
A Decade After Bleichenbacher ’06, RSA Signature Forgery

Still Works

Sze Yiu Chau - schau@purdue.edu

Black Hat USA 2019

RSA signatures, specifically the PKCS#1 v1.5 scheme, are widely used by X.509 certificates in TLS,

as well as many security-critical network protocols like SSH, DNSSEC and IKE. Unfortunately, many

implementations of PKCS#1 v1.5 RSA signature verification turn out to be incorrectly lenient when given

malformed inputs. This white paper will explore the topic, review historic flaws and known attacks, and

discuss how we applied dynamic symbolic execution to various implementations and found that many of

them still suffer from different kinds of unwarranted leniency, leading to new variants of signature forgery

more than a decade after the original attack was reported. I will also dissect the root causes of the flaws

that we have found and give suggestions for developers to consider when facing the task of implementing

similar protocols. This white paper is based on a recently published academic research paper “Analyzing

Semantic Correctness with Symbolic Execution: A Case Study on PKCS#1 v1.5 Signature Verification” [1]

co-authored by myself, Moosa Yahyazadeh (University of Iowa), Omar Chowdhury (University of Iowa),

Aniket Kate (Purdue University), Ninghui Li (Purdue University).

. .

PKCS#1 v1.5. One of the reasons why RSA signatures are so widely used, is perhaps due to its simplicity.

In the ‘textbook’ description, given message m and public key (n, e), verifying a signature S is as simple as

computing Se mod n
?
= H(m), where H is the hash function of choice. In practice, however, the output

of Se mod n contains additional information besides H(m), usually following the requirements described

by the PKCS#1 v1.5 signature scheme. This is because typical hash outputs (e.g. 160 bits for SHA-1)

tend to be much shorter than the size of n (e.g. 2048 bits or even 4096 bits these days), and to make

the scheme self-contained, the signer needs to be able to communicate the choice of H to the verifier.

Hence, the PKCS#1 v1.5 signature scheme describes how padding should be done, as well as the format

of the metadata used to indicate H. In short, Se mod n is expected to look like this:

0x00 —— 0x01 —— PB —— 0x00 —— AS

where PB is the padding which has to be at least 8-byte long, made of a series of 0xFF bytes, and AS is

an DER-encoded ASN.1 structure, containing metadata indicating H and the actual H(m).

. .

A bit of history. Flaws in implementations of PKCS#1 v1.5 signature verification that are exploitable

for signature forgery attacks were first reported by Daniel Bleichenbacher during the rump session of

CRYPTO 2006 [2]. He found that some implementations are not rejecting extra trailing bytes after AS,

and those trailing bytes can take arbitrarily any values. Because of this unwarranted leniency in the verifier,

it is possible to forge signatures when e is small (e.g., e = 3). The difficulty of achieving a successful

forgery depends on the size of n and the choice of H, both of which affect the number of trailing bytes

that an attacker can use. In fact, in the face of such implementation flaws, using a longer modulus (which

is believed to be harder to factorize) would actually give more advantages to the attacker. The original

example given by Bleichenbacher was based on a 3072 bit modulus. A follow-up analysis of the attack

under shorter moduli was given by Kühn et al. in 2008 [3], along with variants of the attack exploiting

other flaws in the verifier. For example, it was reported that, old versions of GnuTLS and OpenSSL were

1

not properly checking the algorithm parameter part of AS, which allow some bytes in the middle of AS to

take arbitrarily any values. This can also be exploited for signature forgery if the number of bytes that are

not verified is long enough. Intel Security reported in 2014 that a similar problem exists in Mozilla NSS,

which can be used to forge certificates [4]. Later in 2016, Filippo Valsorda reported that the python-rsa

implementation of PKCS#1 v1.5 signature verification does not enforce the requirement that all padding

bytes need to be 0xFF [5], which is again exploitable for signature forgery, contributing yet another attack

variant to the family of Bleichenbacher ’06.

. .

