® A Decade After Bleichenbacher '06,
blag% ha’lt RSA Signature Forgery Still Works
‘._J —]

AUGUST 3-8, 2019 Sze Yiu Chau Purdue University
MANDALAY BAY / LAS VEGAS SChGU@,UUI’dUE.EO’U .:..*:.'}':.f..w"

-
o% 4 e

Lol

.

d .9;’

HUSA Ya@BLACK HAT EVENTS

PhD in CS from Purdue G PURDUE

HEF LXE

" (_ The Chinese University of Hong Kong

Joining CUHK |IE as AP in 2020

Interests: (in)secure design and implementations of protocols

A little brain teaser

’ =HF %

What is common among thesé protocols?

DNSSEC

THEY ALL HAVE RFCS Q THEY'RE ALL SECURITY-CRITICAL W

THEY ALL CAN BENEFLT FROM PKCS

| VIS RSA SLGNATURES

7

Textbook RSA signature

* Signing message m:

Hm) [

H(m)4 mod n | | where d = private exponent
‘ n = modulus

S

* Given (S, m, e, n), verifying Sis a valid signature of m

S where e = public exponent

S¢emod n |:| ? |:| H(m)

Beyond textbook RSA

* Reality is more complex than that FEEDING

1. Which H() to use?
* SHA-1, SHA-2 family, SHA-3 family ...
2. nisusually much longer than H(m)
* |n| 22048-bit
* |SHA-1| = 160-bit, [SHA-256| = 256-bit

* Need meta-data and padding

picture borrowed from http://www.howtobeadad.com/2016/29188/reality-vision-for-parents

—

Beyond textbook RSA

* The PKCS#1 family of standards

* Both encryption and signature schemes
« version 2+ adapted schemes from Bellare et al.

* Forsignatures, PKCS#1 v1.5 most widely used
» e.g. certificates of Google, Wikipedia

——

= O

PKCS#1v1.5 Signature Scheme

H(m)4 mod n

kd

kd mod n

For signature, BT (Block Type) = 0x01

0x00

BT

PB | Ox00| AS

PB (Padding Bytes) = OxFF OxFF ... OxFF

« Atleast 8-byte long
« Pad k to the size of n

l AS Is a DER-encoded ASN.1

structure, containing:
« Meta-data describing H()
« The actual H(m)

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

30 21 30 09 06 05 2B OE 03 02 1A 05 00 04 14 2A AE 6C
35 C9 4F CF B4 15 DB E9 5F 40 8B 9C E9 1E E8 46 ED

H() = SHA-1(), m = “hello world”
altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

T L
30)(21

30 09 06 05 2B OF 03 02 1A 05 00 04 14 2A AE 6C
V 35 c9 4F CF B4 15 DB E9 5F 40 8B 9C E9 1F E8 46 ED

H() = SHA-1(), m = “hello world”
altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

T L
3001 T L

30)09
V 06 05 2B OE 03 02 1A 05 00
04 14 2A AE 6C 35 C9 4F CF B4 15
4 DB E9 5F 40 8B 9C E9 1E E8 46 ED

H() = SHA-1(), m = “hello world”
altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

T L
30)21) T L
30009 T L V
06) (05 [23 OE 03 02 lA]<- .. OID of SHA-1
0506 v 5255585555555 8555 e e null parameter

04 14 2A AE 6C 35 C9 4F CF B4 15

v DB E9 5F 40 8B 9C E9 1E E8 46 ED

* H() =SHA-1(), m =“hello world”
« altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

T L
30)21) T L
30009 T L V
06) (05 [23 OFE 03 02 1Al OID of SHA-1
I O I OO TR ——— null parameter

04) (14)(2A AE 6C 35 C9 4F CF B4 15| “ ”
(DB E9 5F 40 8B 9C E9 1E E8 46 ED| SHA-1("hello world")

V

e H()=SHA-1(), m=“hello world”
* altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

e Encoded AS looks like this:

