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Brief ing Abstract

Security researchersandpractitionershaveproposedmanytechniques forsecurelystoringandquery-
ing outsourced data. In this report, we first provide an overview of common building blocks and the
latest commercial and academic solutions, focusing on those that support range queries (e.g., select-
ing all records where the age attribute is between 18 and 65). These techniques are tailored to specific
threat models. For example, if the database server is trusted but not the network, connections can be
encrypted with TLS. If the database server is trusted but there is a risk of disk theft, full-disk encryption
or page-level encryption of database files and logs (e.g., Transparent Data Encryption) can be enabled.
If the database server is not trusted at all, a system that encrypts all data before uploading it (e.g., via a
CipherCloud gateway or CryptDB proxy server) could be employed.

All of these solutions, however, leak some information when a query is processed – like the set of
recordsmatching the query, or the size of this set. This information leaks even to an observer who does
not have any cryptographic keys. The source of the leakage can vary; it could be network traffic, ob-
servedmemory accesses, or database logs recovered by forensic analysis. This leakage can be exploited
by an attacker to break the encryption and recover values in the database. These attacks are entirely
generic and do not depend on the database implementation. They have connections to graph theory,
Golomb rulers, andmachine learning. We also discuss proposed countermeasures and offer guidelines
that practitioners canusewhenassessing the security claimsof the latest andgreatest database encryp-
tion solutions.

Context and Motivation

Many organizations store our sensitive information, such as medical history, financial records, or personal
correspondence. However, they are often breached: billions of these records have leaked in 2019 alone [35].
Data breaches have become so common that there are now services, like have i been pwned [16] that will
check if your email address or user ID has appeared in a leak.

Security and privacy researchers have investigated ways to make these leaks less harmful while keeping
whatever functionality is needed on the stored data. For instance, is there a way to encryptmedical records
so that policymakers can still efficiently query the data to look for trends andmake decisions, but someone
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who runs offwith the harddrive gets only gets useless, encrypteddata? Could transaction logs be encrypted
in such a way that a curious data center employee does not get access to the data even though they have
system administrator privileges on the database server?

It is important to analyzeproposed cryptographic techniques thoroughly; believing that data is securewhen
it is not could be catastrophic. This report is about how leakage from encrypted databases can still be ex-
ploited by an adversary.

The work presented in this report was carried out jointly by the author and Paul Grubbs, BriceMinaud, and
Kenny Paterson, at Royal Holloway, University of London. The attack on access pattern was published in
the proceedings of IEEE Security and Privacy 2019 [12] and also available on the IACR’s Cryptology ePrint
Archive [13]. The attack on volume leakagewas published in the proceedings of theACMSIGSACCommuni-
cations and Computer Security conference 2018 [14] and also available on ePrint [15].

Introduction: Side-Channel Attacks

As an introduction to encrypted database attacks, consider the (perhapsmore familiar) notion of side chan-
nel attacks. Side channels are classes of vulnerabilities that arise from the implementations of algorithms
or protocols, not the designs of the algorithms or protocols themselves. For example, if two people are hav-
ing a conversation, a side channel could be anything other than the spokenwords, like tone of voice, volume
of speech, who the two speakers are, the duration of the conversation, when the conversation happens, or
the speakers’ body language. When communication occurs betweenmachines instead of people, there are
other side channels like power consumption, electromagnetic radiation, memory usage, cache usage, CPU
usage, and so on. What is leaked through these side channels can reveal information about the message
contents, or, if cryptography is involved, about the secret key.

For example, there have been side channel attacks on

• keystroke recovery from timing information in SSH interactivemode [34]. In thismode, each individ-
ual keystroke is sent in its own IP packet, so a network observer learns the length of what is typed.
Further, the inter-stroke timing between pairs of letters can be used to build a statistical model that
allows dramatically reducing the possible letters, speeding up dictionary attacks on passwords.

• video stream identification based on traffic burst analysis [33]. The MPEG-DASH streaming video
standard packages frames into bursts of packetswhose timing and size depend on the video content.
This leakage can be exploited by an attacker to identify which video, from a known set, a target is
watching. The adversary could directly observe the encrypted traffic or, e.g., obtain it by measuring
contention on a shared network link.

