
Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Backdooring Microchip
Microcontrollers

Sheila A. Berta - @UnaPibaGeek
October 11, 2018 - [11.10.18.22.33.00]

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Contents
INTRODUCTION .. 3

Microcontrollers vs Microprocessors ... 3

Why targeting microcontrollers is worth it? ... 4

MICROCONTROLLERS PROGRAMMING .. 5

IDE and ASM instructions set ... 6

Assemble process ... 6

Writing the .hex file to program memory... 7

DUMP THE PROGRAM MEMORY ... 8

PAYLOAD INJECTION: AT THE “ENTRY POINT” ... 14

Understanding a program structure .. 14

Cooking the payload ... 15

Injecting the payload .. 16

Checksum recalculation .. 17

ADVANCED PAYLOAD INJECTION: AT THE INTERRUPT VECTOR ... 20

GIE, PEIE and polling inspection to identify enabled interrupts ... 21

Let’s backdoor the EUSART (SCI) communication peripheral .. 23

Fixing jumps (GOTO and CALL) ... 25

STACK PAYLOAD INJECTION: CONTROLLING PROGRAM FLOW ... 27

STKPTR, TOSU, TOSH & TOSL ... 27

ROP chain ... 29

AUTOMATING PAYLOAD INJECTION ... 30

PROGRAM MEMORY PROTECTIONS .. 31

CONCLUSIONS ... 32

References.. 32

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

INTRODUCTION
In the last months there were many news about backdoors inside hardware boards due to the

alleged existence of a “tiny backdoor chip” infiltrated by China to American’s top companies.

Through the years many studies have been published addressing diverse ways of backdooring

devices by leveraging on their own hardware components. However, most of the existing

work focuses on backdooring devices based on powerful microprocessors, such as MISP,

ARM, Intel or AMD– instead of microcontrollers.

That is why this paper explains how microcontrollers can be backdoored too. Though the

examples will be based on Microchip devices, most concepts may be extended to other

hardware vendors.

Microcontrollers vs Microprocessors
Before talking about backdooring, it is highly necessary to understand the differences

between microcontrollers (MCU/µC) and microprocessors (MPU/µP). Often this comparison

looks confusing because a microcontroller has inside a microprocessor. However, if we talk

about an ARMv7 microprocessor and a PIC18F microcontroller, we are talking about different

things.

Those microprocessors that we are used to seeing inside our computers and smartphones,

such as ARMv8, Intel Core or AMD, are an entirely CPU (Control Processor Unit). There is not

difference between a microprocessor and a CPU. These kind of µP are designed to have great

processing capacity and high speed.

Every microprocessor needs basic components to work: RAM and ROM memories, and the

I/O busses. In the case of the microprocessors that we are talking about, these components

are physically separated, and the size of them (including the CPU itself) is bigger than a simple

microcontroller. Size and separated components explain the great processing capabilities of

microprocessors like Intel Core i*.

On the other hand, we have microcontrollers. As mentioned before, they use a

microprocessor, but it is not the only component inside them. The µC also has every

component which the µP needs to work. That means, inside a microcontroller we have the

CPU, RAM, ROM, I/O busses and other peripherals. As we can imagine, the fact that

microcontrollers are “putting it all together” in a very tiny space makes them with less

processing capabilities and slower than those microprocessors we were talking about.

To sum up, a microcontroller like PIC18F has a CPU inside it but it’s not like an ARMv8 or Intel

Core i* CPU, it is a smaller one with limited processing capabilities.

There are some others technical differences as well. For example, while most microcontrollers

use Harvard architecture, some microprocessors like ARMv7 still uses von Neumann. What’s

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

the difference? In the Harvard architecture the memory spaces for data and program are

separated; In von Neumann, program and data are in the same place. However, ARMv8 and

the latest powerful microprocessors implement a modified-Harvard memory organization.

The CPU architecture of microcontrollers usually is 8 or 16 bits, while most of microprocessors

mentioned before are 32 or 64 bits.

The assembly instructions set, memory addresses length and stack are different too. For

example, an µC from PIC18 family implements a 21bits program counter that is capable of

addressing a 2-Mbyte program memory space and has a stack able to store only up to 31 return

addresses (yes, it’s a very tiny stack). What happen if it gets overflowed? The PIC will reset

itself to start from the beginning of the program.

Finally, as well as assembly instructions for ARM processors are not like the ones for Intel/AMD

µP, the same happens in the world of microcontrollers. Every vendor has its own assembly

instructions for the CPU of their microcontrollers, this means that assembly for a Microchip

µC is not the same as the assembly for an Atmel µC.