9@
30 T
V
+ 6) 05 2B OE 03 02 1A
T L 00

@42A AE 6C 35 C9 4F CF B4 15
DB E9 5F 40 8B 9C E9 1E E8 46 ED

V

H() = SHA-1(), m = “hello world”
altogether 35 bytes

 DERencoded objectis a tree of <T,L,V> triplets

PKCS#1v1.5 Signature Scheme

Given (S, m, e, n), verifier computes H(m) and r = S® mod n

oxoo| BT | PB | 0x00 AS|:I

—_— Check if ris well-formed?
r=S¢mod k [l |] All kinds of leniencies ...
ke | |

kdmod 6

RSA and Factorization

RSA-640 [edt)

RSA-640 has 640 bits (193 decimal digits). A cash prize of US$20,000 was offered by RSA Security for a successful factorization. On
November 2, 2005, F. Bahr, M. Boehm, J. Franke and T. Kleinjung of the German Federal Office for Information Security announced that

leen (e,n) Can We flnd d? they had factorized the number using GNFS as follows: 2311261271

RSA-840 = 31074182404900437213507500358885679300373460228427275457

20161948823206440518081504556346829671723286782437916272
° ed = 1 (”]Od) ¢(n) 83803341547107310850191954852900733772482278352574238645
d . h I . I' . 4014691736602477652346609
inverse Of e mod ¢ n RSA-640 = 16347336458092538484431338838650908598417836700330923121
81116852389333100104508151212118167511579
x 19008712816648221131268515739354139754718967899685154936
66638539088027103802104498957191261465571
¢ If We knOW The computation took five months on 80 2.2 GHz AMD Opteron CPUs.

¢ (n)] (p - -I) (q - -I) The slightly larger RSA-200 was factored in May 2005 by the same team.
then easy to f|nd d RSA-200 [eit]

d d RSA-200 has 200 decimal digits (663 bits), and factors into the two 100-digit primes given below. Wikinews has related news:
(v34)) Two hundred digit numb
(u Se EXten € On May 9, 2005, F. Bahr, M. Boehm, J. Franke, and T. Kleinjung announced®12%! that they had b e

Eu C I | d ean AI g or Ith m) factorized the number using GNFS as follows:

RSA-200 = 2799783391122132787082946763872260162107044678695542853756000992932612840010
7609345671052955360856061822351910951365788637105954482006576775098580557613
579098734950144178863178946295187237869221823983

e ifwe
then

= Pq

Ind ¢(n) RSA-200 = 3532461934402770121272604978198464368671197400197625023649303468776121253679
423200058547956528088349

x 7925869954478333033347085841480059687737975857364219960734330341455767872818
152135381409304740185467

The CPU time spent on finding these factors by a collection of parallel computers amounted — very approximately — to the equivalent of 75
years work for a single 2.2 GHz Opteron-based computer.[28] Note that while this approximation serves to suggest the scale of the effort, it
leaves out many complicating factors; the announcement states it more precisely.

Bleichenbacher's low exponent attack

Yet another crypto attack attributed to D. Bleichenbacher
CRYPTO 2006 rump session

Some implementations accept malformed r’

r' Ox00| BT

PB

0x00

-

Existential forgery possible when e is small
« Generate signatures for some m without d '

Bleichenbacher's low exponent attack

A contributing factor to the push for
bigger e (e.g. 65537)

Smaller e more efficient for
signature verifier

e = 3 prescribed in some protocols
e.g. DNSSEC [RFC3110, Sect. 4]

. Performance Considerations

General signature generation speeds are roughly the same for RSA and
DSA [RFC2536]. With sufficient pre-computation, signature generation
with DSA is faster than RSA. Key generation is also faster for DSA.
However, signature verification is an order of magnitude slower with
DSA when the RSA public exponent is chosen to be small as is
recommended for KEY RRs used in domain name system (DNS) data
authentication.

