
Extracting Compressed
Pages from the Windows 10
Virtual Store

white paper

2WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Abstract
Windows 8.1 introduced memory compression in August
2013. By the end of 2013 Linux 3.11 and OS X Mavericks
leveraged compressed memory as well. Disk I/O continues
to be orders of magnitude slower than RAM, whereas
reading and decompressing data in RAM is fast and highly
parallelizable across the system’s CPU cores, yielding a
significant performance increase. However, this came
at the cost of increased complexity of process memory
reconstruction and thus reduced the power of popular tools
such as Volatility, Rekall, and Redline.

In this document we introduce a method to retrieve
compressed pages from the Windows 10 Memory Manager
Virtual Store, thus providing forensics and auditing tools
with a way to retrieve, examine, and reconstruct memory
artifacts regardless of their storage location.

Introduction
Windows 10 moves pages between physical memory and the hard disk or the
Store Manager’s virtual store when memory is constrained. Universal Windows
Platform (UWP) applications leverage the Virtual Store any time they are
suspended (as is the case when minimized). When a given page is no longer
in the process’s working set, the corresponding Page Table Entry (PTE) is
used by the OS to specify the storage location as well as additional data that
allows it to start the retrieval process. In the case of a page file, the retrieval is
straightforward because both the page file index and the location of the page
within the page file can be directly retrieved. For pages compressed in the Virtual
Store, the retrieval involves deriving a Store Manager key from the PTE, then
using it to traverse cascaded structures, finally generating the virtual address of
the compressed page inside a dedicated process used by the Memory Manager.

3WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Background
The Windows 10 Memory Manager is responsible for
providing each process on a 64-bit Windows machine with
a 16 TB virtual address range, and a 4 GB range on 32-bit
builds. The memory manager creates the illusion of having
the entire system’s memory space available for the process
by transferring pages between:

• Physical memory (RAM)

• Hard disk (pagefile.sys and swapfile.sys)

• Virtual Store (MemoryCompression process)

Figure 1:

Intel 64-bit page
tables.

Figure 2:

Intel 32-Bit
page tables with
Physical Address
Extensions (PAE)
enabled.

We will only cover the case of translating small pages
(4KB) using either x86 or x64 paging mode, since large
(2MB) and huge (1GB) pages reside in non-pageable
memory and do not use the hard disk or the Virtual Store.

The page correlating to a virtual memory address can be
located by traversing the process’s page tables. In Intel
x86 and x64 paging modes, the CR3 register is process-
specific and provides the physical base address of the
Page Map Level 4 (PML4) table on x64 (Figure 1) or the
Page Directory Pointer Table (PDPT) on x86 (Figure 2).
The PML4 table in x64 was introduced to support the
additional memory space requirements.

PML4E[0]

CR3

PML4E[1]

PML4E[2]

PML4E[3]

PML4E[511]

Page Map Level 4
PML4

PDPTE[0]

PDPTE[1]

PDPTE[511]

PDPT
Page Directory Pointer Table

PTE[0]

PTE[1]

PTE[2]

PTE[3]

PTE[511]

Page Table
PT

PDE[0]

PDE[1]

PDE[511]

PD
Page Directory

CR3

PDPTE[0]

PDPTE[1]

PDPTE[511]

PDPT
Page Directory Pointer Table

PTE[0]

PTE[1]

PTE[2]

PTE[3]

PTE[511]

Page Table
PT

PDE[0]

PDE[1]

PDE[511]

PD
Page Directory

4WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Figure 3: Intel 64-bit Virtual Address Translation.

Figure 4: Intel 32-Bit Virtual Address Translation.

0 0 0 0 0 0 D 1 A 7 4 6 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0

64-bit Virtual Address

[47:39] PML4 Index [38:30] PDPT Index [29:21] PD Index [20:12] PT Index [11:0] Offset into Page

A 7 4 6 0 0 0 0

1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0

32-bit Virtual Address

[31:30] PDPT Index [29:21] PD Index [20:12] PT Index [11:0] Offset into Page

From a forensic point of view, the data in the Virtual Store
is most interesting because it has been inaccessible during
investigations of memory snapshots until now. In the next
section, we will identify if a PTE corresponds to a page
located in the Virtual Store and then focus on a method to
traverse the Store Manager’s structures in order to reliably
retrieve the compressed pages.

