
ATTACKING ELECTRIC MOTORS FOR FUN AND PROFIT

Matthew Jablonski
Radar and Radio Engineering Laboratory

George Mason University
Fairfax, VA 22030
mjablons@gmu.edu

Duminda Wijesekera
Radar and Radio Engineering Laboratory

George Mason University
Fairfax, VA 22030
dwijesek@gmu.edu

ABSTRACT

Electric motors (EMs) account for more than 40% of annual global electricity consumption and
an estimated market size of $214 Billion by 2025. They drive vehicles and robots in industrial
manufacturing systems, cool computers, run air-conditioners, fans and even vibrate cell phones. They
are ubiquitous and controlled by hardware and software. Attacks targeting EMs can range between
cyberspace and the physical world, causing damage to motors and applications that depend on them.
This paper provide a comprehensive evaluation of cyber-attack objectives against EMs, which we
don’t believe has been done before and provide risk assessors with ways to find vulnerabilities.
We introduce the Motor Threat Model (MTM) to assist with identifying hardware and software
risks in EM systems. The MTM is based on conducting a wide-scale analysis of EMs, researching
different EMs and case studies of their application in real-world SCADA and transportation systems.
We analyze different attack objectives against EMs based on system type and provide examples of
attack techniques that can achieve the objective. Types of failures the result in these attacks include
loss of control, wearing down components, limiting torque, over-rotating servo motors, fire and
consequences of interfering with Pulse Width Modulation (PWM). These outcomes can be achieved
by using some known attacks such as pin-control attacks disrupting PWM, denial of service (DoS)
or injection network attacks, sensor attacks, and exploiting the lack of security controls of software
libraries on the controller.

Keywords Safety · Security · Cyber-Physical Systems · Electric Motors · Attack Model

1 Introduction

Electric motors (EMs) turn electrical energy into mechanical energy by running an electric current over a wire in a
magnetic field that results in rotating a shaft that moves some payload. EMs that come in a variety of types and sizes
are found in products including automated industrial platforms, transportation systems, residential applications and
toys. Control systems designed to manage the operation of EM movement varies between small embedded controllers
to large SCADA systems operated by humans and even robotic arms found on satellites in space operated by ground
control. Creating and delivering these systems requires investments for research and development.

Historically safety has taken a higher priority for systems using EMs and consequent safety regulations are designed to
ensure proper operating procedures, power management, and environmental conditions. Existing controls are designed
to prevent accidents from unintentional issues but not intentional misuse. Thus, cyber security risk management in
systems that leverage EMs for movement is not well defined and varies depending on the application and the perceived
resultant risks due to intentional harm. This paper addresses intentional disruption of movement and control of the
physical world from systems that leverage EMs, critical or otherwise, and the security controls required to ensure proper
EM movement in a system that is aware of adversaries. In this paper, we address the following questions.

• What if an attacker could inject discrete motion commands to a moving system?,

• What kind of attack makes the system move either unintentionally or in some manner that it was never
intended?,

BlackHat USA 2019, August 3-8, 2019, Las Vegas, NV, USA



• What access is needed in order to disrupt or control movement?

Much time and effort has been devoted to creating modern digital controllers use discrete instructions from hardware
and software to change and control continuous motions of EMs. This could exploited to change properties such as
speed or torque at different layers of a motor system (to be described shortly), although such exploits depend on the
design and safety of controllers.

In this paper, we examine controllable properties and abstract away the system design to focus on deriving threats to
movement applications. Using this approach, we compiled a simple Motor Threat Model (MTM) applicable to any EM
system where the properties of the movement is managed by digital controllers. The contributions of this work are:

1. Introduction of a Motor Threat Model that characterizes motors control attacks based on the layers of an EM.

2. Demonstrating and/or enumerating practical attacks at each layer and attacker objectives.

3. Differentiating between cyber and physical attacks and the accesses required.

4. Show how the threat model can be used by defenders to generate kill chains and attack graphs specific to
moving systems and thereby begin to mitigate security risks.

The rest of this paper is organized as follows: Section 2 provides a background on EMs, EM systems and model safety
risks. Section 3 describes our Motor Threat Model and the seven layers of this model and how this model could be
applied to real-world systems. Section 4 describes example experiments that show attacks at each of the seven layers.
Section 5 provides related security research for each of the model’s layers, to provide further background on movement
threats. Section 6 concludes the paper.

2 Background on Electric Motor Systems

This section briefly review the functionality of EMs, controlling their movement using control theory and safety models
that can used for risk management against natural failures or accidents. In-depth descriptions of motors and their
controls can be found in [1] and [2].

2.1 Types of Electric Motors

We provide a high level description of some of the main motor families, each of which contains many different
subfamilies. EM families include (but are not limited to) [2]:

• Brushed DC (BDC) motors: Designed to run on DC power, capable of running intermittently but at very
high speeds and are commonly found in toy motors, home appliances and power tools.

• Brushless DC (BLDC) motors: Powered by a DC electric source that uses an inverter to switch the power
supply to an AC electric signal that drives the motor. They are commonly found in disk drives, printers and
hobbyist air crafts.

• Single-phase AC motors: These motors use single-phase Alternate Current (AC), and must be started by
some external force such as a auxiliary start winding or start capacitor. They are commonly found in larger
home appliances, such as air conditioners, dryers or blowers.

• Three-phase Synchronous or Asynchronous AC motors: These motors use three-phase AC. Synchronous
motors are designed so the rotor runs at the same speed of the rotating magnetic field of the stator. Asynchronous
motors (AKA induction motors) have a rotating magnetic field that induces current in the rotor windings
resulting in the rotor slightly lagging behind the rotating speed of the stator’s magnetic field. These motors are
generally found in industrial applications.

2.2 Motor Structure, Components, and Behavior

We describe the external and internal components of BDC and BLDC motors. Example externals and internals of these
motors are shown in Figure 1. These components are not all-inclusive for all EM types due to space, and are described
more at length in [1, 2, 3].

External Structure: The enclosure, or the case, is designed to protect the rotor, windings, and other internal components
from chemical spillage, moisture, mechanical damage, and from abrasives such as dirt or water and promote air flow to
ensure the motor does not become overheated during operations [4]. Leads are connected to power-electric drives and

2



(a) (b)

Figure 1: (a) Externals of inrunner and outrunner brushless motors, and (b) internals of a brushed DC motor

carry the current to and from the commutator to provide electrical power as input to the motor. The shaft extends from
the motor’s center and is connected to the output load, providing the mechanical energy to drive the system.

Mechanical Components: The stator is the stationary part of the motor that creates a magnetic field to drive the
armature. The rotor is the component that moves as an electric current is driven through it to interact with the magnetic
field. The interactions of the current-carrying conductors found on the rotor and the radial magnetic flux produced
by the stator produce torque and speed. Most EMs are designed with an external stator, but some BLDC motors are
structured with the rotor forming the external enclosure of the motor (known as outrunner motors).