A public exponent of 3 minimizes the effort needed to verify a
signature. Use of 3 as the public exponent is weak for
confidentiality uses since, if the same data can be collected
encrypted under three different keys with an exponent of 3 then,
using the Chinese Remainder Theorem [NETSEC], the original plain text
can be easily recovered. If a key is known to be used only for
authentication, as is the case with DNSSEC, then an exponent of 3 is
acceptable. However other applications in the future may wish to
leverage DNS distributed keys for applications that do require
confidentiality. For keys which might have such other uses, a more
conservative choice would be 65537 (F4, the fourth fermat number).

Bleichen Lol
Bg ("H-' T

hal@fi

gr session

P P S

a4 8- s

e forgery based on implementation error
R August 2006 11:34 UTC

| Show header

ceel, Daniel Bleichenbacher
some circumstances to

xponent Attack on

RSA

ntic
Stu
Ve

yazadeh!
t,ningh
omar-chdg

on can be

1 Symbolic
1epature

f

ibed level of robustness can lead

‘ze the semantic
avoid manually
¢ a strategy of meta-level search,
which leverages constr fmmed from the input formats to
antomatically generate ¢ test cases. Additionally, to aid
root-canse andalysiE,"We develop constraint provenance tracking
(CPT), a mechanism that associates atomic sub-formulas of path

o
crafting fesl cases, we

to a plethora of :lllﬂ.Ck.'ix[Q]. [20], [22]. [27].

The PKCS#1 v1.5 signature scheme, surrounding the RSA
algorithm, is one such glue protocol that is widely deployed
in practice. Used in popular secure communication protocols
like SSL/TLS and S58H. it has also been adapted for other
scenarios like signing software. Prior work has demonstrated

Chosen Ciphertext Attacks Against Protocols

Based on Encryption Standard
CS #1

leichenbacher

tacks

Romain Bardou'+*, Riccg.’lc;iﬂrdi “** Yusuke Kawamoto®*,

Lorenzo Simionato?***, Gral Steel’'*, and Joe-Kai Tsay™**

Return Of Bleichenbacher’s Org (DT)

Craig Young
Tripwire VERT

Hanno Béck Juraj Somorovsk

Ruhr University Bochum, Haclg qnit GmbH

A ther’s CAT:

plementations

The 9 Lives
New Cache ATta

Eyal Ronen®, Robert Gillham', Dasg

*Tel Aviv University, TUniversity of Adelaide, University ' \l&gun. YWeizmann Institute, iINCC Group, **Data61

id Wong®, and Yuval Yarom'**
[

r
Abstract—At CRYPTO'98, Bleichenbacher published his “HG access patterns [72]. After each attack, implemen-
inal paper which described a padding oracle attack agaj

RSA implementations that follow the PRCS #1 v1.5 standi
Over the lasi tweniy years researchers and implementors |)
spent a huge amount of effort in developing and deplovi \D\ﬂfld))) o)
numerous mitigation techniques which were supposed to plug ah sming increasingly difficult to understand. implement,
the poscible sources of Bldchenbacher-like leakases However and mantain Thus considernine the number of demonstrated

d ad-hoc mitigation techniques in an effort to ensure
| , . ,
I of PKCS #1 v1.5 does not leak information on the
esulting in complicated mitigation techniques that

A little brain teaser

’ =HF %

What is common among thesé protocols?

DNSSEC

THEY ALL HAVE RFCS Q THEY'RE ALL SECURITY-CRITICAL W

SUFFER

THEY ALL CAN BENEFEIT FROM PKCS

| VIS RSA SLGNATURES

7

Why was the attack possible?

