
Omar Sardar

Dimiter Andonov

Finding in Windows 10 ++

©2019 FireEye©2019 FireEye

▪ Staff Reverse Engineer @

–Reverse engineer malware daily

–Automate reverse engineering

–Analyze Windows Internals for Product

▪ Interests

Omar Sardar

2

@osardar1

©2019 FireEye©2019 FireEye

▪ Sr. Staff Reverse Engineer @

–Reverse engineer malware daily

–Bootkit & Rootkit analysis

–Analyze Windows Internals for Product

▪ Interests

Dimiter Andonov

3

@dandonov

©2019 FireEye©2019 FireEye

Story Time

4

©2019 FireEye©2019 FireEye

Obligatory IDA Screenshot

5

©2019 FireEye©2019 FireEye

▪Memory Manager Crash Course

▪Windows 10 Updates

▪Accessing Compressed Memory

▪Automating Analysis

▪Volatility & Rekall Support

▪Malware Extraction Demo

▪Q&A

Overview

6

©2019 FireEye©2019 FireEye

▪Provides process with 2GB to 128TB memory

▪Translates virtual memory to physical memory

▪Moves data to-and-from hard drive (paging)

▪Book-keeping

Memory Manager Overview

7

©2019 FireEye©2019 FireEye

▪Windows grants a new x64 process with 8TB

–System doesn’t have 8TB for each process

–8TB memory space is virtual

–Data is accessed by reading from an address

–Pages are 0x1000 bytes

–Location of actualdata is transparent

Virtual Memory

8

©2019 FireEye©2019 FireEye

▪Memory address is a series of indices & offset

▪Each index represents an entry in a table

▪The last table contains Page Table Entries

Breaking Down a Virtual Address

9

0xD1A7460000

000000001 101000110 100111010 000000000000

PML4 PDPT PD Offset

001100000

PT

©2019 FireEye©2019 FireEye

Page Tables (x64)

CR3

PML4E [0]

PML4E [1]

PML4E [2]

PML4E [511]

PDPTE [0]

PDPTE [1]

PDPTE [2]

PDPTE [326]

PDPTE [511]

PDE [0]

PDE [1]

PDE [2]

PDE [314]

PDE [511]

PTE [0]

PTE [1]

PTE [2]

PTE [96]

PTE [511]

©2019 FireEye©2019 FireEye

Page Table Entries (PTEs)

11

kd> dt nt!_MMPTE*
ntkrnlmp!_MMPTE
ntkrnlmp!_MMPTE_SUBSECTION
ntkrnlmp!_MMPTE_HARDWARE
ntkrnlmp!_MMPTE_SOFTWARE
ntkrnlmp!_MMPTE_PROTOTYPE
ntkrnlmp!_MMPTE_TIMESTAMP
ntkrnlmp!_MMPTE_LIST
ntkrnlmp!_MMPTE_TRANSITION

©2019 FireEye©2019 FireEye

_MMPTE_SOFTWARE

12

Valid

PageFileReserved

PageFileAllocated

ColdPage

SwizzleBit

Protection

Prototype

Transition

PageFileLow

UsedPageTableEntries

ShadowStack

Unused

PageFileHigh

©2019 FireEye©2019 FireEye

_MMPTE_SOFTWARE Example

13

©2019 FireEye©2019 FireEye

Demand-Paging Model

14

?

©2019 FireEye©2019 FireEye

▪Accessing data from a hard drive is

▪Accessing data from RAM is

▪Modern operating systems compress memory

–Allows for more data to be stored in RAM

–Highly parallelizable operation

–Flexible kernel deployment

Case for Compression

15

©2019 FireEye©2019 FireEye

Mystery Pagefile

16

©2019 FireEye©2019 FireEye

▪Structure used to represent traditional pagefiles

▪Now supports Virtual Stores

▪Check VirtualStorePageFile for confirmation

▪Array of pagefiles located at nt!MmPagingFile

MMPAGING_FILE

17

©2019 FireEye©2019 FireEye

▪Storage allocation & content tracking

▪Encryption & compression

▪Add, retrieve, or remove data

▪Each store page is represented by a key

▪Supports memory compression

Store Manager

18

©2019 FireEye©2019 FireEye

▪Created by the Store Manager

▪XPRESS Compression Format

▪Pages stored in MemCompression

▪1 Page : 1 Key

Virtual Store

19

©2019 FireEye©2019 FireEye

Store Manager Page Key (ALG0)

20

Valid

PageFileReserved

PageFileAllocated

ColdPage

SwizzleBit

Protection

Prototype

Transition

PageFileLow

UsedPageTableEntries

ShadowStack

Unused

PageFileHigh

PageFileLow PageFileHigh

(PageFileLow << 28) | PageFileHigh

©2019 FireEye©2019 FireEye

20017A4D

SM_PAGE_KEY (ALG0)

21

©2019 FireEye©2019 FireEye

Store Manager Page Key (ALG1)

22

Valid

PageFileReserved

PageFileAllocated

ColdPage

SwizzleBit

Protection

Prototype

Transition

PageFileLow

UsedPageTableEntries

ShadowStack

Unused

PageFileHigh

PageFileLow PageFileHigh

SwizzleBit

SwizzleBit

(PageFileLow << 28) | ((PageFileHigh) & ~InvalidPteMask)

©2019 FireEye©2019 FireEye

20024EDF

SM_PAGE_KEY (ALG1)

23

©2019 FireEye©2019 FireEye

Dude, Where’s my Page?