BDC Internals and Behavior: The internals of the motor are designed to take input power and provide mechanical
energy in the form of torque and angular speed as outputs. In BDC motors, electrical energy (current) is fed through
leads into the armature (rotor) when brushes make contact with the commutator. The windings (or coils) are conductive
wiring wrapped around the iron cores which provides the magnetomotive force (mmf) used to set up the magnetic flux in
the air gap. Depending on the design, the stator may also have windings which turns the magnet into an electromagnet.
To drive the motor, current enters one lead, flows through the windings and egresses through the negative lead. Magnets
internal to the stator provide the magnetic field, as the North (N) pole exerts downward force on the current that
flows through the windings and the South (S) pole exerts an upward force. Changing direction of the current flowing
through the leads changes the direction of the rotor. BDC motors come in a variety of types, such as permanent magnet,
series-wound, shunt-wound, compound-wound and axial field motors, depending the motor’s components internally
organization to generate its electrical field and result in different operating characteristics.

2.3 Torque, Speed, and Power

Motors can be designed to create rotary or linear mechanical motion. We focus on rotary motors in this paper with the
purpose of describing our Motor Threat Model. We focus on torque, power and speed as these are the main output
properties that an adversary would like to impact intentionally. However, there are additional parameters used to refine
descriptions of motor behaviors when loads are applied, which we describe through the rest of this paper from an
attacker’s perspective.

2.3.1 Torque and Speed

Torque: By Newton’s first law, force, F , is a vector product of mass times acceleration. Torque, τ , is a force that moves
an object in a circular arc around some point, O. The distance of the object is the radius of the circle, represented
by radial displacement vector r. Depending on the data sheet, torque can be measured in Newton-meters (N-m) or
pound-force-feet (lb-ft), and it is defined as τ = rF .

Angular and Rotational Speed: To calculate how fast an object revolves around point O, angular speed, ω, and
rotational speed, n, are used for measurement. Angular speed ω is the change in angle per unit of time and the rotational
speed n is the measurement of revolutions per unit of time are related as ω = nπ

30 . Typically EM datasheets show these
as revolutions per minute (RPM).

3



Continuous Torque and Speed: The continuous torque rating, τr, of an EM describes the interactions of the stator
revolving field and the rotor induced field to drive the load. A motor is rated to provide a smooth continuous torque in
order to smoothly drive its load at a rated power, Pr, and rated angular speed, ωr. The continuous speed rating depends
on the number of motor poles, the frequency of AC, and the amount of torque and is described as τr = Pr

ωr
[2].

Static vs. Dynamic Torque: EMs do not always operate at their continuous rated values and constantly change as
motors may need to start or stop or vary their speeds depending on the application. Static torque is the amount of torque
produced by the EM at zero speed, as some motors do provide torque when the angular acceleration/deceleration are
zero. Dynamic torque is determined by the rate of change over time of the system’s angular momentum, Ma. Ma is a
product of the polar moment of inertia of the rotating system, Jp and angular speed, ω, where Ma = Jpω. The resulting
relationship describing dynamic torque can be derived as τ = dMa

dt =
d(Jpω)
dt = Jp

dω
dt = Jpα where α is the angular

acceleration of the rotating [2].

2.3.2 Power

The Output Power (P ) of an EM is used to measurement of amount energy transferred and is generally measured in
Watts (W) or horsepower (HP), where 1W≈ 0.00134HP. Power output Pout is the product of torque and speed and
computed as Pout = τω = τnπ

30 .

Electrical Power: Using Ohm’s law, the current going through a conductor between two points is directly proportional
to the voltage between those points, and resistance is a fixed linear property of the conductor. Induction (I) is measured
in amps, current, (V ) is measured in volts and resistance (R) is measured in ohms, leading to the equation I = V

R . The
electrical power input to the motor Pelec is defined as Pelec = IV .

Mechanical Power: During operation, a motor draws current to spin the rotor providing torque and speed to handle the
load. When there is no load, the no-load current I0, is used to magnetize the iron cores of the electromagnets. The
no-load current is an electrical loss, known as iron loss, and is subtracted from the overall current to calculate voltage
loss. Using Ohm’s law with armature resistance, Ra, we combine this with Pmech = τω = (V − IRa)(I − I0) [1].

Efficiency: Ratio of the provided electrical energy to the produced mechanical energy is referred to as the efficiency of
a motor, represented by η. Because of current losses in the armature, it is not possible to achieve 100% efficiency in
EMs. Efficiency is defined as η = Pout

Pin
= Pmech

Pelec
= τω

V I = (V−IRm)(I−I0)
V I [1, 5].

Back EMF: While the armature rotates, an electromagnetic (emf) force is produced as the conductor cuts through the
magnetic flux following the laws of electromagnetic induction. This force results in a voltage that opposes the incoming
current, and is known as back Electro-Magnetic Force (EMF). The motor’s output power and efficiency can be impacted
by back EMF [6].

2.4 Control Theory and Motor System Design

Control theory is used to design most motor controls. Figure 2 shows both open-loop and closed-loop EM systems where
the difference is that closed-loop system receives feedback from sensors outputs used by the controller to adjust the
motor’s operating parameters. The selection of the motor and control system components is a part of the design process
and are based on work-load requirements. Sensors provide feedback information, such as motor temperature, speed
and load size, to the controller. The controller makes movement decisions based on program logic and issues discrete
commands to the drive controller. The drive controller receives the command and adjusts the current accordingly
to modify speed and torque, using Pulse Width Modulation. All of these processes add latencies due to discrete
communication and processing times while the motor runs continuously. Pulse Width Modulation (PWM) is widely
used to vary the amount of current provided to the motor so that it maintains smooth movement while providing the
desired output torque and speed [7], and the motor output of torque and angular speed are used to move the load.

(a)
(b)

Figure 2: (a) Open-loop system with BDC (b) Closed-loop system with servo motor using feedback sensors [2]

4



2.5 Safety Regulations for Motor Systems

Historically, systems that use EMs have focused on ensuring safety from unintentional accidents. As early as 1896,
the National Electrical Code added rule 8-C as the first motor safety regulation requiring the motor and resistance
box to be protected by a cutout and controlled switch. Further safety requirements and advancements since then have
added protections for items such as prolonged overloads, single phasing, short circuits, voltage issues, over-temperature,
vibration, and assuring energy efficiency [8].

For the manufacturing design of EMs and generators, two standard bodies exist to ensure that the motor is designed
to adhere to safety and energy efficiency requirements in harsh operational environments. In North America, the
National Electric Manufacturers Association (NEMA) standards are used. NEMA MG-1 (motors and generators)
defines standard classes of motors based on voltage, frequency, insulation, altitude, duty type, temperature and frame
size [4]. Motor standards for the rest of the world are governed by the International Electrotechnical Commission (IEC),
and these standards are comparable to the NEMA standards. Beyond standards, in the U.S., the Department of Energy
regulates the energy efficiency and testing of larger electric motors in 10 C.F.R. 431, Subpart B (2019) [9] and small
electric motors in 10 C.F.R. 431, Subpart X (2019) [10].