* Problem: verifier accept malformed input
w/ GARBAGE unchecked

« Can bein many different locations, not only at the end
oxo0| BT | PB | 0x00|as[]
1T | rr 11
* Longer modulus makes forgery easier

* More GARBAGE bits to use
* Canhandle longer hashes/ slightly larger e

To find these attacks

* Wantto see how input bytes are being checked

ox00| BT | PB | oxo0fas[] lﬁ
1 | rr ot

* If enough unchecked GARBAGE then

Automatically generate concolic test cases

Observation: size of components exhibit linear relations
* e.g.Y length(components)) =|n|; ASN.1DER
Programmatically capture such linear constraints

Ask Symbolic Execution to find satisfiable solutions

3. Find x.
% :
-

e it i

Based on that, automatically pack symbolic/concrete components
into test buffers

pictures borrowed from https://www.memecenter.com/fun/160/Find-x and https://askascientist.co.uk/health/viruses-mutate/

Testing with Symbolic Execution

* Symbolic Execution with concolic test cases

®
g Sets of Logical
j, \ > (P o Formulas /XvY--P
- AQ)-Y T/2+3=K
v b\" . —|X—>—.Q AOB1
X S=T-5

el

O\

* Very useful abstraction Al (approx) R2 (approx.)
 What and how things are
being checked in code?

 Formulas can help
cross-validate implementations

A2 (approx.) R1 (approx.)

Finding root causes

* Locate the piece of code that imposes wrong constraints
* Canwe go from formula abstraction back to code?

* Constraint Provenance Tracking
* Keep amapping of <clause, source-level origin>
* Function filtering, e.g. memcmp () Sets of Log

ical
. . Formulas /XvY-=P
* Tinyspace &time overhead (PAQ)-Y T/2+3=K
= |- \ N

Implementations Tested

Name - Version

axTLS - 2.1.3
BearSSL - 0.4
BoringSSL - 3112
Dropbear SSH - 2017.75
GnuTLS - 3.5.12
LibreSSL - 2.5.4
libtomcrypt - 1.16
MatrixSSL - 3.9.1 (Certificate)
MatrixSSL - 3.9.1 (CRL)
mbedTLS - 2.4.2
OpenSSH - 7.7
OpenSSL - 1.0.21
Openswan - 2.6.50 *
PuTTY -0.7
strongSwan - 5.6.3 *

wolfSSL - 3.11.0

Overly lenient

YES
No
No
No
No
No

YES

YES

YES

YES
No
No

YES
No

YES
No

Practical exploit under small e

YES

YES
No
No

No

YES

YES

Discussion of signature forgery
assumes e = 3 and SHA-1,
attacks also applicable to
newer hash algorithms

™

open souirce

Fimoluede <gbdio. k>
int main |

{

printt{"bello Yn®);
¥

. * configured to use |
. their own internal
. implementations of
. PKCS#1 v1.5 |

Leniency in Openswan 2.6.50

lgnoring padding bytes [CVE-2018-15836] 2
padlenf= sig_lén — 3 — hash_len;
Simple oversight, severe implications
if(s[0] != 0x00 || s[1] != Ox01
* Exploitable for signature forgery e e) s ot
s += padlen + 3;

°)
Use this I’ [0 o1 [carRBAGE]00 30 21 04 16 SHA-1(m’)

Want: (a+ b)3=a°+ 3a’b + 3b%a + 3, s.t. '

* MSBs of a3 give what is before GARBAGE

* LSBs of b3 give what is after GARBAGE ‘

 (LSBsof a3) +3a%b +3b?%a + (MSBs of b3) stay in GARBAGE
« fakesignature S’ = (a+b)

New unit test in Openswan

xelerance / Openswan

<» Code Issues 95 Pull requests o Projects o Wiki Insights

wo#7449 . test case for Bleichenbacher-style signature forgery

Special thanks to Sze Yiu Chau of Purdue University (schau@purdue.edu)
who reported the issue, and made major contributions towards defining
this test case.