• using error messages about whether an RSA ciphertext correctly decrypts or not to decrypt it [2]. In
this classic cryptographic attack, the attacker uses an “oracle” that takes as input any RSA ciphertext,
and revealswhether theunderlyingplaintext is correctly formattedornot. By craftinga seriesofmod-
ified ciphertexts, the attacker can decrypt a target ciphertext. Whether there was a formatting error
could leak directly as an errormessage or through timing channels.

What we think of as side channel attacks are indeed similar to attacks on encrypted databases: they are
about exploiting leakage (unintentional information) from communication between two parties. In en-
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crypted database attacks, the two parties are a client, who queries its data to retrieve particular records,
or rows, based on their values, and a database server, who hosts the data. This report is about new kinds of
side channel attacks that can break database encryption. They exploit leakage from numeric range queries
(like ”which records have value between 1 and 5”) between the client and database server. These attacks ex-
ploit access pattern leakage (which rows in the database matched the query) and volume leakage (howmany
rows matched it). The attacks use this leakage to break encryption – even if everything in the database is
encrypted, an adversary can figure out the plaintext if these side channels exist.

Existing Approaches

Consider a simple client-server architecture where the server is storing a database. The first column of the
database table (“ID”) is the primary key, unique for all rows. For simplicity, assume the “ID” values are se-
quential. The second column is “Value”, a number between 1 andN, which is the attribute the client is going
to select rows on. For example, in amedical database, “ID” could be a patient identifier number, and “Value”
could be the patient’s age. The table could have more columns, but we assume the client always queries
the data based on this one. The type of queries the clientmakes is range queries; it always retrieves records
based onwhether the value falls in some numeric range, say 1 through 5, written as [1,5]. In SQL, this would
be a query of the form

SELECT * FROM table WHERE Value BETWEEN X AND Y

The particular query language or database engine is not important, however, as long as (i) the clientmakes
range queries over some finite set of values, assumed to be the integers {1,…,N}, and (ii) the database server
correctly returns the IDs of records whose values fall in that range.

Protecting Data in Transit

Securing data is all about understanding the threatmodel. Historically, protecting queries and results from
a network eavesdropper was the first step. The client and server can protect their communications by en-
crypting them using the Transport Layer Security (TLS) standard [18]. TLS allows the client and server to au-
thenticate eachother andnegotiate a sessionkey to encrypt thequeries and responses, so anyoneobserving
thepacketsdoesnotknowwhat thequerywasorwhich recordsmatched it. Encryptingdataonthewiredoes
not protect against everything, however.

Protecting Data at Rest

As people began to outsource their data to big data centers, they had to update their threat models to ac-
count for the risk of disk theft. Encryption at the filesystem level or column level addresses this issue. A
typical query processmight have the following steps:

1. The client uses TLS to encrypt its query and sends it to the server.

B L AC K HAT U SA 2 0 1 9 – L ACHAR I T É – PAG E 3



2. The server decrypts it, consults its search index, and fetches the relevant encrypted pages fromdisk.
3. It decrypts them in memory, processes the results, re-encrypts themwith TLS, and sends them back

to the client.
4. The client decrypts them.

The data on disk stays encrypted the entire time, so disk theft ismitigated.

Manymajor database vendors offer somevariant of this typeof encryption, usually called “TransparentData
Encryption” (TDE) or “Native Encryption”. These solutions usually do not noticeably affect performance; the
server canstill index theplaintextdata, so rangequeries canbeansweredefficiently. Someof thesesolutions
also offer more granular field-level encryption, like format-preserving encryption or tokenization, but the
data encryption key is usually still managed by the server.

Some examples include Transparent Data Encryption (TDE) offered by Microsoft for SQL Server [27], which
encrypts data and transactions logs at the page level; Oracle Database’s Transparent Data Encryption [31],
which allows column or tablespace encryption of data and encryption of undo and redo logs; IBM’s Native
Encryption for DB2 [17], which offers tablespace encryption of data and encryption of transaction logs; and
MongoDB’s Encrypted Storage Engine [29], which encrypts all data files, but not logs.

When the database server manages the data encryption key, it is usually stored in a separate keystore, i.e.,
not on the same disk as the data. However, it is often accessible to curious database administrators, system
administrators, or any user who gains such permissions. To prevent a full database server system compro-
mise from revealing the data, it needs to be encrypted by the client, or via a proxy before it even gets to the
server.

Protecting Data in Use

Howtoqueryencrypteddatawithout letting thedatabase server see raw, unencrypteddata is an interesting
and challenging problem. In industry, these solutions are usually called client-side field-level encryption:
instead of being in a keystore attached to the database server, the client completely controls the keys.