After understanding the differences between µP and µC a question that could arise is: why

someone would use a microcontroller instead of a powerful microprocessor?

It is like comparing a Raspberry PI (ARM µP) to an Arduino (Atmel µC), both are useful devices

but used for different purposes. Powerful microprocessors are implemented on multi-tasking

devices, that need to run an entirely operative system. On the other hand, microcontrollers

are used for doing specific tasks, usually making the same work, dealing with the same kind

of inputs and outputs, like automatizing a routine.

Why targeting microcontrollers is worth it?
Though computers and smartphones are based on powerful microprocessors,

microcontrollers are responsible for controlling a wide range of systems, e.g., physical

security systems, car’s ECUs, semaphores, elevators, sensors, critical components of industrial

systems, some home appliances and even robots.

We can’t say that those devices are not interesting targets. Let’s backdoor them!

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

MICROCONTROLLERS PROGRAMMING
All microcontrollers need to be programmed, otherwise they will do nothing. As mentioned,

there is a CPU inside them, the CPU is able to execute every ASM instruction of a program

loaded in the microcontroller’s program memory.

The steps for programming a µC are the following:

1) Write your program for the µC in ASM or C.

2) Assemble your program (or compile it first if you wrote it in C).

3) Load and write your assembled program (It’s a .hex file) into the microcontroller’s

program memory using the specific software and hardware for this process.

4) Place your µC in your prototype board and test if everything works as expected.

The graphs below depicts this process:

Let’s analyze a little bit the main steps of microcontrollers’ programming. Understanding

some concepts of this process will help us in our goal of backdooring them.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

IDE and ASM instructions set
Due to microcontrollers can be programmed in ASM, you can use a simple notepad to write

your program if you want to. Like other programming languages, there is not an unique

software where you can write your programs. Some microcontroller’s vendors have their own

IDE, for example Microchip develops MPLAB X IDE (It’s free and works fine).

As mentioned at the beginning of this paper, every vendor has their own ASM instructions set

for the CPU of their microcontrollers. Before starting a program, you need to learn the

assembly instructions for your target device, keeping in mind that there could have a few

variations among families from the same vendor. For example, Microchip has at least three

big families: PIC12F, PIC16F and PIC18F, though most of the assembly instructions are the same

for the three families, PIC18F’s µC supports more and newer instructions than PIC12F’s µC.

Simple ASM code to turning on a LED

Though I love programming microcontrollers in ASM, I must tell you that from a few years ago

it is possible to program them in C. I don’t like programming µC in high level, but if you chose

that way, I wish you good luck with the compiler optimizer :-).

Assemble process
While you can use the IDE you want to write your ASM or C file for the µC, at the moment of

compiling and assemble it, you will need the compiler and assembler provided by the vendor

of your target device. This is due to the fact that only the vendors know the OpCodes which

the CPU of their microcontrollers understands to execute every assembly instruction of our

program.

For Microchip devices, MPLAB X IDE comes with mpasmx, which is the assembler for ASM

files. You can also download from Microchip’s website all C compilers and to integrate them

to the IDE if you have written your program in C.

Building your program on the IDE will generate the .hex file from its ASM/C source code.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Writing the .hex file to program memory
There are two necessary components to load and write your program into a microcontroller:

the programmer software and the programmer hardware. While both are provided by the

vendor of your target device, there are lots of 3rd-party solutions for doing this task, some of

them are open source and open hardware.

In the case of Microchip devices, the MPLAB IPE is the official programmer software. If you

are using the MPLAB X IDE, the programmer is already integrated there. This software is able

to communicate with the programmer hardware through an USB port of your computer.

There are some official hardware for programming PICs, one of the most popular is PicKit3.

Microchip development kit: programmer software (MPLAB IPE) + hardware (PicKit3)

MPLAB IPE (or MPLAB X IDE) and the PicKit3 hardware tool work together, both are necessary

to write the program memory of your microcontroller.

The steps to make the writing process are the following:

1) Connect the µC to the PicKit3 programmer connector.

2) Connect the PicKit3 to your computer through the USB port.

3) Open the MPLAB IPE or MPLAB X IDE software.

4) Load the .hex file of your program into the IPE/IDE.

5) Press “write” button to write your program into the microcontroller’s program

memory.

In the next section we will dive in these steps for one reason: you can write the program

memory as you can read it. Dump the program memory to an .hex file is the first step in our

goal of backdooring microcontrollers.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

DUMP THE PROGRAM MEMORY
We would not have the source code of the program inside a µC unless we were the authors.