Virtual Store Page Retrieval
Overview
In the event that a page has been moved to the Virtual
Store or a page file, its PTE’s validity (bit 0) will be cleared.
The Memory Manager then interprets the nt!_MMPTE
structure as an nt!_MMPTE_SOFTWARE structure. The
software PTE contains the PageFileLow and PageFileHigh
fields which identify the page file (pagefile.sys, swapfile.
sys or Virtual Store) and offset the data can be located
within. PageFileLow is an index into the nt!_MMPAGING_
FILE pointer array located at nt!MmPagingFile . The
nt!MmPagingFile address contains a series of up to 15
pointers to nt!_MMPAGING_FILE structures, each of which
represents a page file on the system. In Windows 10, the
Virtual Store is represented as another page file on the
system and described by the same nt!_MMPAGING_FILE
structure as page files on disk.

Each of the indices inside the page tables is calculated by splitting the virtual address in chunks of nine bits starting
from bit 12. The 12 least-significant bits of a virtual address (from 0 to 11) represent the offset within the page and are
not used to traverse the page tables. The last table contains the Page Table Entry (PTE), a 64-bit structure that contains
information about the current location and state of the corresponding page. An example of 64-bit virtual address parsing
is shown in Figure 3 followed by a 32-bit example in Figure 4.

On a Windows machine with default configuration, the
software PTE’s PageFileLow field refers to pagefile.sys if
0, and swapfile.sys if 1. A value of 2 indicates that the page
is located in the Virtual Store. It is possible to configure
Windows to have up to 15 physical page files on the
system, so in such cases the Virtual Store index will be the
index of the last entry in the array of nt!_MMPAGING_FILE
structures pointed by the nt!MmPagingFile global variable.
The PTE provides an index without distinction between a
page file or Virtual Store, so it is important to enumerate
the entries in the array in order to ensure that the PTE is
describing a page in the Virtual Store before embarking on
the store manager structure traversal.

The exact location of the nt!MmPagingFile global
variable is another challenge to overcome because
Microsoft no longer exports the variable in the kernel’s
PDB file. One way to find the nt!MmPagingFile involves
the disassembling of a specific kernel function and is
described further in the Appendix A.

5WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

General Algorithm
The process of locating a compressed page in memory
begins with calculating the value of the store manager
key (SM_PAGE_KEY) using the nt!_MMPTE_SOFTWARE’s
PageFileLow, PageFileHigh and SwizzleBit fields from
the PTE. The Virtual Store’s top level structure is called
SM_GLOBALS and is pointed to by the exported
nt!SmGlobals symbol. The SM_GLOBALS structure has
several nested structures which store information about
all the SM_PAGE_KEYs used by the Store Manager along
with a two-dimensional array that contains information
for up to 1024 possible stores. Using a global B+Tree, each
of the SM_PAGE_KEYs on the system can be associated
with a store index (as well as creation flags) that is used
to select the particular store from the two-dimensional

array. Once the store is known, another B+Tree container
provides the relationship between the particular SM_
PAGE_KEY key and another value, called a chunk key.
After the chunk key is known, it is used to derive the base
address and the offset of the compressed page inside
the Memory Compression process. A high-level graphical
representation of the page retrieval process is given in
Figure 5 below.

Note that the traversal from a given PTE to the
corresponding compressed page is possible only in one
direction. Although it’s possible to dump and decompress
all the pages inside the Memory Compression process,
there is no way to associate the pages with their
corresponding processes from the pages alone.

Figure 5:

General overview
of structures
involved in page
retrieval from the
Virtual Store.

pSmkmStoreMetadata[0]

pSmkmStoreMetadata[1]

pSmkmStoreMetadata[3]

pSmkmStoreMetadata[4]

pSmkmStoreMetadata[31]

sGlobalTree

nt!SmGlobals

SMKM

SMKM_STORE_MGR

SM_GLOBALS

PAGE

PAGE

MemCompression

PAGE

B+TREE sLocalTree

pSmkmStoreMetadata[3]

*pRegionPointerArray

SMKM_STORE

ST_STORE

pSmkmStore

SMKM_STORE_METADATA[0]

SMKM_STORE_METADATA[1]

SMKM_STORE_METADATA[31]

ST_DATA_MGR

W10.1607+

Detailed Algorithm
In this section we will describe the retrieval process in detail, as shown in the Figure 6, below:

Figure 6: Detailed Structure View.