V¥ master (#330) > v2.6.51.2 ... v2.6.50.1

. bartman committed on Aug 20 1 parent 9eaabc2

Showing 6 changed files with 218 additions and 0 deletions.

l1m tests/unit/libopenswan/Makefile

b5 @@ -23,

-
= |

+23,7 @@ clean check:

L4}

@3{MAKE} -C loed-verifypubkeys %@
@3{MAKE} -C lo@5-datatot 4@
@%{MAKE} -C loBe-verifybadsigs %@

+ @%{MAKE} -C lo87-bleichenbacher-attack %@

Leniency in strongSwan 5.6.3

1. Not checking AlgorithmParameter [CVE-2018-16152]
* classical flaw found in GnuTLS, Firefox years ago

* Exploitable for signature forgery
 hide GARBAGE in AlgorithmParameter
« follow the Openswan attack algorithm

adjust what a3 and b3 represent, fake signature S’ = (a+b)

| _|

Leniency in strongSwan 5.6.3

2. Accept trailing bytes after Algorithm OID [CVE-2018-16151]

interestingly, Algorithm OID is not matched exactly
a variant of longest prefix match

/* [AlgorithmIdentifier] x/ /* [AlgorithmIdentifier] */
30 09 30 0C

06 05 2B OE 03 02 1A 06 08 2B OE 03 02 1A AB CD EF
05 00 05 00

both would be recognized as OID of SHA-1

knowing this, one can hide GARBAGE there

» follow the Openswan attack algorithm

« adjustwhat a3 and b3 represent, fake signature S’ = (a+b)

Leniency in strongSwan 5.6.3

3. Accepting less than 8 bytes of padding
 (Can be used to make the other attacks easier '
Use no padding, gain more bytes for GARBAGE -

strongSwan Security Update

e — - &

W .| StrongSwan daemon starter and configuration file parser 742 kB
w/f L. StrongSwan Internet Key Exchange daemon 56 kB
' [StrongSwan utility and crypto library (standard plugins) 267 kB
v . Virtual Linux kernel tools 3kB

¥ Technical description

Changes | Description

AL =R LT L L LS LR =L L LR R T DR =R LR R =L L =R LS L
- QVE-2018-17540

Version 5.2.5-1ubuntu3.7:

* SECURITY UPDATE: Insufficient input validation in gmp plugin
- debian/patches/strongswan-5.3.1-5.6.0_gmp-pkcsi-verify.patch: don't

parse PKCS1 v1.5 RSA signatures to verify them in b
src/libstrongswan/plugins/gmp/gmp_rsa_private_key.c,
src/libstrongswan/plugins/gmp/gmp_rsa_public_key.c.

- VE-2018-16151

- CVE-2018-16152

= Il el I T T e . | - | i

* Some key generation programs still forces e=3

* e.g.,ipsec_rsasigkey on Ubuntu

NAME

ipsec rsasigkey - generate RSA signature key

SYNOPSIS

ipsec rsasigkey [--verbose] [--seeddev device] [--seed numbits] [--nssdir nssdir]

[--password nsspassword] [--hostname hostname] [nbits]

DESCRIPTION

rsasigkey generates an RSA public/private key pair, suitable for digital signatures, of

(exactly) nbits bits (that is, two primes each of exactly nbits/2 bits, and related

numbers) and emits it on standard output as ASCITI (mostly hex) data. nbits must be a

maltiple of 16.

s =R o151 e I Holl =) g o lads o) s Ll B- S el o=l B e BR s =B URVMK'|, which has important speed adwvantages for
signature checking. Beware that the resulting keys have known weaknesses as encryption

keys and should not be used for that purpose.