3 Threat Modeling for Motor Driven Systems

3.1 Relevance of Kill Chains to Motor Attacks

We use SANS’ Industrial Control System (ICS) Cyber Kill Chain (CKC) [11] and the MITRE ICS ATT&CK Framework
(currently in draft) [12] as a starting point to identify the steps that an attacker could make to control or disrupt a
system’s movements. Although these models are used for ICS environments, and not specific for moving systems, ICSs
use EMs in a subset of components and we will show how attacks against movement have the potential to map to these
frameworks. These models are defined to allow defenders to begin developing appropriate proactive countermeasures
and conduct a post-compromise analysis after an attack is detected.

Based off of recent CPS malware campaign strategies, the ICS CKC model shows a successful CPS attack requires two
stages with the intention of providing the defender with a strategy to detect and prevent the attack as early as possible.
In Stage 1, the adversary is focused on using cyber-espionage to obtain system configuration data and persistence,
and the attack indicators are like those in enterprise IT environments. In Stage 2, the adversary researches, develops,
delivers, and executes some exploit that is targeted to disrupt the target physical environment [11]. Some issues in
solely relying on the ICS CKC to proactively identify attacks is that insider threats, novel threats, open source research,
or even reverse engineering a procured target system (such as an autonomous vehicle or parts thereof) could divulge
system vulnerabilities or provide an adversary with the access needed to bypass Stage 1 altogether and execute a Stage
2 attack, especially with physical access. We describe how the Motor Threat Model allows for the refinement of the
Stage 2 attack kill chain against moving systems, as we define the layers at which an attack can occur to assist with
attack enumeration. By focusing on the EM, we can turn the Motor Threat Model into a multi-layered kill chain to help
defenders plan accordingly for Stage 2 attacks.

The MITRE ATT&CK Framework has emerged in recent years to create a taxonomy of possible attacks in the enterprise
IT environment to allow defenders to understand what attacks are being used in the wild and provide methods to attribute
attacks to certain Advanced Persistent Threats (APTs) [13]. The attack steps identified in the ATT&CK Framework
essentially map to Stage 1 of the CKC, as many attacks have been attributed as coming from the IT environment
targeting the OT network. In 2019, MITRE has drafted the ICS ATT&CK Framework, which incorporates adversary
tactics focused on Operator Evasion, Disruption, and Destruction that overlap with tactics for attacking movement
and EMs. The ICS ATT&CK Framework is still in draft and is not publicly available at the time of this writing. In
the current briefed form, it does not include tactics specifically focused on control of movements within a system to
do something other than it was intended, as could be the case with moving systems such as robotic arms or moving
vehicles. Depending on the threat model, attacks against a moving system, or even a moving component that is part of a
larger system, may also be either cyber or physical. Both types of attacks may produce very similar attack outcomes
when it comes to EMs. We believe that a comprehensive threat model framework should be able to identify both cyber
and physical attack outcomes and will show how both can lead to similar outcomes in moving systems using the Motor
Threat Model.

3.2 The Motor Threat Model

Figure 3a present the Motor Threat Model (MTM) that incorporates the interactions of an actuating motor and its
digital control components. Figure 3b uses the high-level control systems design described in Figure 3a into seven

5



(a)

(b)

Figure 3: (a) The Motor Threat Model (b) The Seven MTM Layers and Attacks

layers in order describe different adversarial objectives and strategies. The arrows in Figure 3a represent the data,
power, and movement control flow relationships between the layers. There is a dotted trust boundary surrounding the
CONTROL, DRIVE, SENSOR, POWER and MOTOR layers representing either the physical enclosure protecting these
components, the accessibility limitations between entities such as the internals of an electric vehicle, the internals of an
industrial robot controller or the networked operational technology (OT) components of a SCADA system. Generally,
the interconnections between such components are not engineered to use authentication for their interfaces with the
other layers, especially as electrical current, analog sensor readings and PWM do not have authentication. Also, the
SENSOR layer is optional as sensors may not be utilized in an open-loop system, as shown by the dotted interface lines.
Finally, it is possible that the CONTROL and DRIVE layers could reside in a single embedded controller or a PLC, in
which case a single controller could be targeted for both sets of attacks.

The 7 Layer Stack: Figure 3b shows the seven layers along with the cyber-physical attack relationships on motor
driven systems where the attack objectives generally fall under three categories: (1) Control the system, (2) Disrupt
the system, or (3) Data Exfiltration [11]. The Stage 2 attacks of the cyber-physical system (CPS) kill chains against
a motor-driven system would primarily focus on controlling or disrupting the system. Assuming the adversary has
obtained access using a Stage 1 attack (or bypassed Stage 1 altogether), each layer has a different attack strategy
using physical to cyber techniques allowing the adversary to meet their objectives. In addition, when a lower layer is
controlled or disrupted by the adversary resulting in overridden or denied service to the higher layers, the system may
witness a cascading attack impacting the higher layers. For example, if the CONTROL layer is successfully disrupted,
the DRIVE layer may still continue to function on the last controls it received and keep the system in a steady state.
Component redundancies in the design and out-of-band safety monitoring systems may mitigate such attacks. We
define the high-level objectives as follows:

Control: The target of control attacks depends on the adversarial capabilities, where most attacks occur using cyber or
network techniques. Adversarial actions at layers 4 through 7 require knowledge about the system internals
and system dynamic’s precision in order to control motor movement. For example, an adversary at the highest
layer can leverage OPERATOR APIs or replay commands. Adversaries with CONTROL or DRIVE layers can
manipulate control, ladder logic or PWM output to move the system in ways other than it was designed, but
they can also lose control over the movement without detailed system understanding.

Disrupt: Disruption can occur at any layer. Lower layer actions are more effective in disrupting actions on the motors
and would be be able to circumvent higher layer actions. Attacks targeting layers 3 through 1 would only be
able to disrupt or destroy the system, but not control. For example, an OPERATOR layer disruption attack
may be avoided by having fail-over mechanisms, but an adversary at the CONTROL layer can override an
OPERATOR’s redundant controls and provide false feedback information. A LOAD layer adversary could
overload and stall the motor, which may prevent movement altogether until the motor is replaced or obstruction
is removed.

Data Exfiltration: In cyber attacks against moving systems, it may be the attacker’s prerogative to identify important
features about the system’s movements, such as frequency of usage, the operational environment and failover
mechanisms. This objective is also referred to as cyber-espionage, which is generally the focus of a Stage
1 attack in the CPS kill chain. However, the adversary may require further data during Stage 2 in order to
maximize the attack impact. Just as the precision of movement controls are design requirements for the system
owner, the adversary may need additional information to derive precise timing strategies to opportunistically

6



control or disrupt the system. Targeting of movement data may also lead to privacy concerns in some cases,
especially if the data broadcasts information about personally-owned vehicles.

3.3 Attacker Modeling

In order to apply a threat model towards a system, it first helps to identify the threat actors and their layers of access.
With the MTM, cyber attacks may occur at layers 5-7 over the network (CONTROL, SENSOR, OPERATOR), or
at layers 2-4 with limited physical access (MOTOR, POWER, DRIVE). Physical attacks may occur at all 7 layers.
Depending on the layer of the MTM, different attacker models could describe the type of attacker access, skill and
resources required to pull off certain attacks against movement. We provide different attacker models below that may
vary depending on the targeted moving systems, from [14].

