ID DH_publicPC

0x5A 0x00 0x6E 0x03 reserverID ...
1 Byte 1 Byte 1 Byte 1 Byte 4 Bytes 256 Bytes

Table 10: The structure of ‘preEncryptedRsvMngt’ UMAS message request

UMAS header Session key ACK/NACK code Magic DH_publicPLC

0x5A 0x00 0xFE 0xAAAA ...
1 Byte 1 Byte 1 Byte 2 Bytes 256 Bytes

Table 11: The structure of ‘preEncryptedRsvMngt’ UMAS message response

UMAS Session UMAS Mode Reserver ID Enc_NoncePC AES_salt
header key function code
0x5A 0x00 0x6E 0x04 reserverID ... ...
1 Byte 1 Byte 1 Byte 1 Byte 4 Bytes 32 Bytes 16 Bytes

Table 12: The structure of ‘encryptedRsvMngt’ UMAS message request
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UMAS header Session key ACK/NACK code Magic Enc_NoncePLC

0x5A 0x00 0xFE 0xAAAA ...
1 Byte 1 Byte 1 Byte 2 Bytes 32 Bytes

Table 13: The structure of ‘encryptedRsvMngt’ UMAS message response

UMAS Session UMAS Reserver PC_name and PC Pad Authentication
header key function code ID auth_secret length name secret
0x5A 0x00 0x10 reserverID ... PC_name 0x00 auth_secret
1 Byte 1 Byte 1 Byte 4 Bytes 1 Byte Up to 64 Bytes 1 Byte 64 Bytes

Table 14: The structure of the ‘TryReserve’ UMAS message respone

UMAS Session ACK/NACK Generated
header key code session key
0x5A 0x00 0xFE rsvID
1 Byte 1 Byte 1 Byte 1 Byte

Table 15: The structure of the ‘TryReserve’ UMAS message reponse

UMAS Session UMAS Magic Buffer
header key function code number
0x5A rsvID 0x34 0x0001 ...
1 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes

Table 16: The structure of the non-reserved part of the ’UploadPacket’ UMAS reserved message request

UMAS Session ACK/NACK Buffer Buffer
header key code size data
0x5A rsvID 0xFE ... ...
1 Byte 1 Byte 1 Byte 2 Bytes Variable size

Table 17: The structure of the non-reserved part of the ’UploadPacket’ UMAS reserved message response

UMAS Session UMAS Magic Buffer Buffer Buffer
header key function code number size data
0x5A rsvID 0x31 0x0001 ... ... ...
1 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 2 Bytes Variable size

Table 18: The structure of the non-reserved part of the ‘DownloadPacket’ UMAS reserved message request

UMAS header Session key ACK/NACK code Magic
0x5A rsvID 0xFE 0x00
1 Byte 1 Byte 1 Byte 1 Byte

Table 19: The structure of the non-reserved part of the ‘DownloadPacket’ UMAS reserved message response

UMAS Session UMAS Address Size
header key function code
0x5A 0x00 0x28 ... ...
1 Byte 1 Byte 1 Byte 4 Byte 2 Byte

Table 20: The structure of the non-reserved ‘ReadPhysicalAddress’ UMAS message request
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UMAS Session ACK/NACK Size Data
header key code
0x5A 0x00 0xFE ... ...
1 Byte 1 Byte 1 Byte 2 Byte Variable size

Table 21: The structure of the non-reserved ‘ReadPhysicalAddress’ UMAS message response

UMAS Session UMAS Address Size Data
header key function code
0x5A rsvID 0x29 ... ... ...
1 Byte 1 Byte 1 Byte 4 Byte 2 Byte Variable size

Table 22: The structure of the non-reserved part of ‘WritePhysicalAddress’ UMAS message request

UMAS Session ACK/NACK
header key code
0x5A rsvID 0xFE
1 Byte 1 Byte 1 Byte

Table 23: The structure of the non-reserved part of ‘WritePhysicalAddress’ UMAS message response
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