However, it is possible to get the .hex file if we dump the microcontroller’s program memory.

For Microchip devices we will use the PicKit3 hardware, because it is not only the official tool

for doing this but also a cheap one, it costs around USD 40. Of course, we need the MPLAB X

IDE too, which can be downloaded for free from the Microchip’s website.

As mentioned in the previous page, the first step we must do is to connect the microcontroller

to the PicKit3 programmer connector. For that it is necessary to know two things: the pinout

of the PicKit3, and the pinout of the target device.

Microchip PicKit3 pinout

At the moment of connecting the microcontroller to the PicKit3, we need to match the pinout

correctly. Due to every µC has different pinout, it is always necessary to check its datasheet.

When “match” means to connect the Vpp/MCLR pin of the microcontroller to the Vpp/MCLR

pin of the PicKit3 and do the same with the other pins.

Below is shown an example of connecting a PIC16 to the PicKit3 (pin 6 is not necessary).

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Connecting a PIC16 to PicKit3 to be programmed or read

After connecting correctly our target device to the PicKit3, we must do the steps two and

three mentioned before: connecting the PicKit3 to your computer through the USB port, and

then, open the MPLAB X IDE.

At this moment we have at least two options:

- Erase the program memory and write our own .hex file there (“reflashing”).

- Dump the program memory to an .hex file.

If we choose the first way, the original program of the microcontroller will be lost, basically

we are re-programming the µC with whatever code we want. This option might be valid in

some cases, but it is not what we want to do now.

We choose the second way.

In the MPLAB X IDE, with the target device connected to the PicKit3 and this one connected

to our computer, go to File -> New Project.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

At this window we must select “Standalone Project”, inside the “Microchip Embedded”

category.

Next, it is necessary to specify our target device. Fortunately, getting this information is easy

because it is printed on the microcontroller.

If the PicKit3 is correctly connected to the computer, in the next window we will see it listed

below the category with its name.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

After choosing the PicKit3 tool, the wizard will ask us for the compiler, we will select mpasm.

However, we will not use any compiler because we will not develop anything. All we are doing

now is to specify our target device and the programmer tool to the MPLAB X IDE, in order to

let it knows what kind of hardware it has to deal with. So, just press next and write a name for

your project, then press finish.

Once the project is configured, the MPLAB X IDE will enable the buttons to write and read the

microcontroller’s program memory. Look for the option “Read Device Memory to File…”

located in the dropdown menu of the read button, at the top bar of the IDE.

Press this option to dump the program memory to an .hex file

Be careful to do not make a mistake by choosing “Read EE/Flash data memory” because it is

another memory of the µC, please check the references of this paper to know the differences.

Read the microcontroller’s program memory will take a few seconds, when the process

finishes, the IDE will ask us where we want to save the .hex file. Just select a folder in your

local computer.

After that, right click on the project we have created and press “Add Existing Item…”

Add the dumped file (.hex) to the project

Look for the file we have dumped from the target device and select it, we are going to add

the .hex file to the project in order to open and read it.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Once it is loaded on the project, double click on it and go to Window -> Target Memory Views

-> Program Memory.

This going to show us the Program Memory letting us to select the “code” format view instead

“hex”.

Disassembly code view in MPLAB X IDE

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

The program we have disassembled is very tiny, it has only five ASM instructions. Let’s

compare with its source code:

-

Assembly source code vs disassembly code

It is almost equal! From memory address 0x06 to 0x0E we find the five assembly instructions

of the program. The word “ACCESS” after some of them just indicates it is a Data Memory

access. Remember, as mentioned at the beginning of this paper, microcontrollers implement

Harvard architecture, which means that program memory and data memory are separated.

Inside the data memory there are SFR (Special Function Registers) and GPR (General Purpose

Registers), PORTD and TRISD belongs to SFR.

Bigger programs look good too, the disassembler makes a clever work because it is from

Microchip and we are working on a Microchip device. Nobody knows how to read the

OpCodes better than their own developer.

Of course, now that we can see the OpCodes we can map these five assembly instructions in

the .hex file.

Mapping the OpCodes in the .hex file.

Something looks inverted? Yes! The OpCodes’ bytes are inverted. Like most CPUs,

microcontrollers use the “Little-Endian” format to store bytes in memory.