pSmkmStoreMetadata[0]

pSmkmStoreMetadata[1]

pSmkmStoreMetadata[3]

pSmkmStoreMetadata[4]

pSmkmStoreMetadata[31]

sGlobalTree

nt!SmGlobals

SMKM

SMKM_STORE_MGR

SM_GLOBALS

PAGE

PAGE

MemCompression

PAGE

B+TREE sLocalTree

aChunkPointer[0]

aChunkPointer[1] SM_PAGE_KEY

sChunkKey

ST_PAGE_ENTRY

dwCompressedSize

REGION_KEY sRegionKey

dwCrc

ST_PAGE_RECORD

aChunkPointer[31]

dwPageRecordPerChunk

dwPageRecordSize

dwChunkPageHeaderSize

dwRegionIndexMask

dwRegionSizeMask

wCompressionFormat

pStoreOwnerProcess

dwStoreIndex

*pRegionPointerArray

SMKM_STORE

pSmkmStore

pOwnerProcess

SMKM_STORE_METADATA[0]

SM_PAGE_KEY

dwStoreInformation

SMKM_FRONTEND_ENTRY

SMKM_STORE_METADATA[1]

SMKM_STORE_METADATA[31]

ST_STORE

SMHP_CHUNK_METADATA

ST_DATA_MGR

W10.1607+

6WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

 We will start from a PTE that specifies a page in the Virtual Store, as shown in Figure 7.

In this example, the software PTE was parsed and the PageFile index was 2. On a default Windows configuration, that will
be the Virtual Store. To verify this, we can use WinDbg’s !vm extension as shown in Figure 8:

Figure 7: Using the WinDbg’s !pte to view the PTE of a virtual address which has been paged out to the Virtual Store.

kd> !pte 0x227d1a60000
 VA 00000227d1a60000
PXE at FFFFBEDF6FB7D020 PPE at FFFFBEDF6FA044F8 PDE at FFFFBEDF4089F468 PTE at FFFFBE8113E8D300
contains 0A00000061E95867 contains 0A0000001C996867 contains 0A0000001B717867 contains 001BBEDA00002084
pfn 61e95 ---DA--UWEV pfn 1c996 ---DA--UWEV pfn 1b717 ---DA--UWEV not valid
 PageFile: 2
 Offset: 1bbeda
 Protect: 4 - ReadWrite

kd> !vm
Page File: \??\C:\pagefile.sys
 Current: 1769472 Kb Free Space: 1769080 Kb
 Minimum: 1769472 Kb Maximum: 4194304 Kb
Page File: \??\C:\swapfile.sys
 Current: 16384 Kb Free Space: 16376 Kb
 Minimum: 16384 Kb Maximum: 1572076 Kb
No Name for Paging File
 Current: 5242356 Kb Free Space: 5239660 Kb
 Minimum: 5242356 Kb Maximum: 5242356 Kb

Figure 8:

Using the !vm
extension to view
pagefiles.

To do this programmatically, the location of nt!MmPagingFile will be needed. The variable can be found by disassembling
the nt!MmStoreRegister kernel function, as shown in Appendix A.

The PTE in Figure 7, (parsed as nt!_MMPTE_SOFTWARE) contains the two pieces of data that combined together,
comprise the SM_PAGE_KEY, as shown in Figure 9 and Figure 10.

Figure 9:

Deriving the SM_
PAGE_KEY from
the PTE (pre-1803).

Figure 10:

Figure 10: Deriving
the SM_PAGE_KEY
from the PTE (1803+)

SM_PAGE_KEY = (PTE.PageFileLow << 0x1c) | PTE.PageFileHigh

SM_PAGE_KEY = (PTE.PageFileLow << 1c) | ((PageFileHigh) & ~InvalidPteMask)

For example, the SM_PAGE_KEY associated with the
PTE on Figure 7 is calculated as 0x201bbeda. Beginning
in 1803, a new algorithm was introduced to calculate the
SM_PAGE_KEY. The modification depends on the value of
nt!_MMPTE_SOFTWARE.SwizzleBit and if not set the PTE
must be bit-flipped with a mask named InvalidPteMask
that belongs inside the nt!_MI_HARDWARE_STATE
structure (see Figure 8) . The InvalidPteMask can be
retrieved by following the global variable nt!MiState into
the nt!_MI_SYSTEM_INFORMATION structure.