New findings. The legacy of Bleichenbacher ’06, however, did not end there. In our research, we revisit

the problem of implementing PKCS#1 v1.5, and found that several open-source software still suffer from

variants of the signature verification flaw, which can potentially be exploited for forgery attacks. The

table below shows the list of software that we have investigated, and gives a summary of our findings.

Name - Version Overly lenient Practical exploit under small e

axTLS - 2.1.3 YES YES

BearSSL - 0.4 No -

BoringSSL - 3112 No -

Dropbear SSH - 2017.75 No -

GnuTLS - 3.5.12 No -

LibreSSL - 2.5.4 No -

libtomcrypt - 1.16 YES YES

MatrixSSL - 3.9.1 (Certificate) YES No

MatrixSSL - 3.9.1 (CRL) YES No

mbedTLS - 2.4.2 YES No

OpenSSH - 7.7 No -

OpenSSL - 1.0.2l No -

Openswan - 2.6.50 * YES YES

PuTTY - 0.7 No -

strongSwan - 5.6.3 * YES YES

wolfSSL - 3.11.0 No -

* When using their internal implementations of PKCS#1 v1.5.

Altogether, we found that 6 software turn out to be overly lenient when it comes to PKCS#1 v1.5

signature verification. Among all the implementation flaws that we have discovered, 6 new CVEs have

been assigned to the exploitable ones, 3 for axTLS, 2 for strongSwan, and 1 for Openswan.

CVE-2018-16150: We found that axTLS also accepts trailing bytes after AS, just like the original

Bleichenbacher ’06 report [2], which means the original attack will also work. In fact, our analysis found

that axTLS also ignores the first 10 bytes of Se mod n, which can be exploited in tandem to make the

forgery easier to succeed (reducing the number of brute force trials).

CVE-2018-16253: As shown in Snippet 1, axTLS ignores the metadata (both the algorithm object

identifier and parameter) in AS that is used to indicate the hash algorithm, which is even laxer than

the flaw of not checking algorithm parameter previously found. Hence, the forgery algorithm given in

previous work [3, 4] can be adapted to apply here. This flaw happened probably because the signature

verification code in axTLS is primarily used in the validation of X.509 certificates, which have a separate

field for indicating the choice of signature algorithm and hash function, and one might incorrectly think

that checking the metadata in AS is redundant.

2

Snippet 1: Majority of ASN.1 metadata skipped in axTLS 2.1.3

if (asn1˙next˙obj(asn1˙sig , &offset , ASN1˙SEQUENCE) ¡ 0

—— asn1˙skip˙obj(asn1˙sig , &offset , ASN1˙SEQUENCE))

goto end˙get˙sig;

if (asn1˙sig[offset ++] != ASN1˙OCTET˙STRING)

goto end˙get˙sig;

*len = get˙asn1˙length(asn1˙sig , &offset);

ptr = &asn1˙sig[offset]; /* all ok */

end˙get˙sig:

return ptr;

CVE-2018-16149: Additionally, we found that axTLS trusts the declared value of the length variables

in AS without any sanity checks, which means an attacker can put absurdly large values there to trick the

parser used by axTLS into performing illegal memory access. As a proof-of-concept attack, we managed

to crash the signature verifier by declaring an incorrectly long H(m). This attack is quite practical because

axTLS performs certificate validation in a bottom-up manner, which means even if e = 3 is seldom used

in the X.509 ecosystem these days, any MITM can potentially inject an invalid CA certificate to the chain

with e = 3, and DoS the verifier before it gets a chance to validate the chain against the trust anchors

(e.g., some root CA certificates).

CVE-2018-15836: Our analysis showed that Openswan has a simple flaw of not checking the actual

value of the padding bytes, similar to the problem previously discovered in python-rsa. Because of this,

a Bleichenbacher-style low exponent signature forgery is possible.

CVE-2018-16151: We found that strongSwan does not reject signatures with extra garbage bytes

hidden in the algorithm parameter portion of AS, a classical flaw also found previously in GnuTLS [6] and

Mozilla Firefox [7].