SuchsolutionsareofferedbyMicrosoft’sAlwaysEncrypted[26],whichoffersfield-levelencryption inaclient-
side driver; MongoDB’s Field Level Encryption in the upcoming 4.2 release [28]; and companies like Cipher-
Cloud [8] or solutions like CryptDB [32] that act as proxies between a client and database server.

Usually, these client-side encryption solutions offer only two basic types of encryption: deterministic and
randomized. A third type, called Order-Preserving Encryption (OPE) is also sometimes used. One leaks rep-
etition andmakes range queries possible but inefficient, one is secure but does not support ranges, and one
leaks order andmakes range queries as efficient as they are on plaintext.

Deterministic encryption (DE) is probably themost widely used way to support queries on encrypted data,
but it does not offermuch functionality – only exactmatches. With deterministic encryption, any repeated
plaintext values show up as repeated ciphertext values. For example, each row that has a value of “1” will
have the exact same ciphertext. This enables range queries: if the client wants to retrieve all records with
values between 1 and 3 (i.e., in [1,3]), it could simply request all records whose values are in the set of en-
cryptions {DE(1),DE(2), orDE(3)}. Although range queries are possible with deterministic encryption, the
fact remains that any repetitions in the plaintext will show up in the ciphertext. Leaking the equality of val-
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ID Value

1 3
2 1
3 15
4 41
5 1

(a) Plaintext

ID Value

1 0x18fa83
2 0x5449a1
3 0x8b7630
4 0x10cae8
5 0x5449a1

(b) DE

ID Value

1 0x5239fb
2 0x8e9d98
3 0x5a9f2e
4 0x4ff8e1
5 0xe89cfb

(c) RE

ID Value

1 182
2 84
3 2307
4 8932
5 84

(d) OPE

Above is an example illustrating the differences between the same values encryptedwithDeterministic En-
cryption (DE), Randomized Encryption (RE), andOrder-Preserving Encryption (OPE).

ues can be exploitedwhen combinedwith information about the distribution of values. These attacks were
evaluated onmedical datasets byNaveed, Kamara, andWright [30], andmany others after.

With randomized encryption (RE), the server is unable to index the data or group values. Using randomized
encryption, all encryptions of “1” are different, which offers better security, but the serverwould havenoway
to select all of the records with value “1”.

Order-preserving encryption (OPE) [1, 5] is anothermethod of encrypting numeric data, which does exactly
what it sounds like: if x< y, thenOPE(x)<OPE(y). This type of encryption allows rangequeries and sorting
over the ciphertexts. If the client encrypts valueswithOPE before sending them to the server, the server can
still index thedata just as if itwasunencrypted, but it doesnot learn the exact values. When the clientwants
to perform a range query, all it has to do is encrypt the endpoints of that range.

Unfortunately, evenan “ideal”OPEscheme (one thatbehaves likea randomorder-preserving function)must
leak strictlymore thanorder. Inparticular, abouthalf of theplaintextbits leak [4] –which iswhyanyefficient
OPEschemecannotoffermuchsecurity. Further, someOPEschemesarealsodeterministic, leakingrepeated
values, and susceptible to frequency analysis attacks [11].

This propertyofOPE schemesmotivatednewtypesof schemes that sacrifice less securitywhile still allowing
range queries and sorting. These include techniques like Order-Revealing Encryption (ORE) [25, 7], which
is a generalization of Order-Preserving Encryption. With OPE, it is possible to just look at two ciphertexts
to compare them, but with ORE, it is necessary to compute a function over each pair to know which one is
smaller. Some schemesdomore complicated things, like build a search index that the server can traverse by
itself, “destroying” nodes along it as it goes, and requiring the client to “re-generate” them after each query
[3]. Although these schemes leak less thanOPE, they still have some leakage.

A modern encrypted database might combine all of these types of encryption: TLS for the queries and re-
sponses, server-side disk encryption, and client-side field-level encryption. Even with all of these layers of
security, there might still be some exploitable leakage in side channels. For instance, the server needs to
know which records matched a range query in order to return the correct results – the identifiers of the
records that matched the queried range (access pattern) could leak. Also, despite the client-server traffic
being encrypted, its length is not hidden – how many records matched the queried range (volume) could
leak.