Rewinding a little bit, if you are a good observer, you would have noticed in the disassembler

image that in the first line (0x00 address) there is a “GOTO”. Why is that GOTO there? Why

the code does not just start in the first instruction written by the developer? That is a good

question. In the next section we will analyze the structure of a Microchip µC program to get an

answer and find a good place to inject the payload of our backdoor.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

PAYLOAD INJECTION: AT THE “ENTRY POINT”
When injecting a payload into a binary or process, it is necessary to find a place where the

payload get executed at least once. In this case we need it too, now that we have dumped the

program memory of our target microcontroller, the next step is to find a place inside it where

we could inject the payload of our backdoor. Where would be a good place? At the beginning?

At the end? In the middle?...

Understanding a program structure
Let’s analyze a program standard structure of a Microchip device. Understanding how they

are structured from a developer viewpoint will be helpful for finding the right place for our

payload.

PIC program structure

The graph above depicts a standard structure of a Microchip program. The firsts four sections

are self-explained, but we will talk about these ones later if necessary. For now, let’s focus on

the “reset vector” at the address 0x0000, every Microchip program have this declaration in

its source code and always is followed by a “GOTO START”.

Do you remember the “GOTO 0x6” we saw in the previous disassembly? It is this!

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Reset vector at memory address 0x0000

Due to this little program does not use interruptions, the “GOTO” in the reset vector is a very

short jump. In bigger programs which include interruption routines, this GOTO will be there,

at the 0x000 address, but probably making a longer jump.

The reset vector is invoked when the microcontroller starts, and in some other circumstances

like watch dog timer overflow, stack overflow, and other things that might need to produce

a reset.

Whatever address the reset vector is jumping, we can consider it like an entry point, because

the program will start there. The instructions immediately after the entry point will be always

executed, so… this might be a good place for putting our payload.

In this case, the entry point is located at 0x6 memory address.

Cooking the payload
Of course, we need a payload. What we want to inject? For a first Proof of Concept, our little

payload will be two ASM instructions: one for making a µC pin as an output, and the second

one for turning on the LED in that pin.

The ASM instructions will be the following ones:

BCF TRISD,7 // Set pin as output
BSF PORTD,7 // Turn LED on

However, we need the OpCodes of those instructions. How can we get them? An option is to

write all the instructions of our payload in a .asm file inside a simple standalone project in the

MPLAB X IDE and then compile it. The compilation generates the .hex file in the folder of the

project (check out the full path in the compilation window output).

After that, open the .hex file in the MPLAB X IDE project and go to Window -> Target Memory

Views -> Program Memory.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Get the OpCodes of our payload

From the image above, we can get the OpCodes:

9E95 = BCF TRISD,7
8E83 = BSF PORTD,7

Remember the little-endian format. So, our payload will be: 959E 838E.

Injecting the payload
Let’s back to the original .hex dump of our target microcontroller, make a copy of the file

and rename it to “backdoored.hex”, we will start to work there.

Remember that the original program memory is the following:

Original program memory

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Now we must inject the four bytes of our payload, we will place them at the entry point. It

entails a shift right of the bytes. Beware of the checksum (it is the last byte of every line) it

must not to be moved, we will recalculate them later.

Payload injected (without checksum recalculation yet)

As we can observe in the picture above, the payload was injected at the entry point and the

original bytes have been shifted to right.

Checksum recalculation

Before saving changes, we must recalculate the checksum for each line modified. As

mentioned, the checksum is the last byte of the line, due to have altered the two first lines,

we have to recalculate the checksum for both them.

To get the checksum we will do the following math:

Sum(bytes on the line) = Not +1 = checksum

From the checksum we will take just the last byte of the outcome.

For example, for our first line the math is:

10+00+00+00+03+EF+00+F0+00+00+95+9E+83+8E+83+6A+00+0E+95+6E = 0x634

Not(0x634) = 0xFFFF 0xFFFF 0xFFFF 0xF9CB

0xFFFF 0xFFFF 0xFFFF 0xF9CB + 1 = 0xFFFF 0xFFFF 0xFFFF 0xF9CC

Checksum = 0xCC

Just make the same math for the second line of the .hex file to get the other checksum. If you

don’t like math, you can use an online “hex checksum calculator” like this. After all, the new

checksum for the two modified lines are: 0xCC and 0xFD respectively.

After making a payload injection, it is necessary to fix the checksum

https://www.fischl.de/hex_checksum_calculator/

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Everything is ready. Save the changes in the .hex file and load it on the MPLAB IPE or MPLAB

X IDE to programming the target device with this new backdoored file!

Writing the backdoored .hex file to the microcontroller

In the original program, one LED is turned on and stays that way. With our payload, we turn

on another LED. Though this is executed once, the only LED that remain on is the original one.