Leniency in axTLS 2.1.3

1. Accepting trailing GARBAGE [CVE-2018-16150]
« original Bleichenbacher '06 forgery also works

| _|

Leniency in axTLS 2.1.3

2. lgnoring prefix bytes

i=10;

/* start at the first possible non-padded byte =*/
while (block[i++] && i < sig_len);

size = sig len - 1i;

/% get 11y the bit /

if (e>0) {... ... }

* First 10 bytes are not checked at all

Leniency in axTLS 2.1.3

2. lgnoring prefix bytes
* First 10 bytes directly skipped
* Make forgery easier, use this r’ (first 90 bits are all zeros)

00 00 00 00 00 00 00 00 00 00 00
30 21 04 16 SHA-1(m’) GARBAGE

e Reducethe distance between two consecutive cubes

e Easiertofind S’ '
* roughly 19 bits < bx so~2¥trialstofind S’ ' I

Leniency in axTLS 2.1.3

3. Ignoring AS.Algorithmldentifier

/** all numbers below are hexadecimals #*x/
/* [AS.DigestInfo] */

30 21
/* [AlgorithmIdentifier] x/
30 09 _
06 05 2B OF 03 02 1A this whole chunk
05 00 IS skipped ...
/* [Digest] x/
04 14

/% H(m), H()=SHA-1(), m = "hello world" x/
2A AE 6C 35 C9 4F CF B4 15 DB
E9 5F 40 8B 9C E9 1E E8 46 ED

 Probably because certificates have

[CVE-2018-16253]

if (asnl_next_obj(asnl_sig, &offset,
ASN1_SEQUENCE) < 0 ||

asnl_skip obj(asnl_sig, &offset,
ASN1 SEQUENCE)) goto end _get_sig;

if (asnl_sig[offset++] != ASN1l_OCTET_ STRING)
goto end_get_sig;
*len = get_asnl_length(asnl_sig, &offset);

ptr = &asnl_sig[offset]; /#+ all ok #/

end_get_sig:
return ptr;

Certificate Fields

Authority Information Access
Certificate Subject Key ID
Certificate Basic Constraints
Certificate Authority Key [dentifier

Certificate Policies

an eXpIiCit Signatu e algorithm field, CRL Distribution Points

which gives H()

Certificate Signature Algorithm
Certificate Signature Value

Field Value
PECS #1 SHR-256 With R3Z Encryption

Leniency in axTLS 2.1.3

3. lIgnoring AS.Algorithmidentifier [CVE-2018-16253]

e Justbecause H() is known from outside | swwmomionsce

Certificate Subject Key ID

9 o o Certificate Basic Constraints
¢ Does n t m ea n It Ca n be S kl p ped Certificate Authority Key ldentifier
Certificate Policies
CRL Distribution Points
Certificate Signature Algorithm

Certificate Signature Value

Field Value
PECS #1 SHR-256 With R35A Encrypticn

e Usethisr’

@0 01 FF FF FF FF FF FF FF FF 00

30 5D 30 5B |[GARBAGE |04 16 SHA-1(m’) '

 hide GARBAGE in Algorithmldentifier

» follow the Openswan attack algorithm ‘

« adjustwhat a3 and b3 represent, fake signature S’ = (a+b)

Leniency in axTLS 2.1.3

4. Trusting the declared ASN.1 DER lengths w/o sanity checks [CVE-2018-
16149]

/** all numbers below are hexadecimals xx/
/* [AS.DigestInfo] */

smldentifier] x/

__| put absurdly large values to trick verifier
into reading from illegal addresses

/* H(m), H()=SHA-1(), m = "hello world" x/ '
2A AE 6C 35 C9 4F CF B4 15 DB
EQO 5F 40 8B 9C E9 1E E8 46 ED ‘

* DoS PoC: making z exceptionally large crashed the verifier

Leniency in axTLS 2.1.3

4. Trusting the declared ASN.1 DER lengths w/o sanity checks [CVE-2018-16149]
* DoS PoC: making z exceptionally large crashed the verifier
* Particularly damaging
 axTLS does certificate chain validation bottom-up

e Evenifnosmalleinthewild

 any MITM can inject a fake certificate withe =3
» crash verifier during chain traversal

patching axTLS

igrr | axtls-8266 [axtls-general] v2.1.5 of axTLS released

SOURCEFORGE

axTLS Embedded SSL

Brought to you by:
s exposed a few(?) cracks in

low.