24

©2019 FireEye©2019 FireEye

Navigating the Store Manager

25

©2019 FireEye©2019 FireEye

▪Journey begins at nt!SmGlobals

▪Calculate SM_PAGE_KEY

▪Search B+TREE for key

▪Determine store containing key

Finding Your Store

26

©2019 FireEye©2019 FireEye

B+TREE Layout

27

Key

Key

Key

Key

Tree Root

Entries

Key Store Flags

Key Store Flags

Key Store Flags

Key Store Flags

Key Store Flags

Key Store Flags

Key Store Flags

©2019 FireEye©2019 FireEye

Traversing a B+TREE

28

2001a210 0000 3

2001ac16 0000 3

2001b689 0000 3

2001b691 0000 3

2001b687 0000 3

2001b688 0000 3

000200a2 a415d000

2001c460 a875f000

2001e6bc a2546000

62,720 2001a210 a5c01000

2001B68F

2001b68f 0000 3

a4163000a4163000

2001a210 a5c01000

2001b68f 0000 3

©2019 FireEye©2019 FireEye

Finding Your Store

29

©2019 FireEye©2019 FireEye

▪Store-specific structures

–All information leads to locating a page record

▪SMKM_STORE

–Pointer to an array of pointers to regions of
compressed pages

▪ST_DATA_MGR

–Chunk keys, compression format, region indices

▪SMHP_CHUNK_METADATA

–Array of chunks that contains vectors of page records

SMKM_STORE & Family

30

©2019 FireEye©2019 FireEye

▪Obtain Chunk Key from local B+TREE

▪Chunks lead us to ST_PAGE_RECORD

▪ST_PAGE_RECORD leads us to a Region

▪Regions lead us to

Deriving Page Virtual Address

31

©2019 FireEye©2019 FireEye

▪Compressed pages previously stored in System

▪Storage container for all compressed data

▪Minimal process

–No PEB or user threads, NTDLL is not mapped

▪Minimal threads (No TEB)

–Page compression

–Page read/write

–Page swapping

MemCompression

32

©2019 FireEye©2019 FireEye

The Big Picture

33

?

©2019 FireEye©2019 FireEye

34

©2019 FireEye©2019 FireEye

▪Structures change between builds

▪Analysis effort is ~8h/kernel

▪Too many kernels

▪Automated analysis desired

Structure Extraction Automation

35

Windows 10 0 17134 117

OS Name Major Minor Build Revision

©2019 FireEye©2019 FireEye

▪ IDA Pro Unicorn

▪Written by Tom Bennett @

▪Scriptable emulation framework

▪Rapid prototyping

FLARE-EMU

36

©2019 FireEye©2019 FireEye

▪Analyzed ~10 kernels manually

▪Discovered commonalities

–Structure locations

–Function prototypes

–Order of operations

–Data usage patterns

–Callstacks

FLARE-EMU

37

©2019 FireEye©2019 FireEye

Automate This

©2019 FireEye©2019 FireEye

FLARE-EMU

3939

ST_DATA_MGR

AaAbAcAdAeAfAgAhAiAjAkAlAmAnA
oApAqArAsAtAuAvAwAxAyAzBaBbBc
BdBeBfBgBhBiBjBkBlBmBnBoBpBqB
rBsBtBuBvBwBxByBzCaCbCcCdCeCf
CgChCiCjCkClCmCnCoCpCqCrCsCtC
uCvCwCxCyCzDaDbDcDdDeDfDgDhDi
DjDkDlDmDnDoDpDqDrDsDtDuDvDwD
xDyDzEaEbEcEdEeEfEgEhEiEjEkEl
EmEnEoEpEqErEsEtEuEvEwExEyEzF
aFbFcFdFeFfFgFhFiFjFkFlFmFnFo
FpFqFrFsFtFuFvFwFxFyFzGaGbGcG
dGeGfGgGhGiGjGkGlGmGnGoGpGqGr
GsGtGuGvGwGxGyGzHaHbHcHdHeHfH
gHhHiHjHkHlHmHnHoHpHqHrHsHtHu
HvHwHxHyHzIaIbIcIdIeIfIgIhIiI
jIkIlImInIoIpIqIrIsItIuIvIwIx
IyIzJaJbJcJdJeJfJgJhJiJjJkJlJ
mJnJoJpJqJrJsJtJuJvJwJxJyJzKa
KbKcKdKeKfKgKhKiKjKkKlKmKnKoK
pKqKrKsKtKuKvKwKxKyKzLaLbLcLd
LeLfLgLhLiLjLkLlLmLnLoLpLqLrL
sLtLuLvLwLxLyLzMaMbMcMdMeMfMG