Nation State: Attacker belonging to a state organization focused on carrying out offensive cyber campaigns. Highly
skilled in both cyber and physical intrusion with extensive access to resources.

Cybercriminal: Adversary with extensive cybersecurity knowledge and skills, leverages exploits against known
vulnerabilities and can possibly engineer zero-day exploits.

Terrorist: Adversary that uses computers and information technology to cause severe disruptions or widespread fear.
Hacktivist: Adversary that uses their cyber exploitation abilities to promote a political agenda.
Insider: Can include disgruntled employees or social-engineering victims, this adversary is capable of attacking a

network inside of an air-gap or conducting physical attacks against otherwise inaccessible system components.
Basic User: Adversary that has established access and potentially automated attacks to target the system.

3.4 Refining Attack Objectives

With a target system and an attacker model identified, we refine the control, disrupt and data exfiltration objectives
to describe the underlying goals and motivations for an adversary wanting to modify and manage movements in that
specific system. These goals may include:

Physical Theft: By taking control of a free-moving system such as a recreational vehicle, an attacker may want to
remotely bring the vehicle to them or move it somewhere that the owner cannot retrieve it. This is categorized
as a control attack.

Altering Predictive Movement Outcomes: In systems such as 3D printers, robotic arms and surgical robots, the
attacker may be interested to adjust the movement parameters resulting in variances to an otherwise predictable
outcome. We categorize these as control or disrupt attacks.

Physical Damage and/or Harm: Controlling movement of heavy systems, such as movable bridges, large cranes or
industrial robots in a pipeline, in a manner that may not be predictable to the owner could result in safety issues.
The system could be moved a way to cause damage the system itself, the electric motor through improper
usage or even the physical environment around it, resulting in loss of revenue, property, or even lives. If
the proper safety controls are not in place, improper usage could result in higher current draws to the motor,
resulting in the motor overheating and possibly catching fire. This is categorized as a disruption attack.

Halting Movement: The attacker may want to prevent usage of the system altogether, in order to stop production, halt
traffic, trigger delays caused by investigations, or cause secondary damage, also is categorized as a disruption
attack.

Intellectual Property Theft: The attacker may want to capture the movement parameters in remote systems in order
to reverse engineer the system’s behaviors and possibly develop competing products. IP theft could also be
considered as cyber-espionage, however we describe it in this paper as focusing on reverse engineering the
movements of a targeted system. This is categorized as a data exfiltration attack.

Privacy Invasion: By capturing sensor and other data relevant to a target system’s movement, the attacker may
leverage this data to track and monitor system owners. This could apply to systems such as personally owned
vehicles or monitoring production on industrial assembly lines, categorized as a data exfiltration attack.

3.5 MTM Layers of Access

The MTM layers help visualize where access is required and what an attacker can do with that level of access. The
target system and the control flow of movement instructions and physical components should be categorized according
to their model layer. A complex system may have additional components at each layer, whether for redundancy or

7



possibly the system has many motors and moving components. We define the accesses required at each layer and
high-level objectives as follows:

7 - OPERATOR: There are two levels of OPERATOR access. The first level is accessing the operator interface itself,
either physically or on the network, and the second level is access to the network that serves as the OPERATOR-
CONTROL communications channel. With access to the OPERATOR-CONTROL communications channel,
the adversary may focus on moving laterally to the CONTROL layer. With access to either level, the adversary
may control, disrupt or exfil data about the system’s operational status, just as a normal operator would be able
to do.

6 - SENSOR: There are two levels of SENSOR access. The first level is access to the sensors or wireless sensor
network (WSN) and the second level is access to the out-of-band safety system, if one exists. Attacks against
sensors or WSNs could be cyber or physical, with the goal being to inject data and lie about the system state or
prevent communications. With access to the safety system, the adversary could either shutdown the movements
in the targeted system or remove safety monitoring conditions in software to prevent safety mechanisms from
shutting down the system. With access to either level, the adversary can control, disrupt or exfil data about the
system’s operational status.

5 - CONTROL: There are two levels of CONTROL access. The first level is access to the controller itself and the
second level is access to the CONTROL-DRIVE communications channel (i.e. network, serial bus protocols,
PWM, etc.) between the controller and its drive controller(s). With controller access in the first level, the
adversary can overwrite sensor data, spoof or stop logging in memory, and issue movement commands to
the drive controller(s). With only communications access, the adversary may be able to exploit protocol
vulnerabilities (i.e. ICS protocols or bus protocols) to inject, spoof or jam drive control commands to achieve a
similar layer of access, but they will not be able to hide the attack or prevent user feedback. With access to
the CONTROL-DRIVE communications channel, the adversary could also focus on moving laterally to the
DRIVE layer. With access to either level, the adversary can control, disrupt or exfil data about the system’s
operational status.

4 - DRIVE: There are two levels of DRIVE access, but both require physical access. The first level is the drive
controller itself and the second level is access to the DRIVE-MOTOR channel. With controller access, the
adversary could overwrite the configurations by flashing firmware or using a physically accessible management
interface. Drives may be network accessible in some circumstances. With DRIVE-MOTOR channel access,
the adversary is limited to attacks on electrical current fed to the EM. With access to either level, the adversary
can control or disrupt movement.

3 - POWER: An adversary should be able to access the POWER layer with physical access. Power systems may have
digital controls or closed control networks that could be targeted with a cyber attack. Physical access may be
an insider threat scenario in restricted areas, but in moving systems this may not always be the case if the target
system is parked outdoors or publicly accessible. This layer includes both external power systems or internal
batteries, which depends on the system. With access to this layer, the adversary can disrupt movement.

2 - MOTOR: An adversary should be able to access the MOTOR layer with physical access. Digital motors,
specifically digital servos, can be reprogrammed and have firmware overwritten. Physical access may be
an insider threat scenario in restricted areas, but in moving systems this may not always be the case if the
target system is parked outdoors or publicly accessible. With access to this layer, the adversary can disrupt
movement.

1 - LOAD: An adversary should be able to access the LOAD layer with physical access. Physical access may be an
insider threat scenario in restricted areas. This layer is the hardest layer to attack movement from in most large
systems, as it may require a very large weight, lever or some other equipment to prevent movement despite the
motor’s attempts. With access to this layer, the adversary can disrupt movement.

3.6 MTM Multi-Layered Kill Chain and Attack Trees

With the threat actor, refined goals and accesses identified, we can leverage the Motor Threat Model to identify multi-
layered cyber kill chains that are applicable to attacking motion control within a targeted system. Any cyber or physical
attack requires first gaining access to the MTM layer. Each MTM layer has one or more levels of near-equivalent access
that the attacker would need to acquire before conducting the attack. Additional steps to accomplish their goal at each
layer of MTM requires some subset of the Stage 2 attack steps defined in [11]. Those steps include (1) Develop; (2)
Test; (3) Deliver; (4) Install/Modify; and (5) Execute.

