
WebAuthn 101
Demystifying WebAuthn

Blackhat 2019

2

Agenda

MFA - a spectrum of
assurance

Enter WebAuthnPasswords aren’t
enough

301
Passwords
aren’t enough

4.3B+
Credentials leaked

in dumps

110M
Accounts proactively

re-secured

17%
Minimum password

reuse rate

Data breaches, phishing, or malware? Understanding the risks of stolen credentials (Thomas et al.)
ai.google/research/pubs/pub46437

99.9
Source: Google

Sources of stolen
passwords

Phishing Keyloggers Data breach

Password reuse is
the largest source

Phishing is the most
dangerous source

The black market fuel
account compromise

91
80 of attacks on businesses

include phishing

of information security
attacks start with phishing

Source: PhishMe study, cofense.com/enterprise-phishing-susceptibility-report/
Source: UK govt, The Cyber Security Breaches Survey 2019

Phishing overtook
exploit-based
malware in 2016

Source: Safe Browsing (Google Transparency Report)

Exploit malware and phishing sites detected each week

80000

60000

40000

20000

0
2010 2012 2014 2016 2018

Malware

Phishing

success rate for
a well designed
phishing page*

of account vulnerabilities
were due to weak or stolen
passwords**

*Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials, 2017
**Verizon 2015 Data Breach Investigations Report

43% 76%

1102
MFA - a
spectrum of
assurance

MFA It’s a spectrum of assurance

SMS / Voice Backup codes Authenticator
(TOTP)

Mobile Push FIDO security keys

Assurance

Many different types of MFA exist, all providing different levels of assurance and convenience

Phishing-resistant

Titan Security Key

Enhanced account protection
Phishing-resistant 2nd factor of
authentication that verifies user’s identity
and sign-in URL

Trusted hardware
Includes a secure element with
firmware written by Google to verify
the key’s integrity

Open ecosystem
Works with popular browsers and a
growing ecosystem of services that
support FIDO

Now, your Android phone
is also a security key

Enhanced account protection
Strongest 2FA protection against phishing

Easy to use
Simple, one-time enrollment process, no app required

Convenient for users
Use the phone which is already in your pocket

Today

With phone’s
built-in security key

challenge, “google.com”

Server

How Security Keys work

Who’s calling?

sign:
{challenge, “google.com”}

{challenge, “google.com”}signed

Alice’s Security
Key

Challenge was: 123456
Origin was: google.com Alice’s Key

 https://www.google.com

5

challenge

1

6

2

3

4

Created with
open standards

Server

USB/NFC/BLEWho’s calling?

 https://www.google.com

 https://www.google.com

Created with
open standards

Server

USB/NFC/BLEWho’s calling?

 https://www.google.com

 https://www.google.com

WebAuthn API

Created with
open standards

Server

USB/NFC/BLEWho’s calling?

 https://www.google.com

 https://www.google.com

WebAuthn API

CTAP API

1903
Enter WebAuthn

Introducing
WebAuthn

+
A W3C specification* (Web API)
that allows websites to interact
with authenticators

* https://github.com/w3c/webauthn

https://github.com/w3c/webauthn

What is WebAuthn? How does it relate to FIDO2?

WebAuthnCTAP

FIDO2

Client
(Computer, phone)

Built-in authenticator
(fingerprint)

Remote server
(Website)

Removable authenticator
(Phone, security key)

WebAuthn: two use cases

username

password

user@gmail.com

1. “Bootstrapping” - security key as a 2nd factor 2. “Re-authentication” - biometrics as a way
to simplify verifying a returning user

+

Implemented
on Android

Keymaster

 Biometrics

FIDO module

Chrome myApp...

www

Green: Your app can directly talk to the key
store to store and use cryptographic keys
Red: Your app can directly talk to the
biometric APIs

OR

Blue: Your app and website can talk to the
FIDO/WebAuthn APIs that abstracts the
keystore and biometric APIs

FIDO server

Meet Elisa

Elisa wants to sign in to her bank

She starts on her mobile browser
and enrolls in fingerprint after
sign-in

Registering built-in authenticator for re-auth (mobile web)

Elisa opens launches her
mobile browser, Chrome,
and goes to Tri-Bank

1. Registering built-in authenticator for re-auth (mobile web)

She signs in with her
username and password

1. Registering built-in authenticator for re-auth (mobile web)

1. Registering built-in authenticator for re-auth (mobile web)

Tri-Bank shows a promo
asking Elisa if she wants to
opt in to fingerprint to sign in

She opts in and continues to
her account

What happened behind the scenes?

Silently determined whether a platform authenticator was available:
PublicKeyCredential.isUserVerifyingPlatformAuthenticatorAvailable().then(resp

onse => {

 if (response === true) {

 //User verifying platform authenticator is available!

 } else {

 //User verifying platform authenticator is NOT available.

 }

What happened behind the scenes?

Created the credential on the platform authenticator
navigator.credentials.create({

 "publicKey": PublicKeyCredentialCreationOptions

 });

What happened behind the scenes?

With values for PublicKeyCredentialCreationOptions

○ excludeCredentials = [// add any already registered ids]

○ authenticatorSelection.authenticatorAttachment = 'platform'
// other options: ‘cross-platform’

○ authenticatorSelection.userVerification = 'required'
// other options: ‘discouraged’ or ‘preferred’

Elisa comes back to Tri-Bank
in another session

The next time Elisa opens
Tri-Bank on mobile browser,
she gets a fingerprint dialog

Since the user already signed in on this device, the credential ID is encoded in the cookie
and the RP requests the “internal” transport only (since they don’t want the user to see
prompts about external authenticators).

Using only her fingerprint,
she’s able to sign in
without using her
username + password
on mobile web

What happened behind the scenes?

Created a signature using the platform authenticator
navigator.credentials.get({

 "publicKey": PublicKeyCredentialRequestOptions

 });

With values for PublicKeyCredentialRequestOptions
○ allowCredentials = [// credential associated with session]
○ userVerification = true

2a. Using built-in authenticator for re-auth (mobile web)

Elisa downloads Tri-Bank
from the Play Store

She launches the app for the first time
to sign in to check her funds

She installs Tri-Bank
from Google Play Store
and opens the app

Elisa chooses
“Sign In” and enters
her username

Elisa is now asked to
authenticate with the
fingerprint dialog

What happened behind the scenes?

Created a signature using the platform authenticator
Fido2ApiClient fido2ApiClient = Fido.getFido2ApiClient(this.getApplicationContext());

Task<Fido2PendingIntent> result = fido2ApiClient.getSignIntent(requestOptions);

With values for requestOptions
○ allowCredentials = [// credential associated with session]
○ userVerification = true

Case study: Yahoo! JAPAN
Reauth using fingerprint reduced
time to sign-in by ...

comparing to that of using a password.

37.5%

Case study: Google
98% of biometric reauth users finish in 38s
98% of all users enter password in 150s

VS

Does not exist
in biometric

Google Internal Data: 2018

Implement WebAuthn today!
● Play with our FIDO server

webauthndemo.appspot.com

● Implement WebAuthn Create and Get methods
codelabs.developers.google.com/codelabs/webauthn-reauth/

● Link your Android app for a seamless login experience
codelabs.developers.google.com/codelabs/fido2-for-android/

https://webauthndemo.appspot.com/
https://codelabs.developers.google.com/codelabs/webauthn-reauth/
https://codelabs.developers.google.com/codelabs/fido2-for-android/

44

Q&A