Regardless of the typeof encryption that is used to secure anencrypteddatabase, practically all schemes can
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leakwhich recordsmatched a query andhowmanymatched it. Howexactly these properties leak varies – it
could be from an adversaryman-in-the-middling connections to the database, getting access to undo/redo
logs or query profiling logs, or simply observing traffic volume [10].

Exploit ing Access Pattern Leakage

Suppose theclient formulatesa rangequery, sends it to theserver, theserverfinds thematching records, and
sends back the matching record identifiers to the client. Somehow, without learning the query endpoints,
theadversary learnswhich recordsmatched thequery. This attack illustrateshowsuchanadversary can fully
reconstruct the values of all records in the database.

A closer look at ranges. Range queries have some important properties. Suppose the adversary observes
two queries and some record identifiers are returned by each query. Since ranges are continuous intervals,
any recordsmatched by both queriesmust have values that are between the values of records thatmatched
only the first query, and the values of records thatmatched only the second query.

Suppose there is a database with 10 records and their IDs are sequential from 1 to 10. If the adversary ob-
serves the access pattern leakage { 2,3,5,10 } and { 1,2,4,5,8 }, then it can deduce that records 3 and 10 have
values less than records 2 and 5, which have values less than records 1, 4, and 8. As the adversary observes
more queries, it can perform set intersections on the sets of matching record identifiers to group together
the records and sort themby value, but there exists a data structure that facilitates this process.

PQ trees. PQ trees were discovered nearly 45 years ago [6]. The idea of using a PQ tree to order records in a
database isnotnew [20], but itwasneverused to reconstruct values inadatabase. APQtreehas twotypesof
internal (i.e., non-leaf) nodes – P nodes andQ nodes. PQ trees encode a set of permutations on some group
of elements, which are the leaves of the tree. The children of a P node can be reordered in any way: if a P
node has k children, then there are k! possible orderings of its children. The children of a Q node, on the
other hand, can only be reflected; there are two possible orderings of its children.

PQ trees allowkeeping trackof thepossible orderings of the records. Once the records are in asmanygroups
as there are possible values, it is easy towork out the exact value of every record in thedatabase. At the start,
there is a single P node with as many children as there are records; all orderings are possible. After seeing
a query, the nodes of the PQ tree must be re-arranged so that the records that it matched are next to each
other inallorderings. There isawelldefined,butslightly tediousprocedure tocarryout this re-arrangement.
Eventually, after sufficientlymanyqueries, thePQ treewill have aQnodeat the root, andall recordswill be its
direct children or in groups as its grandchildren. At this point, the adversary has figured out the order of all
the records, fromsmallest to largest (or largest to smallest). TheQnode’s childrenaregroupsof recordswith
the same value. If two records have the same value, then they must match exactly the same set of queries;
there can be no range query that matches one but not the other. The first group is records with value 1, the
second is records with value 2, and so on – the adversary can assign a value to each record in the database.

“Sufficiently many”? The success of this attack relies on the adversary seeing “sufficiently many” queries.
Clearly, if it sees leakage from the same query, repeatedmany times, the attackwill not succeed. To analyse
howmanyqueries are necessary, wemust assume that the queries the clientmakes are sampled from some
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fixed distribution, like the uniform distribution (i.e., where the client is equally likely to make any possible
range [x,y]). Then, some powerful results from statistical learning theory (specifically, the “ϵ-net theorem”)
applyandwemayconcludethatwithhighprobability, after somenumberofqueries, theattackwill succeed.

If there areN possible values – if the goal is to get a PQ tree consisting of oneQ nodewithN children – then
thenumberof requiredqueries is aboutN logN. Forexample, if thereare 100possiblevalues, then theattack
would succeed after seeing about 500 queries.

A crucial assumption to the success of this attack is that theremust be at least one record with every value.
However, it is possible to adapt the analysis to count howmany queries are required if the goal is merely to
get sorted groups of records whose values are “close enough”. For this kind of approximate reconstruction, the
number of required queries does not depend on the number of possible values N; it depends only on how
close the value in each group should be, relative toN. For example, to group together records whose values
are atmost 5% apart, only 60 or so queries are required, regardless of whetherN is 50 or 500 or 5000.

This attack illustrated how access pattern leakage is sufficient to order all records and group themby value,
fromwhich it is possible todeduce the valueof every single row in thedatabase, bypassing theencryption. It
usesaPQtree toencode the leakagealong theway. Evenwithout the leakage fromsufficientlymanyqueries
to exactly determine the values, it is possible to approximately recover values.