©2019 FireEye©2019 FireEye

FLARE-EMU

40

“Km”

0x20001400

0x1423

0x31001200

0x1163

0x20101000

AaAbAcAdAeAfAgAhAiAjAkAlAmAnA
oApAqArAsAtAuAvAwAxAyAzBaBbBc
BdBeBfBgBhBiBjBkBlBmBnBoBpBqB
rBsBtBuBvBwBxByBzCaCbCcCdCeCf
CgChCiCjCkClCmCnCoCpCqCrCsCtC
uCvCwCxCyCzDaDbDcDdDeDfDgDhDi
DjDkDlDmDnDoDpDqDrDsDtDuDvDwD
xDyDzEaEbEcEdEeEfEgEhEiEjEkEl
EmEnEoEpEqErEsEtEuEvEwExEyEzF
aFbFcFdFeFfFgFhFiFjFkFlFmFnFo
FpFqFrFsFtFuFvFwFxFyFzGaGbGcG
dGeGfGgGhGiGjGkGlGmGnGoGpGqGr
GsGtGuGvGwGxGyGzHaHbHcHdHeHfH
gHhHiHjHkHlHmHnHoHpHqHrHsHtHu
HvHwHxHyHzIaIbIcIdIeIfIgIhIiI
jIkIlImInIoIpIqIrIsItIuIvIwIx
IyIzJaJbJcJdJeJfJgJhJiJjJkJlJ
mJnJoJpJqJrJsJtJuJvJwJxJyJzKa
KbKcKdKeKfKgKhKiKjKkKlKmKnKoK
pKqKrKsKtKuKvKwKxKyKzLaLbLcLd
LeLfLgLhLiLjLkLlLmLnLoLpLqLrL
sLtLuLvLwLxLyLzMaMbMcMdMeMfMG

©2019 FireEye©2019 FireEye

Field Offset Located

41

>>>pattern.find(“Km”)

0x220

©2019 FireEye©2019 FireEye42

Rinse & Repeat

©2019 FireEye©2019 FireEye43

©2019 FireEye©2019 FireEye44

“With Windows 10 you're not
getting data you'd expect

because it's compressed in

memory...”
- Andrew Case

©2019 FireEye©2019 FireEye

▪ research integrated into plugins

–Blaine Stancill (Volatility Lead)

–Sebastian Vogl (Rekall Lead)

Volatility & Rekall

45

©2019 FireEye©2019 FireEye

Plugin’s Baby Steps

46

Compressed Address

Decompressed Data

©2019 FireEye©2019 FireEye

volshell

47

©2019 FireEye©2019 FireEye

Transparent Translation

48

©2019 FireEye©2019 FireEye

modules

49

©2019 FireEye©2019 FireEye

dlllist -p 2444

50

©2019 FireEye©2019 FireEye

driverscan

51

©2019 FireEye©2019 FireEye

ldrmodules

52

©2019 FireEye©2019 FireEye

hashdump

53

©2019 FireEye©2019 FireEye

Unlocked Data

54

©2019 FireEye©2019 FireEye

Malware Overview

55

EXE DLL Shellcode

Payload EXE

Shellcode Comms

Server DLL

©2019 FireEye©2019 FireEye

Get the Basics (imageinfo)

56

©2019 FireEye©2019 FireEye

pstree

57

©2019 FireEye©2019 FireEye

dlllist -p 5684

58

©2019 FireEye©2019 FireEye

handles -p 5684 -t mutant

59

©2019 FireEye©2019 FireEye

▪malfind

▪handles (file)

▪procdump

▪dlldump

▪vaddump

Fails

60

©2019 FireEye©2019 FireEye

Malware Overview

61

EXE DLL Shellcode

Payload EXE

Shellcode Comms

Server DLL

©2019 FireEye©2019 FireEye

handles -p 5684 -t mutant / file

62

©2019 FireEye©2019 FireEye

malfind -p 5684

63

Shellcode

©2019 FireEye©2019 FireEye

malfind -p 5684

64

©2019 FireEye©2019 FireEye

Server DLL Strings

65

©2019 FireEye©2019 FireEye

Payload Strings

66

©2019 FireEye©2019 FireEye

Malware Overview

67

EXE DLL Shellcode

Payload EXE

Shellcode Comms

Server DLL

©2019 FireEye©2019 FireEye

Enhanced Analysis

68

©2019 FireEye©2019 FireEye

Call It a Day

69

github.com/fireeye

win10_volatility win10_rekall flare-emuwin10_auto

flare-on.com

Omar Sardar – Technical Lead (2016+)

Claudiu Teodescoru – Technical Lead (2016)

Dimiter Andonov – Windows Research (2017+)

Blaine Stancill – Volatility Integration (2019+)

Sebastian Vogl – Rekall Integration (2016+)

win10_volatility win10_rekall flare-emuwin10_auto