CVE-2018-16152: Moreover, our analysis discovered that strongSwan match the algorithm object

identifier in AS using a variant of the longest prefix match, which accepts trailing garbage bytes hidden

after a valid object identifier. In other words, as long as a valid prefix is found, it does not fully consume the

object identifier bytes, which means the forgery algorithm for exploiting the flaw of not properly checking

algorithm parameters given in previous work [3, 4] can also be adapted to apply here.

Others: We found other peculiarities in several software but not all unwarranted leniency enables

immediate practical attacks. For example, we found that MatrixSSL has two different signature verification

functions, one for validating X.509 certificates, one for validating Certificate Revocation Lists (CRLs).

Interestingly, the signature verification for CRL in MatrixSSL does not reject invalid algorithm object

identifiers. Additionally, MatrixSSL is somewhat permissive when it comes to DER length checks, meaning

that several possible length values would all be considered acceptable, and both mbedTLS and libtomcrypt

share variants of this problem as well. We note that libtomcrypt also contains some other flaws that make

the Bleichenbacher-style signature forgery possible, which had been found and reported independently by

other researchers (CVE-2016-6129 was assigned for that).

. .

Fixing the problems. Several fixes have been released to address the aforementioned problems. The

problems in Openswan have been fixed since version 2.6.50.1 [8]. In fact, one of the forged signatures

that we shared with the developers have been incorporated into the Openswan source tree as a new unit

test case [9]. strongSwan has fixed the problems since version 5.7.0, and have released patches for older

versions [10]. Having these problems fixed for Openswan and strongSwan is desirable as there are still key

3

generation programs in the IPSec ecosystem that force e = 3 [11]. libtomcrypt has fixed the exploitable

flaw since version 1.18.0 [12]. We developed a patch for axTLS which has been incorporated into the

source tree since version 2.1.5 [13].

. .

Analysis technique. Instead of manual code review, we relied on dynamic symbolic execution (DSE) to

help drive our analysis. The main intuition is that figuring out how input bytes are being consumed and

verified is a problem well suited for DSE, and in the case of PKCS#1 v1.5, the several components that

constitute the input buffer exhibit nice linear relations (e.g., all of them together have to be as long as the

size of the modulus, and the length of nodes in AS add up from the leaf to the root in the benign case),

which can be leveraged to automatically generate meaningful concolic test cases on the fly. Additionally,

we have also designed and implemented a constraint provenance tracking mechanism for KLEE, enabling

one to identify the lines of code that contributed to the clauses of a path constraint, which makes root

cause analysis much easier. For details of our analysis setup as well as the signature forgery algorithms,

we refer the readers to the full paper [1].

. .

Parsing is hard. To sum up, it was surprising that the Bleichenbacher-style low exponent signature

forgery still works after more than a decade since the original report. One of the main reasons is that

many software take a parsing-based approach when implementing signature verification, that is, some

sort of ASN.1 parser is being used to extract H(m) out of Se mod n. This is potentially problematic

due to two reasons. First, given that ASN.1 is highly flexible but has a somewhat complex grammar and

encoding rules, some implementations of the parser, especially if it is written primarily for PKCS#1 v1.5,

try to cut corners in attempt to make the parser simpler and easier to write. Second, the robustness

requirements for a generic parser could be quite different from that of a security-critical piece of code.

One might reasonably expect a robust parser to not hard fail on malformed inputs and still be able to

salvage useful information and let the computation proceed (see for example, [RFC 761], Sect. 2.10

Robustness Principle), but for security-critical tasks like signature verification, such leniency can often

lead to exploitable flaws, and in many cases a hard failure is actually the correct behavior.

A better way of implementing PKCS#1 v1.5 signature verification, is to use a so-called construction-

based approach, that is, after computing Se mod n, instead of extracting H(m) out of it, the verifier

can construct an “expected output”, just like what the signer would do, and then compare the entire

chunks of bytes. This could avoid the unenviable task of implementing a full ASN.1 parser, as signature

verification now no longer depends on parsing. This is similar to what had been done before for fixing the

problems found several years ago [14], and is how we fixed the newly found problems in axTLS [15].