Understanding where accesses are required, goals of possible attack outcomes, and the steps required to achieve those
goals at each of the MTM layers allows for creating potential multi-layered kill chains used to stop attacks against

8



movement in the system. Identified kill chains will allow defenders to exhaustively search and identify potential attack
paths, or attack trees, which the attacker may take to control or disrupt movement or steal data to achieve the defined
goal. The defender can then design additional security controls within the system to ensure the integrity, availability,
and (when necessary) confidentiality. Figure 4 shows how these attack trees may be organized for both cyber (C) and
physical (P) attacks against some target system.

Figure 4: MTM attack tree templates for control, data exfiltration, and disrupt objectives.

4 Experimentation

This section describes experimental attacks against movement which we conducted at each layer of the Motor Threat
Model (MTM). These attack experiments are included to provide examples of how movement could be targeted and
attacked and the types of offensive attacks to consider when developing a threat model for a system.

4.1 OPERATOR Layer Experimentation

The OPERATOR layer attacks are application specific and has two levels of attacks: (1) attacking the operator
interface; and (2) attacking the OPERATOR-CONTROL channel. We provide two example experiments against the
OPERATOR-CONTROL channel.

4.1.1 OPERATOR Attack 1: Wireless Exploitation

This attack experiment demonstrate a simple wireless attack against the OPERATOR-CONTROL channel as an example
of how the control channel could be overridden to control movement and/or destroy the motor by injecting commands
for unintended use of an unauthenticated and used for recreational toy vehicle.

Target: A toy-grade RC vehicle shown in 5 is the attack target, where the operator controller uses one-way transmission
to pair with the vehicle’s receiver pair at 27.145 MHz (standard toy-grade RC communications channel) using SMD
crystal oscillators. The controller has two buttons for forward and reverse movement of the toy. The receiver’s controller
uses a MX1608RX2 SOP16 IC to drive the on-board toy brushed DC motor to react to to the operator’s commands. The
vehicle is powered by 3 AA batteries for a nominal 4.5V output and new batteries were supplied at the start of testing.

Setup: The adversary uses a Dell Precision M4800 laptop, running Fedora 29 with Linux kernel version 5.1.11-
200.fc29.x86_64, installed with GNU Radio 3.7.13.5, running a compatible version of GNU Radio Companion running
on a HackRF software-defined radio (SDR) from Great Scott Gadgets.

9



Figure 5: (Left): Target Vehicle, (Center): 27MHz embedded controller, (Right): the operator interface with two control
buttons

Figure 6: (Left): Capture of the 27.145MHz signal, (Right): Car’s wheel rotating from replayed signal while control
interface is off in background (arrow is pointing at blur which is a spinning piece of black tape)

Control: A capture of the 27.145MHZ command channel using the SDR and created two capture files, one with forward
direction for 2 seconds and the other in reverse for 2 seconds. A test replay of each signal shows the car moving in
either direction as desired. No decoding of the signal was necessary for this experiment. Figure 6 shows the capture
signal and the moving vehicle during a replay of the signal. With a digital copy of all of the vehicle’s commands, the
adversary has complete control of the vehicle.

Disrupt: The files were concatenated together to produce one signal file for additional testing. The concatenated signal
file was played on a loop, moving the motor forward for 2 seconds, and reverse for 2 seconds, for 15 minutes while
the vehicle was turned upside down, allowing the wheels to turn freely. Measuring with a tachometer at the start, in
the forward direction, the wheels spun at 690RPM forward and 681RPM reverse. After 15 minutes, both directions
registered at 680RPM and the slight drop is due to voltage loss over time in the batteries.

Analysis: By capturing and splicing the movement controls, the adversary has total control over any vehicle movement
(i.e. forward and backward).

10



4.1.2 OPERATOR Attack 2: Remote Pin Configuration Attack

This experiment is designed to demonstrate a simple command injection attack against the controller from the
OPERATOR layer that is not configured securely. This is meant to simulate a Stage 2 attack.

Pigpio is a library built into the full version of Raspbian for pin control [15]. If remote GPIO is enabled, by default
pigpiod listens to TCP port 8888 as root on all interfaces for incoming connections. The pigpio library interfaces
directly with the Raspberry Pi’s Broadcom SoC to control GPIO pins.

Figure 7: Target Pi connected to ESC controlling a BDC motor attached to a dynanometer, powered by a LiPO battery

Target: A sample system shown in Figure 7 was set up using a Raspberry Pi 3 B+ as a controller (Raspbian GNU/Linux
9 (stretch), Linux v. raspberrypi 4.14.71-v7+ #1145) with IP address 192.168.1.4. The Pi’s GPIO18 pin is connected
to a Quicrun HobbyWing 1060 Electronic Speed Controller (ESC) used to drive a brushed DC motor connected to a
Minipro Electric Motor Dyno (dynanometer). The Pi uses the pigpio daemon (pigpiod v. 64) built into Raspbian, with
remote GPIO enabled. Hardware PWM is used over GPIO18 to instruct the ESC to control the speed of the motor. The
BDC motor is a generic 540 17T brushed motor, with external brushes. The dyno is used for demonstrating the impact
of an attack on motor control.

Setup: The adversary uses a Dell Precision M4800 laptop, running Fedora 29 with Linux kernel version 5.1.11-
200.fc29.x86_64, with the pigpio Python module and nmap v7.70 installed.

Attacker Reconnaissance: An nmap service scan is run by the adversary on the network, which identifies the target
Pi as the SSH (TCP 22) version contains a string reading Raspbian. TCP 8888 is also open with a fingerprint string
reading NCP: DmdT, which from our testing appears to be indicative of the listening remote GPIO pigpiod service.
The adversary then use this information to blindly inject commands to GPIO pins from the network. The left image in
Figure 8 shows this output and highlights the strings used for attack planning.

Figure 8: (Left): nmap results showing Raspbian SSH and TCP 8888 pigpio signature, (Right): attack.py script used to
take remote control of pin.

11



Control / Disrupt: With the pigpio library, if the PIGPIO_ADDR environmental variable is set to an IP address, the
GPIO commands connect to the pigpio daemon over the network and run the commands. During a test run of the
brushed motor, the adversary executed the command PIGPIO_ADDR=192.168.1.4 python3 attack.py from the attack
laptop to run the Python script found in the right image in Figure 8. The script alternates the duty cycle between 30-40%,
allowing for the motor to run at a safe speed in the lab environment. The result of the executed attack can be seen in
the graph in Figure 9, which compares a baseline motor run on the target computer against when the attack script is
executed in the middle of a second run using the same baseline script. The rise and fall of the motor speed in the attack
run shows the alternation of motor speed between 30-40%, demonstrating adversarial control.

Figure 9: Results of Pigpiod Network Attack, RPM of motor vs. Time (s); The circle highlights where the attack run
began, which varied the duty cycle of the motor between 30-40%.