Original LED turned on

Why this happen? Let’s check the disassembly code of our backdoored file:

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Disassembly of the backdoored .hex file

Casually, there is a CLRF PORTD instruction cleaning our trash! This might be fine, or maybe

not. If we want to keep the second LED turned on, we must overwrite the CLRF PORTD

instruction (OpCode: 0x6A83) with NOPs. The OpCode of a NOP is 0xF000.

CLRF PORTD instruction overwritten with NOP. Checksum recalculated too.

And now…

Both LEDs stay on.

Cool! Remember you can overwrite with NOPs (0xF000) whatever instruction that could be

bothering you.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

ADVANCED PAYLOAD INJECTION: AT THE INTERRUPT

VECTOR
Injecting the payload at the entry point is a good option because we can be sure that it will be

executed at least once. However, we could prefer to get our payload executed not when the

program starts but when a specific action occurs, possibly encouraged by a peripheral. It

might be an interruption.

In big programs, there will always be interruptions. That's because most of the tasks that a

microcontroller can perform, trigger interruptions to alert that something happened. For

example the internal timers, A/D converters, TX and RX busses of different communication

protocols as well as other hardware peripherals make use of interruptions.

When an interruption is triggered, the microcontroller stops whatever is doing and go to the

“interrupt vector” usually located at the 0x0008 address (though newer µC have two interrupt

vectors: high priority at 0x0008 and low priority at 0x0018 while in older µC the interrupt

vector might be located at 0x0004).

In the graph at “understanding a program structure” section, we saw where the interrupt

vector is. Let’s check that graph again focusing in this part, with a little bit more of details.

Interrupt vector and program execution flow when an interruption occurs

We can observe the execution flow when an interruption occurs. No matter what the µC was

doing, when an interruption is triggered, it will go to the interrupt vector. Once there, a

procedure known as “polling” is used to detect who triggered the interruption. After the

corresponding code routine is executed, the RETFIE instruction throw back the program

counter to the main code at the address immediately after the one executed before the

interruption occurs.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

GIE, PEIE and polling inspection to identify enabled interrupts
As mentioned, a Microchip microcontroller has the SFR (Special Function Registers), some of

them aims interruptions handling. When a program is using interruptions, the bits GIE and

PEIE of the INTCON register will be set to one.

Bits of the INTCON register

In ASM, it looks like:

BSF INTCON, GIE // Set GIE to 1
BSF INTCON, PEIE // Set PEIE to 1

These two instructions will be once in the program code if it is using interruptions. So, when

we dump a program memory, we can look for these instructions in the disassembled .hex file

in order to know if interruptions are being used.

If so, it is possible to know which interruptions are enabled by observing the polling at the

interrupt vector. For every peripheral that could trigger an interruption there are two bits

inside a special register: IE (Interruption Enabler) bit and IF (Interruption Flag) bit. As an

example we can quote the Timer0 interruption bits which are TMR0IE and TMR0IF, both

located at the INTCON special register. If the program wants to use this timer, it must set the

TMR0IE bit to 1 for enabling timer’s interruption; when it triggers one, the TMR0IF will be set

to 1, while not, this flag will be to 0.

Due to the fact that in the latest microcontrollers there are too many peripherals, special

registers PIE1, PIE2 and even PIE3 have bits for interruption enabling while PIR1, PIR2 and PIR3

have their respective interruption flags.

In the polling process at the interrupt vector, the IF of every peripheral being used is tested to

know which of them triggered the interruption. Basically, the program tests: is TMR0IF to 1? If

not… is INT0IF to 1? If not… is RBIF to 1? And so on, not with all IF bits but only with the

peripherals which its interruption has been previously enabled by its corresponding IE bit. It

might be just one or two of all them.

In the following images, we can see what a polling process looks like in the assembly source

code and its corresponding disassembly. This is the way it is implemented in all microchip

microcontrollers because is how it should be done according to the official documentation.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

--

Interrupt polling. ASM source code vs disassembly.

The assembly instructions BTFSS and BTFSC test if a bit is 1 or 0 respectively and if so, the

instruction below will be skipped. At the polling process, BTFSC (Skip if Clear = zero) is used

for testing the IF of every peripheral that could have triggered the interruption. If the IF is 0,

the “CALL” will be skipped and another BTFSC instruction will be used to test the next

interruption flag. When the IF set to one is found, the corresponding CALL to the interruption

routine (immediately after the BTFSC) will be executed. This CALL jumps to the first ASM

instruction of the code routine that must be executed for that specific interruption.