ane Y5itEms)

Summary Files Reviews Support Wiki Mailing Lists Tickets»

fication (Thanks Sze Yiu)

¥ Brown)

Download Latest Version \ anks Shiro Kawal)
Get Updates

\ ‘ hanks Alex Gaynor)
Home ige Bindings" is used (Thanks
[J215 2019-03-15 15 dha
[J214 2017-08-31 10 &
[J21.3 2017-02-18 9 md

(212 2016-12-30 0

Leniency in libtomcrypt 1.16

1. Accepting trailing GARBAGE
« original Bleichenbacher '06 forgery also works

|

2. Accepting less than 8 bytes of padding -
« Useno padding, gain more bytes for GARBAGE

Make signature forgery easier

Flaws independently found by other researchers, fixed in v1.18

Leniency in MatrixSSL 3.9.1 (CRL)

Mishandling Algorithm OID

/** all numbers below are hexadecimals xx/
/* [AS.DigestInfo] */

30 w
/* [AlgorithmIdentifier] x/
30 X —
06 Uul2B OF 03 02 1A |« can take arbitraily
05 vy any values
/* [Digest] */
04 z

/* H(m), H()=SHA-1(), m = "hello world" =*/
2A AE 6C 35 C9 4F CF B4 15 DB
EQ 5F 40 8B 9C E9 1E E8 46 ED

 Some bytes in the middle of AS can take any values
 Dependson choice of H(), SHA-1: 5 bytes, SHA-256: 9 bytes

* Doesn’t seem to be numerous enough for practical attacks

Other leniencies

* Lax checks on ASN.1 DER lengths in MatrixSSL(CRL)

/** all numbers below are hexadecimals *x/
/* [AS.DigestInfo] */

many possible values
will be accepted

/* H(m), H()=SHA-1(), m = "hello world" =/
2A AE 6C 35 C9 4F CF B4 15 DB
EQ 5F 40 8B 9C E9 1E E8 46 ED

 Some bits in the middle of AS can take any values
* Doesn’t seem to be numerous enough for practical attacks

« Variants of this leniency also found in
mbedTLS, libtomcrypt, MatrixSSL (Certificate)

Leniency in MatrixSSL 3.9.1

MatrixSSL 4.x changelog

Changes between 4.0.0 and 4.0.1 [November 2018]

This version improves the security of RSA PKCS #1.5 signature verification and adds better support for run-time security

configuration.
e Crypto:

o Changed from a parsing-based to a comparison-based approach in Digestinfo validation when verifying RSA PKCS
#1.5 signatures. There are no known practical attacks against the old code, but the comparison-based approach is
theoretically more sound. Thanks to Sze Yiu Chau from Purdue University for pointing this out.

o (MatrixS5L FIPS Edition only:) Fix DH key exchange when using DH parameter files containing optional

privateValueLength argument.

o psX509AuthenticateCert now uses the common psVerifySig API for signature verification. Previously, CRLs and
certificates used different code paths for signature verification.

Summary

* RSAsignature verification should be robust
regardless of the choice of e

 Flawed verification can break authenticationin
different scenarios

O

* To analyze this, we extend symbolic execution with
» Automatic generation of concolic test cases
* Constraint Provenance Tracking

 Found new variants of Bleichenbacher '06 attacks after more
than a decade, 6 new CVEs

e Andsome other unwarranted leniencies '

Lessons Learned

"N
° _)) .
Corner-cutting is not cool I lo :> {% ,

* Learn from previous mistakes

=1 hiEInEy

=l
* Parsing is hard \Ej—rETé

Moosa Yahyazadeh Omar Chowdhury

i

THE UNIVERSITY
OF lowa

L

fi

ThE UNIVERSITY
OF lowa

Aniket Kate Ninghui Li

PURDUE

UNIVERSITY

PURDUE

UNIVERSITY