Analysis: This attack demonstrates what an attacker could do against a target system that does not secure movement
control from operators over the network, using a remote pin configuration attack. We targeted a specific motor
application and a GPIO pin with our attack script. With blind injection, an adversary could target all GPIO pins or
PWM pins, and modify their values from the network at runtime. A mitigation with this particular example may be
restricting the pigpiod to only allow control from certain hosts on the local network.

4.2 SENSOR Layer Experimentation

The SENSOR layer has two levels of attacks: (1) attacking the sensor input and (2) attacking the safety system. We
include a single example experiment targeting an accelerometer that is used for servo control as safety systems vary in
their size and scope

4.2.1 SENSOR Attack: Accelerator Data Injection

This experiment is designed to demonstrate an adversary taking advantage of trusted input provided by a sensor. The
attack shows on disrupting communications between an accelerometer and the controller communicating over an I2C
bus.

Target: A sample system was set up using a Raspberry Pi 3 B+ as a controller (Raspbian GNU/Linux 9 (stretch), Linux
v. raspberrypi 4.14.71-v7+ #1145) that takes input from an ADXL345 accelerometer that provides high resolution
input, using 13-bits to represent each of the x, y, and z axes. The ADXL345 communicates over the I2C serial bus with
a clock set to ∼70K kHZ, the target Pi uses pins GPIO2 for SDA and GPIO3 for SCL. The controller calculates the
output angle for the servo using the formula, angle = (x+ y + z)%120, which limits the servo angle between 0-120◦.
The motor drive controller is a Servo Six embedded board where one servo is connected for demonstration purposes.
Figure 10 shows the wiring setup using a breadboard to make the connections, the angle of the servo when the board is
flat and parallel to the ground, and the angle of the servo when the board is tilted for demonstration purposes.

12



Figure 10: (Left) Target Pi setup with ADXL345 on breadboard and Servo Six servo controller, (Center) Servo angle
when ADXL345 is flat, (Right) Servo angle when ADXL345 is tilted to show the difference

Setup: The adversary uses a Saleae Logic Analyzer to sniff and capture the input to devise an attack strategy. A second
Raspberry Pi 3 B+ is used as an adversarial Pi device to simulate control and disrupt strategies.

Attacker Reconnaissance: Capturing with the Saleae shows a 6-byte response from the ADXL345 to each request.
An I2C capture and analysis is provided in Figure 11 showing the communications when the ADXL345 is flat on the
table. The attacker Pi is configured with pins GPIO2 and GPIO3 connected in parallel with the target’s connection, in
order to identify the 0x53 address of the I2C slave ADXL345 (the left image in Figure 12 shows this identification).
With a target address and capture example, the adversarial Pi has its pin reconfigured for responding to I2C requests as
a slave device (RPi only permits the second I2C channel for slave responses): GPIO18 is connected to SDA, GPIO19
is connected to SCL, and a ground pin is connected to the target’s ground. The right image in Figure 12 shows the
adversarial Pi pinout connection.

Figure 11: Logic analysis of accelerometer signal, 6 bytes are sent as a response to the I2C handshake)

Figure 12: (Left): Address Identification of ADXL456 (0x53); (Right): Adversarial Pi Pin Configuration

Disrupt: The pigpio Python module has a function that allows for responding to I2C probes, bsc_i2c(i2c_address,
data). The adversary sets a callback function to reply to any requests at the 0x53 address with 6 bytes of data, controlled

13



by the adversary. It appeared that the simultaneous response of both the adversarial Pi and accelerometer would result
in a data collision, which the target Pi converts to integer values and modified the servo angle accordingly. Figure 13
shows a resulting capture of this collision using the Saleae, and the left image labeled JAM in Figure 14 shows the
resulting servo movement.

Figure 13: Logic analysis showing colliding messages across the 6 bytes.

Control: The adversary can control the 6 bytes of input, sever the connection to the ADXL345 and respond to I2C
probes with adversary-controlled input. This gives control over the servo and allows the adversary to move it to
any desired angle. The right image labeled CONTROL in Figure 14 shows an angle of 45◦, which was the intended
movement of the adversary.

Figure 14: (Left): Servo angle resulting from the disruption attack, (Right): Servo angle resulting from the control
attack.

Analysis: This attack shows two different strategies for targeting an input sensor to obtain movement control. In the
disrupt scenario, the adversary did not have complete control over the 6 bytes in testing as the ADXL345’s response
seemed to randomly flip bits, but its possible to develop a filter to further refine this method. If the sensor was embedded
in the device, the chip could be removed and a hardware implant could be utilized to inject commands over the I2C
bus without disrupting the controller. Admittedly, using a Raspberry Pi to attack a Raspberry Pi eliminates the need
for mitigating any clock issues from the attacker’s perspective, which is an additional challenge that may need to be
overcome in real-world scenarios.

4.3 CONTROL Layer Experimentation

The CONTROL layer has two levels of attacks: (1) attacking the movement commands at runtime; and (2) attacking the
CONTROL-DRIVE channel. We provide an experiment for each attack level.

4.3.1 CONTROL Attack 1: Timing Impacts of Discrete Command Injections on Motor Control

This attack is designed to show the impacts of the timing of injected commands against a controller using two different
examples and the approach launching for more finely tuned control attacks.

14



Target: This is the same configuration setup as identified in Section 4.1.2, using a Raspberry Pi 3 B+, connected to a
brushed ESC, a brushed DC motor, and the dynanometer. The target ran a script that increases the duty-cycle of the
BDC motor every 0.5 seconds until the motor hits ∼16K RPM, at which point it pauses for 5 seconds, then decreases
the duty cycle every 0.5 seconds until the end of the baseline run.

Setup: We assume the adversary has obtained access to the Pi controller and has the equivalent access (or greater) to
the running application that controls GPIO18 PWM timing on the controller. With console access to the controller, the
adversary has access to any software libraries for PIN control that may be installed on the controller. The adversary also
could write their own pin control attacks by reverse engineering the memory locations for submitting requests with
a copy of the software or knowing the hardware makeup of the system (we describe this further in the Section 4.4.1
experiment).

Impacts of Timing on Single Injection Attack: The left graph in Figure 15 compares a baseline run against an attack
run where two separate commands were injected. a single command is injected at 7 seconds using the wiringPi library
on the Pi to set the duty-cycle to 10%. The observed impact to the run is minimal, as the controller increased the
duty-cycle every 0.5 seconds during this segment of the run. However, although minimal, a slight jerk of the motor
may be disruptive in some applications. A second command is injected at 17 seconds, resulting in a large drop in
motor performance as the controller stopped issuing commands for 5 seconds. The next controller command brings the
angular speed of the motor back up near the levels of the baseline expected speed.

Impacts of Timing on Repeated Injection Attack: As shown by the previous example, the running application that
issues faster discrete commands to motor movement will prevail in controlling the motor. The right graph in Figure 15
compares the baseline run with finely controlled adversary’s commands. The adversary begins repeatedly setting the
duty-cycle to 50% starting at 4 seconds and repeating every 100ms for a total of 20 seconds before stopping the attack
run and relinquishing control of the motor back to the controller.