In assembly it might look a little bit confusing, but it is easy, think it like a bunch of “if”

conditions:

The interrupt polling is like a bunch of “if” conditions testing the interruption flags.

By inspecting the interrupt polling in the disassembly code of a program memory dump, we

are able to know which peripherals are being used by the microcontroller. However, there are

two things that look different in comparison to the source code, let’s analyze them:

First, while in the source code we can see BTFSC PIR1, RCIF in the disassembly we see BTFSC

PIR1, 5. Why? The disassembler is showing us the bit inside the PIR1 register, instead the name

of that field. It is not a problem because every microcontroller is well documented. So, the

only thing that we must do is to check the datasheet of our target device.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Check out the datasheet to know what IF any given bit is.

The second difference is on the CALL instruction. While in the source code we can see CALL

RC, in the disassembly we see CALL 0x48. It is an obvious difference because in the IDE, the

developer specifies a CALL or GOTO to somewhere by writing a label, after the assemble

process, those labels are translated to memory addresses. This neither is a problem because

in the program memory view is shown the memory address of every ASM instruction.

At this moment, we have discovered what peripherals are being used by the microcontroller

as well as where the code routine of each one starts (by following their respective CALL). With

that knowledge we are able to inject a payload that will be executed when our target

peripheral triggers an interruption, that means, when the peripheral is used by the µC.

Let’s backdoor the EUSART (SCI) communication peripheral
The RCIF at the interruption polling is telling us that the microcontroller is using the EUSART

(SCI) peripheral for external communications. When data is received and the buffer gets filled

up, this peripheral triggers an interruption which puts the RCIF to 1. At the polling, the CALL

instruction below the BTFSC RCIF, drives to a code routine that will be executed every time

the RX buffer is filled up with data.

In this case the memory address called is 0x48; due to the instruction at that memory address

will be the first one to get executed when this interruption occurs, we should place our

backdoor there, if we want to make something with the data received by this peripheral.

How can we find the offset of a specific memory address in the whole .hex file dumped from

the µC program memory? We need locating the 0x48 address, for every line in the .hex file we

can see the base memory address, it helps a lot to locate memory addresses in big programs.

Location of the memory address 0x48 in the .hex dump

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

In fact, if we check the disassembly view of our .hex dump file, the OpCode matches.

Disassembly view of the memory address 0x48

We could inject a payload that makes a relaying of the received data to a TX peripheral which

we are able to monitor externally. For that, we should use the following ASM instructions:

MOVF RCREG, W // Move the received data to “W” register
BSF TXSTA, TXEN // Enable transmission
BCF TXSTA, SYNC // Set asynchronous operation
BSF RCSTA, SPEN // Set TX/CK pin as an output
MOVWF TXREG // Move received data (in W) to TXREG to be re-transmitted

As is known, we need the OpCodes of these instructions to make our payload. They are
observed in the next image.

Payload OpCodes

Remember the little-endian format, we should inject the OpCodes in the following order: AE50

AC8A AC98 AB8E AD6E. In this case we have to place this payload at the 0x48 memory address

(the beginning of RC interruption routine).

--

Backdooring the RC interruption routine for relaying the received data to other peripheral

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Fixing jumps (GOTO and CALL)

At the moment of injecting a payload (at wherever place), we make a shifting of bytes that

could affect the CALL and GOTO instructions of the original program, because they are now

jumping to memory addresses whose original bytes have been shifted. In our first PoC, this

affected only the last GOTO instruction and the program worked anyway, however, in larger

programs like the one we are injecting now, this is a real problem that we must solve.

After payload injection, CALL and GOTO instructions might be jumping to wrong memory addresses

In the picture above, we can see the CALL instruction still jumping to the 0x10 memory address

when it should be jumping -after payload injection- to 0x16. We must not worry about the

execution of our payload because it will be loaded by another CALL probably located at the

interrupt vector, but we have to fix all the CALL and GOTO instructions in the main code to

avoid a flow corruption.

The instructions of PIC18 family are 16 bits in length. In case of GOTO/CALL instructions, 8bits

are used for the OpCode + 8bits for the offset where it has to jump to. However, if we need

to jump more than 255 positions, these instructions borrow a byte from a NOP, since a NOP

does not need operators, it uses only one byte.

Let’s see some examples, keep in mind that the GOTO and CALL OpCodes are EF and EC

respectively. On the other hand, F0 is the NOP OpCode.

EF06 F000 // GOTO jumping to 0x06 offset (0x0C memory address).