Access pattern leakage is significant. In many threat models, it might not leak to the adversary. Volume
leakage, on the other hand, canbe observedmore easily: even anetwork adversary could have access to this
sidechannelbymonitoringnetwork traffic. This isnot theonlyway inwhich thenumberof recordsmatching
eachquery can leak, though– server-side logfiles could also reveal it. There are settingswhere an adversary
cannot see access pattern leakage, but it can see volume leakage.

Exploit ing Volume Leakage

Suppose that the adversary has learned howmany recordsmatch every possible range query; it has the en-
tire set of query volumes. It does not know which query corresponds to which volume, it sees only the vol-
umes:

{ vol([1,1]), vol([1,2]), …, vol([1,N]), vol([2,2]), …, vol([N-1,N]), vol([N,N]) }.

It can use these volumes to determine exactly howmany records there arewith each value in the database.

If the query distribution can bemodelled, it is possible to figure out howmany queries a network adversary
would need to observe before it gets all volumes. Suppose all ranges are equally likely. Then, by applying a
coupon collector bound, wemay conclude that the expected number of observed queries until all volumes
have been observed is aboutN2 logN.

Let R be themaximumobserved volume, whichmust be the volume of the range 1 throughN, which is also
the number of rows in the database.

The idea of this attack is to identify elementary volumes among the set of all volumes. Elementary volumes
are the volumes of elementary ranges, which are the ranges [1,1], [1,2], [1,3], and so on up to [1,N]. If the adver-
sary can identify which volumes correspond to these queries, then it can deduce exactly howmany records
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have each value: by subtracting the volume of the k-th elementary query from the volume of the (k+1)-st
elementary query, it will get the number of records with value k+1:

vol([1,k+1]) - vol([1,k]) = vol([k,k]).

Thegoalof thisattack is therefore to identify thesetofelementaryvolumes. Elementary rangesandvolumes
have the following special properties:

1. Every elementary rangehas a complementary range such that the sumof their volumes is exactlyR, the
total number of rows in the database.

2. Any range is either an elementary range (if its left endpoint is 1) or a difference of two elementary
ranges (otherwise).

3. The set difference of any two elementary ranges is also a range; the absolute difference of any two
elementary volumes is also an observed volume.

Using these properties, the algorithm builds a graph to identify these elementary volumes. The graph is
constructed as follows: its nodes are the set of observed volumes and there is an edge between two nodes if
the absolute difference of their volumes was also an observed volume. Then, in this graph, the elementary
volumeswill correspond to nodes that forma clique – a subset of nodes that are all directly connected to one
another. This is because of property 3 above: the difference of any two elementary ranges is also a range,
so theremust be edges between every pair of elementary volumes. Further, the volumes generated by that
clique – of the nodes themselves and the differences corresponding to the edges – generate the set of all
observed volumes. This is because of property 2 above – every range is either an elementary range or the
difference of two elementary ranges.

Finding a clique in a graph is, in general, a hard problem, but some tricks allow finding a clique efficiently.
This reconstruction algorithm has two phases: pre-processing and traditional clique-finding (which was
rarelyneeded inourexperiments, cf. [14, Figure2]). Withonly volume leakage, it is impossible todistinguish
counts from smallest to largest with counts from largest to smallest; if the element counts were mirrored,
the exact same set of volumeswould have been observed.

The pre-processing phase grows a set of necessary elementary volumes (volumes thatmust be elementary)
and shrinks a set of candidate elementary volumes (volumes that might be elementary). When the set of
necessary elementary volumes has sizeN, the algorithmhas succeeded. Adding to the set of necessary ele-
mentary volumes can occur in the followingways:

• Adding the smallest complementary volume. By properties of ranges, it must be either vol([1,1]) or
vol([N,N]). Since reconstruction is only up to reflection, the algorithm can arbitrarily pick one.

• Adding the largest complementary volume, which is R=vol([1,N]) by definition.
• If there is an observed volume that arises only as edges incident to a non-necessary candidate node,
then adding that node.

• If there is anobservedvolume that arises only as anode, andnot as thedifferenceof any2nodes, then
adding it.

• Lastly, adding all non-necessary nodes when the total number of candidate nodes isN.