Figure 15: (Left): Single Command Injection, RPM of motor vs. Time(S) - The circles highlight a slight decrease in
speed in the first command and when the second command was issued, (Right): Repeated Command Injection, RPM of
motor vs. Time(s) - The circles highlight the beginning and ending of the attack run.

Analysis: Timed command injections can have varying results during an attack. If an adversary can inject discrete
commands, a continuously moving motor can result in a race condition with physical world impacts. If the controller
minimizes the timing between its discrete instructions to frequently instruct the speed of the motor, then a single
command from an adversary may quickly jerk the motor but the impact is fixed after the controller overwrites the attack.
However, if commands are sparsely issued, then a single command from an adversary can drastically change the output
motor behavior. Similarly, if an adversary can issue its commands at a faster rate than the controller, then they have
complete control over the system’s movements.

4.3.2 CONTROL Attack 2: Hardware Implant Targeting PWM Channel

This experiment shows a control injection attack on PWM using the CONTROL-DRIVE channel by introducing a
hardware implant to disrupt the control signal and take over motor control. PWM is not authenticated and a pulsating
control signal caused by a hardware switch that fluctuates the voltage, usually between 0 and 3.3V or 5V. The ESC
and motor receive current from an external power source, so the controller does not provide any current through this
channel. This is a typical setup used to control applications that use ESCs to drive the motor, such as recreational
vehicles, drones, and small personal electric vehicles such as electric skateboards.

15



In many motor applications, a 3-wire control channel is used to provide instructions to the drive controller from the
receiver or embedded controller. This wire does not always used to provide live power and may also be used for control,
such as with ESCs. Usually, the three wires are ground (black), power (red), and control (white or yellow).

Target: This is the same configuration setup as identified in Section 4.1.2, using a Raspberry Pi 3 B+, connected to
a brushed ESC, a brushed DC motor, and the dynanometer. The target is running a script that increases the PWM
duty-cycle of the BDC motor until the motor hits ∼24K RPM.

Setup: A second Raspberry Pi 3 B+ is used as an adversarial Pi device to simulate control and disrupt strategies against
the PWM control channel used between the controller and ESC.

Hardware Implant Pinout: The adversarial Pi was configured with its ground pin hooked onto the black ground wire,
and GPIO18 was hooked to the white control wire. Without sharing a common ground, control injection did not appear
to work during testing or have any impact on motor drive. Figure 16 visually shows the relationship between the
adversarial Pi and the target system, and Figure 17 shows a close up of the attached pins. A similar strategy would be
utilized by an embedded hardware implant on a target application that could be physically introduced and possibly
remotely controlled by the adversary.

Figure 16: Target Pi setup showing adversarial Pi acting as a hardware implant to control the CONTROL-DRIVE
channel.

16



Figure 17: The adversarial Pi has its ground connected to the black wire and GPIO18 connected to the white wire to
control PWM for this attack experiment

Control / Disrupt: GPIO18 was configured as an INPUT pin on the adversarial Pi until the attack started. During
testing, it was observed that when the MODE of pin GPIO18 was changed to be an OUTPUT or PWM, the result would
be an immediate takeover of the channel for the adversarial Pi. The target controller was leveraging wiringPi to drive
the motor, with a wiringPi clock setting integer value of 100. Two separate attack runs are shown in Figure 18. The
first attack run changed the status of GPIO18 to PWM mode, changed the frequency of wiringPi’s clock to 150, then
decreased the motor speed to ∼17K RPM, then increased the motor speed to ∼20K RPM, and concluded by changing
GPIO18 back to INPUT relinquishing control back to the target’s controller. The second attack run changed the status
of GPIO18 to PWM mode, changed the frequency of wiringPi’s clock to 50, then decreased the motor speed to ∼17K
RPM and then further decreased the motor speed further to ∼16K RPM, and concluded by changing GPIO18 back
to INPUT relinquishing control back to the target’s controller. It appears both clock and commands were under the
adversary’s Pi’s control in both tests.

Figure 18: PWM Command Injection, RPM of motor vs. Time(S) - Attack Run 1 injected commands to slow down
then slightly speed up the motor; Attack Run 2 injected commands to slow down then slightly slow down motor, again.

Analysis: If physical access is permitted, taking the approach outlined in this section to introduce a hardware implant
could give an adversary an advantage. The PWM channel is not authenticated and modifications to speed settings are
generally not audited and collected by a drive controller. Further, the controller seems to be blind to the attack, as its

17



control pin is in PWM mode. It would not be possible to use hardware interrupts to monitor bounces in the PWM pin,
as PWM fluctuates voltage by design.

4.4 DRIVE Layer Experimentation

The DRIVE layer has two levels of attacks: (1) attacking the systems movements through firmware or with the ability
to modify the configuration parameters, and (2) attacking the DRIVE-MOTOR channel. We provide example attack
experiments for level 1, using pin control and pin configuration attacks at the drive controller. Level 2 attacks are limited
to short-circuiting the connection or pulling leads, which should be detected by safety and overload protections, so an
example experiment is not provided.

4.4.1 DRIVE Attack: Pin Control and Configuration Attacks

This experiment leverages a Raspberry Pi to show how an attacker could modify the pin control settings in a drive.

As noted previously in the CONTROL attack experiment in Section 4.3.1, software libraries may make assumptions
during operations about the pin status at runtime, such as the pin MODE (such as INPUT, OUTPUT, PWM, etc.) or the
CLOCK value. Modifications to speed, torque and position may simply opt to change the duty cycle because modifying
the duty cycle can be used to smoothly change the speed and direction of a motor. We wanted to find out the effects of
modifying MODE, CLOCK, and the duty cycle to an electric motor and if the behavior of the motor could change if
these settings were under adversarial control.

For motor speed control (and other purposes), the Broadcom BCM2837 SoC in the Raspberry Pi 3 B+ has two PWM
channels for controlling PWM output [16]. Channel PWM0 is connected to GPIO12, GPIO18, GPIO40 and GPIO52.
Channel PWM1 is connected to GPIO13, GPIO19, GPIO41, GPIO45 and GPIO53. Both channels share a CLOCK
clk_pwm, that is nominally 100MHz and can be altered by modifying its value in memory or using software libraries.

There are two modes for PWM supported by the BCM2837, MSEN0 which is the default output mode, and MSEN1
which can be used for sending data. Focusing on PWM0 and MSEN0 for driving a motor, each channel has a DATA
register, DAT1, and a RANGE register, RNG1. The duty cycle is calculated per cycle as DAT1/RNG1, and is transmitted
through the serial channel as part of the output signal. Similar to the CLOCK, both of these values can be modified in
memory or using software libraries.

Target for DRIVE Attacks 1 and 3: This is the same configuration setup as identified in Section 4.1.2, using a
Raspberry Pi 3 B+, connected to a brushed ESC, a brushed DC motor, and the dynanometer. The target is running a
script that increases the duty-cycle of the BDC motor every 0.5 seconds until the motor hits ∼17K RPM, at which point
it pauses for 5 seconds, then decreases the duty cycle every 0.5 seconds until the end of the baseline run.