In the long run, perhaps it is worth reconsidering the design of incorporating a flexible but complex

structure inside security-critical objects like digital signatures. While an ASN.1 DER structure like AS

is highly extensible and can easily accommodate new hash algorithms, the reality is, new standardized

algorithms seldom get introduced, and complicating a common but critical routine that gets invoked

multiple times daily for a flexibility that is enjoyed only once in a while might not seem to be worthwhile.

References

[1] S. Y. Chau, M. Yahyazadeh, O. Chowdhury, A. Kate, and N. Li, “Analyzing Semantic Correctness

with Symbolic Execution: A Case Study on PKCS#1 v1.5 Signature Verification,” in The Network

and Distributed System Security Symposium (NDSS) 2019.

4

[2] H. Finney, Bleichenbacher’s RSA signature forgery based on implementation error, 2006 (accessed

Jul 14, 2019), https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html.

[3] U. Kühn, A. Pyshkin, E. Tews, and R. Weinmann, “Variants of bleichenbacher’s low-exponent at-

tack on PKCS#1 RSA signatures,” in Sicherheit 2008: Sicherheit, Schutz und Zuverlässigkeit.

Konferenzband der 4. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V.

(GI), 2.-4. April 2008 im Saarbrücker Schloss., 2008, pp. 97–109.

[4] Intel Security: Advanced Threat Research, BERserk Vulnerability – Part 2: Certificate Forgery

in Mozilla NSS, 2014 (accessed Jul 14, 2019), https://bugzilla.mozilla.org/attachment.cgi?id=

8499825.

[5] F. Valsorda, Bleichenbacher’06 signature forgery in python-rsa, 2016 (accessed Jul 14, 2019), https:

//blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/.

[6] S. Josefsson, [gnutls-dev] Original analysis of signature forgery problem, 2006 (accessed Jul 21,

2018), https://lists.gnupg.org/pipermail/gnutls-dev/2006-September/001240.html.

[7] Bugzilla, RSA PKCS#1 signature verification forgery is possible due to too-permissive Signa-

tureAlgorithm parameter parsing, 2014 (accessed Jul 18, 2018), https://bugzilla.mozilla.org/

show bug.cgi?id=1064636.

[8] [Openswan Users] Xelerance has released Openswan 2.6.50.1, 2018 (accessed Jul 16, 2019), https:

//lists.openswan.org/pipermail/users/2018-August/023761.html.

[9] wo#7449 . test case for Bleichenbacher-style signature forgery, 2018 (accessed Jul 16, 2019),

https://github.com/xelerance/Openswan/commit/937d24f88566702d72a549e9e8650320cb4f95cf.

[10] strongSwan Vulnerability (CVE-2018-16151, CVE-2018-16152), 2018 (accessed Jul 16, 2019),

https://www.strongswan.org/blog/2018/09/24/strongswan-vulnerability-(cve-2018-16151,-cve-

2018-16152).html.

[11] Ubuntu Manpage: ipsec rsasigkey - generate RSA signature key, 2018 (accessed Jul 16, 2019),

http://manpages.ubuntu.com/manpages/bionic/man8/ipsec rsasigkey.8.html.

[12] libtomcrypt 1.18.0 Release Note, 2017 (accessed Jul 16, 2019), https://www.libtom.net/news/

LTC 1.18.0/.

[13] [axtls-general] v2.1.5 of axTLS released, 2019 (accessed Jul 16, 2019), https://sourceforge.net/p/

axtls/mailman/message/36613862/.

[14] PKCS#1 signature validation, 2014 (accessed Jul 16, 2019), https://www.imperialviolet.org/2014/

09/26/pkcs1.html.

[15] Apply CVE fixes for X509 parsing, 2018 (accessed Jul 16, 2019), https://github.com/igrr/axtls-

8266/commit/5efe2947ab45e81d84b5f707c51d1c64be52f36c.

5