Once the SM_PAGE_KEY is calculated, the next task is
to find its associated store. The relationship between the
store index and the SM_PAGE_KEY is established in a
B+ tree container pointed by the SMKM_STORE_MGR.
sGlobalTree field. The entries inside the B+ tree are
SMKM_FRONTEND_ENTRY structures that associate a
store index to each of the SM_PAGE_KEYs on the system.
The Windows 10 versions after 1607 use a two-dimensional
array (32x32) to describe each of the SMKM_STORE
stores. The array indices derive from the retrieved store
index, as shown in Figure 11:

7WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Figure 12:

Deriving the ST_
PAGE_RECORD of
interest from the
associated with
the SM_PAGE_KEY
chunk key.

Figure 11:

Calculating the
store metadata
array indices by the
store index.

Figure 13:

Deriving the
compressed page’s
virtual address by
the associated
ST_PAGE_RECORD.

/* dwChunkKey is retrieved from the ST_DATA_MGR.sLocalTree using the SM_PAGE_KEY as an index */
DWORD i, j, k, m;
k = dwChunkKey >> pSmhpChunkMetadata->dwVectorSize; /* k = array indices */
i = BitScanReverse(k);
j = BitTestAndComplement(k, i) * 2;
m = (dwChunkKey & pSmhpChunkKeyMetadata->dwPageRecordsPerChunk) * pSmhpChunkMetadata-
>dwPageRecordSize;
PVOID pChunk = pSmhpChunkMetadata->aChunkPointer[i][j];
ST_PAGE_RECORD* pPageRecord = pChunk + pSmhpChunkMetadata->dwChunkPageHeaderSize + m;

/* pPageRecord points to the found ST_PAGE_RECORD structure in Figure 9 */
DWORD dwRegionIndex, dwRegionOffset;
PVOID pCompressedPage;
dwRegionIndex = pPageRecord->sRegionKey >> (ST_DATA_MGR.dwRegionIndexMask & 0xFF);
dwRegionOffset = (pPageRecord->sRegionKey & ST_DATA_MGR.dwRegionSizeMask) << 4
pCompressedPage = SMKM_STORE.pCompressedRegionPtrArray[dwRegionIndex] +
dwRegionOffset;

Each SMKM_STORE structure represents a single store and
each store describes multiple pages within it along with all
the necessary information for their retrieval. The SMKM_
STORE.pRegionPointerArray field points to an array of
pointers to regions of compressed pages inside the Memory
Compression host process. The nested SMHP_CHUNK_
METADATA structure contains a two-dimensional array of
chunks (32 rows x Variable number of columns, depending

on the memory pressure), with each of them containing
a vector of ST_PAGE_RECORD entries preceded by a
header with size given in the SMHP_CHUNK_METADATA.
dwChunkPageHeaderSize field. The chunk key is associated
with the SM_PAGE_KEY by an one-to-one relationship,
given in the ST_DATA_MGR.sLocalTree B+ tree. The
calculations leading to the location of the ST_PAGE_
RECORD structure of interest are shown in Figure 12.

The ST_PAGE_RECORD structure contains the region
key sRegionKey, which encodes the index and the offset
inside the regions of compressed pages pointed by the
SMKM_STORE.pRegionPointerArray. The region key

/* dwStoreIndex divided by 32: i = quotient, j = remainder */
i = dwStoreIndex >> 5, j = dwStoreIndex & 1f

At this point we can locate the compressed page’s PTE
from its virtual address within the Memory Compression
process and find out if it resides in RAM or it has been
evicted to a page file, in case of a high memory pressure in
the Virtual Store. In both cases, the page retrieval follows
the demand-paging model at this point and simply involves
reading from the physical memory or from the specified
page file and offset within it. Once the compressed page is
retrieved, it needs to be decompressed using the algorithm,
specified in the ST_DATA_MGR.wCompressionFormat field.
On the observed systems the value is consistently set as
COMPRESSION_FORMAT_XPRESS (0x3), which specifies
Microsoft’s Xpress LZ77 compression engine. The Memory
Manager currently uses the RtlDecompressBufferEx API to
decompress the page before returning it to the process’s
working set.

is decoded with the help of the ST_DATA_MGR fields
dwRegionIndexMask and dwRegionSizeMask and the
result of those calculations leads to the virtual address
of the compressed page of interest inside the Memory
Compression process, as shown in Figure 13:

Conclusion
The Windows 10 memory compression presents a
significant challenge for existing forensics and auditing
tools. Critical data inside the Virtual Store is often not
retrieved, which diminishes the effectiveness of the
analysis. The presented method of retrieval from the
Virtual Store allows developers to upgrade the existing
tools or enables analysts to analyze Windows 10 processes.
Often, Microsoft has been changing parts of the structures
that implement the Virtual Store. Those changes (although
small in the recent Windows releases) show that the
retrieval algorithm is still evolving and it is quite likely that
the future Windows 10 versions will have upgrades of the
Virtual Store design and implementation.

8WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Figure 14:

Portion of the
nt!MmStoreRegister
code that
enumerates the
array of nt!_
MMPAGING_FILE
elements.

Figure 15:

Portion of the
nt!SmInitSystem
code that shows
the nt!SmGlobals
variable used as a
parameter.

 …
 lea r8, <array_addr> ; an array of nt!_MMPAGING_FILE structures
 mov r9d, eax ; the number of elements
loop:
 … ; instructions that enumerate the elements of the array
 jnz loop

…
lea rcx, <nt!SmGlobals>
call nt!SmGlobalsInitialize
lea rcx, <nt!SmGlobals>
call nt!SmQueryRegistry

Appendix A
Locating the nt!MmPagingFile Global Variable
Following Windows 7, Microsoft discontinued exporting
the nt!MmPagingFile global variable. The variable
points to an array of pointers to nt!_MMPAGING_FILE
structures, each of which describes a page file or the
Virtual Store. The nt!_MMPAGING_FILE structures describe
important properties of the paging files on the system,
such as their name and location on the disk. Another
field, VirtualStorePageFile, can be used to confirm if the
structure correlates to the Virtual Store.

 One way to discover the address of the array of nt!_
MMPAGING_FILE structures involves disassembling the
nt!MmStoreRegister kernel function and either emulating
or parsing the code in order to find out the location of the
array. The nt!MmStoreRegister function in both 32-bit and
64-bit ntoskrnl.exe enumerates the elements of the paging
files array with code similar to the one shown in Figure 14. It
is important to keep in mind that the exact registers might
change across different instances of ntoskrnl.exe. In this case
the array address in the kernel is provided as the second
parameter of the LEA instruction and the EAX register will
hold the number of the elements inside the array.

Discovering the nt!SmGlobals global variable
The nt!SmGlobals can be located by parsing the ntoskrnl.exe PDB file or disassembling the kernel functions that reference
it. One such a function is nt!SmInitSystem which provides the address of the variable as a parameter to calls to the
nt!SmGlobalsInitialize and nt!SmQueryRegistry kernel functions (Figure 15):

9WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Figure 16:

Global structures,
involved in the
compressed pages
retrieval.

typedef struct _B_TREE_PAGE_HEADER {
 WORD wEntryCount;
 BYTE bLevel;
 BYTE bIsLeaf;
 DWORD dwPadding;
 struct _B_TREE_PAGE_HEADER* pNextNode;
} B_TREE_PAGE_HEADER;

typedef struct _B_TREE {
 B_TREE_PAGE_HEADER* pRoot;
 QWORD dwEntries;
 …
} B_TREE;

typedef struct _SMKM_STORE_METADATA {
 SMKM_STORE* pSmkmStore;
 EX_RUNDOWN_REF sRundownRef;
 PKPROCESS pOwnerProcess;
 DWORD dwFlags;
 …
} SMKM_STORE_METADATA;

typedef struct _SMKM {
 SMKM_STORE_METADATA* pSmkmStoreMetadata[32];
} SMKM;

typedef struct _SMKM_STORE_MGR {
 SMKM sSmkm;
 EX_PUSH_LOCK vLock;
 B_TREE sGlobalTree; /* SM_PAGE_KEY to Store Index association */
} SMKM_STORE_MGR;

typedef struct _SM_GLOBALS {
 SMKM_STORE_MGR sSmkmStoreMgr;

} SM_GLOBALS;

Appendix B
The structures involved in the traversal of the Virtual Store from the calculated SM_PAGE_KEY to the compressed page
address are given below (Windows 10 Version 1709 x64). Note that many actual structures contain more fields, but we list
only the ones that are directly involved in the page retrieval process described in this document.

Global Structures
These structures implement the association between all SM_PAGE_KEYs on the system and their respective store (Figure 16).

10WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

Figure 17:

Local structures,
involved in the
compressed pages
retrieval.

typedef struct _ST_PAGE_RECORD {
 DWORD sRegionKey;
 DWORD dwCompressedSize;
 DWORD dwCRC;
 …
} ST_PAGE_RECORD;

typedef struct _ST_CHUNK_PAGE_RECORD {
 PVOID pPageRecords;
 …
} ST_CHUNK_PAGE_RECORD;

typedef struct _SMHP_CHUNK_METADATA {
 ST_CHUNK_PAGE_RECORD aChunkPointer[32];
 DWORD dw1[3];
 DWORD dwPageRecordsPerChunk;
 DWORD dwPageRecordSize;
 DWORD dw2;
 DWORD dwChunkPageHeaderSize;
} SMHP_CHUNK_METADATA;

typedef struct _ST_DATA_MGR {
 B_TREE sLocalTree;
 DWORD dw1[42];
 SMHP_CHUNK_METADATA sChunkMetadata;
 DWORD dw2[75];
 DWORD dwStoreFlags;
 DWORD dw3[5];
 struct SMKM_STORE* pSmkmStore;
 DWORD dwRegionSizeMask;
 DWORD dwRegionIndexMask;
 WORD wCompressionFormat;
 …
} ST_DATA_MGR;

typedef struct _ST_STORE {
 DWORD dw[20];
 ST_DATA_MGR sStDataMgr;
} ST_STORE;

typedef struct _SMKM_STORE {
 ST_STORE sStStore;
 DWORD dwStoreIndex;
 union {
 struct {
 DWORD bVal: 8;
 DWORD bMappingFlags: 8;
 DWORD wPadVal: 16;
 };
 DWORD dwPadding;
 };
 EX_PUSH_LOCK vLock;
 DWORD dw1[46];
 PVOID** pRegionPointerArray;
 DWORD dw2[86];
 PVOID pStoreOwnerProcess;
} SMKM_STORE;

Store Structures
The structures listed below implement the store defined by the particular SM_PAGE_KEY (Figure 17).

11WHITE PAPER | EXTRACTING COMPRESSED PAGES FROM THE WINDOWS 10 VIRTUAL STORE

FireEye, Inc.
601 McCarthy Blvd. Milpitas, CA 95035
408.321.6300/877.FIREEYE (347.3393)
info@FireEye.com

To learn more about FireEye, visit: www.FireEye.com

About FireEye, Inc.
FireEye is the intelligence-led security company.
Working as a seamless, scalable extension of customer
security operations, FireEye offers a single platform
that blends innovative security technologies, nation-
state grade threat intelligence, and world-renowned
Mandiant® consulting. With this approach, FireEye
eliminates the complexity and burden of cyber security
for organizations struggling to prepare for, prevent and
respond to cyber attacks.

©2019 FireEye, Inc. All rights reserved. FireEye is
a registered trademark of FireEye, Inc. All other
brands, products, or service names are or may be
trademarks or service marks of their respective
owners.

Acknowledgements
Omar Sardar is a Staff Reverse Engineer on the FireEye Labs Advanced Reverse
Engineering (FLARE) team where he analyzes a wide variety of malware to
support incident response and intelligence analysis. He contributes to keeping
FireEye products up to date by analyzing the Windows 10 kernel. Omar is
involved with FLARE Education and previously wrote the WinDbg training
module, available in the Malware Analysis Masters Course. Prior to the FLARE
team, Omar specialized in developing and reverse engineering embedded
systems with a focus on the USB protocol. Omar is based out of Alexandria, VA
and enjoys road biking, making pizza and reading science fiction.

Dimiter Andonov is a Senior Staff Reverse Engineer on FireEye’s FLARE team.
He has specialized on low level malware, including bootkits and rootkits. Dimiter
has over 12 years of experience as a reverse engineer and another 20 as an
Assembly/C/C++ programmer. Prior to joining FLARE, Dimiter has worked in the
Antivirus industry, leading the AV labs for Sunbelt Software, GFI, and ThreatTrack
Security. In addition to the daily malware reversing, he currently works on reversing
parts of the Windows 10 OS to provide support for the FireEye products.

The FireEye Labs Advanced Reverse Engineering (FLARE) Team is an
internationally recognized center of excellence for reverse engineers skilled in
malware, exploit, and vulnerability analysis. FLARE research and development
leverages custom automatic malware triage, network traffic decryption, zero
day discovery, and host artifact recovery to quickly get results out to those in
the field. FLARE shares with the security community by releasing free tools and
putting on the annual FLARE On Challenge.

We would like to thank the following contributors:

• Claudiu Teodorescu: Initial research & proof-of-concept

• Blaine Stancill: Volatility research integration

• Sebastian Vogl: Rekall research integration