After adding a new necessary elementary volume, the algorithm shrinks the set of candidate elementary
volumes by removing any volumes that are not adjacent to all necessary elementary volumes. When the set
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of necessary elementary volumeshasNnodes, the algorithmhas successfully recovered thenumber of rows
with each value, up to reflection TheseN elementary volumes are either the volumes of the ranges [1,1], …,
[1,N] (or the volumes of the ranges [N,N], [N-1,N], …, [1,N]). To recover the counts of the number of records
with value k, compute vol([1,k]) - vol([1,k-1]).
Limitations. This attack requires having the complete set of all possible volumes. The complete setmust be
observed in a period where there are no updated values or newly inserted records in the database. It also
requires there tobe at least one recordwith each value. Wediscuss these limitations – and some techniques
for handling them– in our paper [14, 15].

Security Recommendations

Leaking access pattern and volume of query results can be devastating and lead to bypassing database en-
cryption, regardless of what type of encryption is used. Here are some recommendations for practitioners
from the point of view of a cryptographer.

Analyzing leakage. I suggest analyzing leakage from two angles: first, bymaking a comprehensive list of all
types of leakage that could occur in your solution, and second, looking at specific points or operations and
thinking about what type of leakage could arise there.

Oneway to classify properties that leak is bywhether they apply to the values in records, to queries, or to re-
sponses. In addition to leaking the values themselves, records can leak the ordering of values, the existence
of certain values, the number of distinct values, the distance between values, repeated values, etc. Repeti-
tion allows attacks based on frequency analysis – an adversary that already knows something about what
distribution of values to expect can infer a lot about specific values if their frequencies are leaked. Next,
queries can leak information about the range endpoints, when two queries repeat, the width of the range,
when one range is a subset of another range, etc. In addition to leakingwhich rowsmatched or the number
ofmatching records, the answers to queries can leakwhen two sets ofmatching records are the same,which
recordsmatch themost queries, etc. See Kamara,Moataz, Ohrimenko’swork [21] for a comprehensive list of
types of leakage.

Next, think about at what points in the implementation all of these kinds of leakage can arise. It could be
whenadding records,making single or batchedqueries, or recording information toprofile queries. It could
also bewhen performingmaintenance operations, such as data backups, key rotation, or updating a search
index. Consider a kind of differential analysis: what changes in the adversary’s view when two underlying
properties of the data, query, or response are not the same?

Trade-offs. There is no panacea when it comes to encrypted databases; trade-offs are necessary. In ad-
dition to considering what could leak and where, you can think about which of the following techniques
for mitigating leakage would be acceptable in your setting: restricting the type or granularity of queries,
post-processingquery results locally, addingdummyrecords,makingdummyqueries, or trustinghardware.
Gaining security could come at the cost of incomplete results, probabilistically correct results, efficiency
when querying data, forgoing compression or deduplication of data or queries.
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Conclusion

This technical report was about new kinds of side channel attacks that can break database encryption for
numeric data. It discussed two kinds of leakage, access pattern leakage and volume leakage, that can arise,
from, e.g., an adversary that has compromised thedatabase server or anetwork eavesdropper. Anadversary
canuseaccesspattern leakagealongwithaPQtree tofigureout thevalueof every record in thedatabase, ei-
ther exactly or approximately, bypassinganyencryption. Using volume leakage, anadversary can create and
prune a graph to identify the special elementary query volumes, which in turns leads to completely deter-
mining howmany records have each value. These attacks apply to any kind of scheme supporting numeric
ranges queries that have these side channels. There is no simple way to eliminate this leakage in all threat
models, nor are access pattern and volume leakage the only kinds of harmful leakage. However, there do
exist countermeasures, suchas addingdummyrecords,makingdummyqueries, and increasing theamount
of client-side post-processing of query results.

Further Reading

Kellaris, Kollios, Nissim, andO’Neill introduced generic reconstruction attacks on outsourced databases us-
ing access pattern and communication volume [22]. Range queries are not the only type of query on which
generic attacks lead to reconstructing data; such attacks have also been devised on access pattern leakage
from one-dimensional k-Nearest Neighbour queries [24, 23]. For a broad introduction to the area of crypto-
graphically protected database search (both constructions and attacks), see the excellent Systematization
of Knowledge (SoK) paper by Fuller et al. from 2017 [9]. For a glimpse of other topics in the broader area of
searching on encrypted data, see videos from the Encrypted Search workshop held in June 2019 at Brown
University [19].
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