EC67 F004 // CALL jumping to 0x467 offset (0x8CE memory address).

OpCodes of CALL instruction jumping to 0x8CE (0x467 offset)

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

Now that we know how CALL and GOTO instructions work, we are able to fix those whose

have been corrupted after the payload injection in the original .hex file. It is necessary to fix

those “jumps” to memory addresses located after the one we have injected the payload.

In this case we have injected the payload at the memory address 0x48. This means that we

must fix every jump to a memory address above 0x48, by doing an offset recalculation

keeping in mind the payload length (10 bytes in this case). For example, if we have a CALL

0x56 (EC2B F000), we must change it to CALL 0x60 (EC30 F000).

Three CALL instruction got fixed

After that, we are able to make the checksum re-calculation and load our backdoored .hex file

to the program memory of the target device.

To sum up, we got the memory address where the RC interruption routine starts (which is

executed every time the data buffer is filled up), by inspecting the polling at the interrupt

vector. With that, we were able to inject a backdoor to manipulate the received data by this

peripheral and make a re-transmission to another one that we can monitor externally. In fact,

if we listen to the TX using an external EUSART interface, we can see the data handled by the

microcontroller thanks to our injected payload.

After backdooring the program memory, we can see the data handled by our target peripheral

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

STACK PAYLOAD INJECTION: CONTROLLING PROGRAM FLOW
All families of Microchip microcontrollers have PUSH and POP instructions to increment or

decrement the stack pointer by two. Keeping in mind that the stack can store up to 31 return

addresses, with only those instructions we probably will not be able to make something

interesting from an attacker viewpoint. However, in high-performance microcontrollers

(PIC18F and newer) the story is different, now we have direct access to the stack data in

writable mode.

It means that we are able to modify the TOS (Top Of Stack) writing any memory address

where we want to jump to when a “return” is executed. Basically, we can alter the execution

flow making redirections to whatever location we had in the original program.

This opens us at least two fun alternatives: on one hand we could place our payload anywhere

and then write the TOS with the corresponding memory address followed by a return, in every

place we want our payload to get executed. On the other hand, we can perform something

similar to a ROP-chain writing the TOS with memory addresses from the parts of the code we

want to execute, creating the payload with the instruction already written.

STKPTR, TOSU, TOSH & TOSL
There are four SFR (Special Function Register) to manipulate the stack. The first one is STKPTR

which contains the value of the Stack Pointer. While TOSU, TOSH and TOSL registers compose

the “top of stack” data. The following graph depicts the stack and an example of possible

values in these registers.

STKPTR represents the stack pointer while TOSU, TOSH and TOSL compose the TOS data

In practical implementation, we need to increment the STKPTR, write the TOSU, TOSH and

TOSL with the memory address where we want to jump to, and finally execute a return.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

The assembly code would be like the following one:

INCF STKPTR,F // Increment stack pointer register
MOVLW 0x00
MOVWF TOSU // Write 0x00 in TOSU
MOVLW 0x0C
MOVWF TOSH // Write 0x0C in TOSH
MOVLW 0x72
MOVWF TOSL // Write 0x72 in TOSL
RETURN

In the above code example, the program will jump to 0x000C72 memory address, starting to

execute the ASM instructions located there. In the next picture we can observe the assembly

and disassembly version of this code, jumping to 0x000024.

Writing the TOS (Top Of Stack) to make a flow redirection to 0x000024.

From an attacker viewpoint, the memory address 0x000024 might be the location of our

payload previously injected or a gadget to be executed.

As observed in the image above, to alter the stack data we should inject the following

opcodes: FC2A 000E FF6E 000E FE6E 240E FD6E 1200 (in red those bytes which compose the

memory address to jump to). As another example, if we want to jump to 0x001C27, the

OpCodes to be injected would be: FC2A 000E FF6E 1C0E FE6E 270E FD6E 1200.

Code injection to manipulate the stack and alter the program flow.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

ROP chain
As a first step to executing a ROP chain, we need to find all the necessary gadgets in the

firmware. All gadgets must end in RETURN or RETLW to continue executing the others in the

correct way. In the image below is observed a possible gadget at the memory address 0x0040.

This gadget starts at the memory address 0x0040 and ends at the 0x0046.

After finding all the gadgets (parts of the code ending with a return) that we want to execute,

it is possible to assemble the ROP chain with all the memory addresses where each of the

gadgets starts.

ROP gadgets:

 0x0060 = 0xFC2A 00 0EFF6E 00 0EFE6E 60 0EFD6E
 0x0058 = 0xFC2A 00 0EFF6E 00 0EFE6E 58 0EFD6E
 0x0050 = 0xFC2A 00 0EFF6E 00 0EFE6E 50 0EFD6E
 0x0048 = 0xFC2A 00 0EFF6E 00 0EFE6E 48 0EFD6E
 0x0040 = 0xFC2A 00 0EFF6E 00 0EFE6E 40 0EFD6E
 0x0038 = 0xFC2A 00 0EFF6E 00 0EFE6E 38 0EFD6E
 0x0030 = 0xFC2A 00 0EFF6E 00 0EFE6E 30 0EFD6E
 0x0028 = 0xFC2A 00 0EFF6E 00 0EFE6E 28 0EFD6E

 RET = 0x1200

Microcontrollers have a LIFO stack too, it means that -in this case- the first gadget to be

executed will be the one at the memory address 0x0028 (the last one injected in the ROP

chain). In the firmware, the injected ROP chain will look like the following one:

ROP chain injected in the microcontroller’s firmware.

To sum up, we learned how to play on the stack of a target microcontroller and alter the

program flow to our convenience, in order to execute a payload injected or make a chain of

parts of code to be executed.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

AUTOMATING PAYLOAD INJECTION
Wherever place we put our payload, it is necessary to fix the CALL and GOTO jumps and

recalculate the checksum of every altered line in the .hex file. In large programs, doing this

process manually might be tedious. That is why I developed an open source tool for

automatizing payload injection.

As parameters, this tool takes the original program memory (.hex dump) as input, the payload

to be injected along as the memory address where it must be placed, and the name of the

backdoored file as output.

For example:

--input /path/to/memory_dump.hex
--payload AE50AC8AAC98AB8EAD6E
--address 0x5CE
--output /path/to/new/backdoored_file.hex

UCPI is a tool for backdooring a microcontroller program memory

As observed, it places the payload at the memory address specified by the parameter “-a”.

Then, fixes all CALL and GOTO jumps and makes the checksum recalculation, generating the

new backdoored file as output.

You can download this tool from the following Github: https://github.com/UnaPibaGeek/UCPI.

https://github.com/UnaPibaGeek/UCPI

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

PROGRAM MEMORY PROTECTIONS
From a security point of view, we can’t avoid that someone overwrites the whole program

memory of our microcontroller. However, we can protect it from memory dumps and with

that avoid payload injections like the ones we learned in this paper.

The famous Code Protection bit will not protect your program against memory dumps. If you

assemble it with the following config directives, memory dumps will work and someone else

will be able to disassemble your program.

Enabling these CP bits won’t protect your code from memory dumps

If you want to protect your microcontroller from memory dumps, you must enable the CPB

(Boot protection) and CPD (Data protection) bits at the beginning of your program, before

the main code, where configurations bits are set (check out the graph of program structure

at “understanding a program structure” section).

--

Enabling boot and data protection

As observed in the images above, when we enable the CPB and CPD bits, memory dumps will

fail, showing just 00’s instead the right program code.

Backdooring Microchip Microcontrollers 2.0 – Sheila A. Berta (@UnaPibaGeek)

CONCLUSIONS
I hope this paper help you on your way to learning about microcontrollers and lets you get

some fun by backdooring them :) Thanks for reading.

Sheila A. Berta - @UnaPibaGeek.
Offensive Security Researcher.
shey.x7@gmail.com.

References

 [1] https://medium.com/@aploopve/microcontroladores-vs-microprocesadores-9e8c7edfb746.

 [2] https://www.sparkfun.com/datasheets/Programmers/PICkit_3_User_Guide_51795A.pdf.

 [3] https://www.microchip.com/doclisting/TechDoc.aspx?type=datasheet.

 [4] http://www.microcontrollerboard.com/pic_memory_organization.html#3Types.

 [5] http://www.t-es-t.hu/download/microchip/an818a.pdf.

 [6] http://ww1.microchip.com/downloads/en/devicedoc/40001303h.pdf.

https://www.twitter.com/UnaPibaGeek
mailto:shey.x7@gmail.com
https://medium.com/@aploopve/microcontroladores-vs-microprocesadores-9e8c7edfb746
https://www.sparkfun.com/datasheets/Programmers/PICkit_3_User_Guide_51795A.pdf
https://www.microchip.com/doclisting/TechDoc.aspx?type=datasheet
http://www.microcontrollerboard.com/pic_memory_organization.html#3Types
http://www.t-es-t.hu/download/microchip/an818a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/40001303h.pdf