Target for DRIVE Attacks 2: For the second attack target, we test the effects of modifying the CLOCK, DATA and
RANGE and the impact on the duty cycle. We remove the dynanometer and connect pin 18 to the control input of a
BLDC 45A waterproof ESC, which controls a generic BLDC motor. This setup gives more freedom and removes any
risk of sparking a BDC or damaging the dyno while quickly modifying PWM duty-cycle settings.

Figure 19: Target Pi setup with brushless ESC and motor target for DRIVE Attack 2.

18



Setup: Using the MTM definition the Pi serves as a CONTROL layer device, we designed the DRIVE layer attacks to
show how reverse engineering and gaining access to the drive controller results in having complete control over the
motor characteristics in memory. Drives may have limited memory for storing instructions and pin setup, depending on
the drive controller model - that can range from embedded devices to full computing devices. We assume the adversary
has obtained access to the Pi drive controller in this test, and has the equivalent access (or greater) to the running
application that controls GPIO18 PWM timing on the controller.

4.4.1.1 Attack 1: Modify PIN Mode to INPUT

Attacker Reconnaissance: The Raspberry Pi 3 B+ uses a Broadcom BCM2837 SoC, which allows for control of
GPIO pin settings in register with physical memory addresses. Reverse engineering the wiringPi library [17], which is a
software library for pin manipulation of the Raspberry Pi, we mapped out the physical memory locations of CLOCK,
GPIO and PWM controllers to allow the testing in this section, as Clock: 0x3F101000, GPIO: 0x3F200000 and PWM:
0x3F20C000.

By using memory mapping of these registers, we can freely modify the CLOCK, pin MODE, and PWM DATA and
RANGE registers for testing. The code snippet in Figure 20, show how to memory map the CLOCK (clk), GPIO (gpio)
and PWM (pwm) values. Modifying the MODE using the GPIO register, requires identifying the offset for the target
pin and shifting bits in memory, depending on the target MODE. For PWM, the offsets to access DATA and RANGE
integers for both PWM channels are included in the #define statements in Figure 20. Modifying the MODE of a pin
in physical memory to INPUT, OUTPUT, PWM, etc. would take effect immediately. Changing the DATA and RANGE
for each channel involves changing the value at the PWM0_DATA and PWM0_RANGE offsets within pwm. Modifying
the clock requires stopping the clock, changing the value, and restarting.

Figure 20: C example code for mapping BCM2837 clk, gpio and pwm registers in memory on the RPi 3 B+.

Disrupt: A baseline run and attack run were conducted on the target Pi, as shown in Figure 21. During the attack run,
the MODE of pin GPIO18 used to control the motor using hardware PWM was changed to be INPUT. As soon as the
modification was made, the current was no longer supplied to the target brushed motor and the motor came to a halt.

19



Figure 21: Results of changing pin MODE to INPUT, RPM of motor vs. Time(S)

4.4.1.2 Attack 2: Modify Clock and Duty Cycle

Attacker Reconnaissance: Broadcom’s documentation notes the following, where N represents the DATA register
and M represents the RANGE register [16]:

To send value N/M within a periodic sequence of M cycles, output should be 1 for N cycles and 0 for (M-N) cycles. The
desired sequence should have 1’s and 0’s spread out as even as possible so that during any arbitrary period of time
duty cycle achieves closest approximation of the value [16].

Control/Disrupt: With control over CLOCK, DATA, and RANGE registers, we wrote a C program to take an integer
CLOCK value as input, modify the CLOCK to that setting and loop the DATA register from 0 to RANGE to change the
duty cycle of PWM. We then recorded the values that moved the motor clockwise and counter-clockwise. We connected
the BLDC ESC to GPIO pin 18 and cycled through each CLOCK and DATA value to identify the motor’s behavior with
respect to the clock. The results are shown in Figure 22. As the integer value for the clock increased in size, the DATA
value representing the duty cycle needed to be smaller for the motor to perform at the higher clock speeds.

20



Figure 22: Results comparing movement outcomes due to CLOCK vs. DATA variations with static RANGE=1024.

4.4.1.3 Attack 3: Capturing Movement Commands in Memory

The previous attack demonstrates possibility to map the CLOCK, DATA, and RANGE values in memory of a Raspberry
Pi 3 B+ in order to possibly change the functionality of a running motor. In this attack, we use those values to record
movement commands and further reverse engineer movement in a target system.

Control: We created two functions to record and playback CLOCK, DATA, and RANGE values using the memory
locations. The record function would run every 100ms, polling for the three values and then writing them as inputs to a
file. The playback function would simply loop through the recorded value every 100ms and modify CLOCK, DATA, or
RANGE if the value changed. We found as long as the recording and playback were at a rate faster than the controller
made modifications, then we could playback movement commands as precisely as the controller could actuate them.
The results shown in Figure 23 compare the speed of a motor in a captured baseline run against an attack run using the
playbacked memory addresses, showing that the motor’s angular speed curve closely matches the recorded baseline run.

21



Figure 23: Results of capturing and replaying motor commands, RPM of motor vs. Time(S)

4.4.1.4 Analysis of Pin Control Attacks

The attacks outlined in this section show that root access to the drive controller may allow an adversary to control
the configuration of the pin used to provide speed control to an electric motor. The results of attack 1 showed that
modifications of a pin’s MODE to anything other than hardware PWM can result in loss of motor function and control.
The results of attack 2 showed that with root access, modifying the PWM duty cycle or CLOCK in memory can
drastically change the behavior of the motor. If the target controller assumes the CLOCK is one value, but it is
manipulated to another value, the motor could change direction or completely stop running. For example, if the
CLOCK=100, DATA=200, and RANGE=1024 resulting in a motor running at a reasonable speed going clockwise,
and the adversary modified the CLOCK value to CLOCK=175, the motor would change directions and run counter-
clockwise. Similarly, it is possible to modify DATA or RANGE, however an adversary would have to constantly monitor
the DATA and RANGE values and change them to their control, requiring a loop that impacts the drive performance.
The results of attack 3 showed that by monitoring and capturing the memory locations of these values, it is possible to
reverse engineer and playback motion controls in a target drive controller.

4.5 POWER Layer Experimentation

The POWER layer has one level of attacks typically requiring physical access to disrupt or introduce power issues. We
provide an experiment to show the impact of low voltage on motors.

4.5.1 POWER Attack: Motor Performance due to Low Voltage

This experiment visualizes the impact of low voltage to an electric motor using lithium-polymer (LiPO) batteries. LiPO
batteries should never be used to operate in a low voltage state. Prolonged low voltage can cause the battery to break
down and possibly overheat and catch fire. LiPOs should be used with a voltage monitor that alarms if the state ever
drops below the recommended voltage. Long term handling and storage of LiPO batteries is difficult, as voltage drops
over time and they require regular recharging. LiPO safes are recommended for safe storage as they are designed to
ensure any battery overheating or break down does not extend outside the safe.

Target: This experiment uses the same configuration setup identified in Section 4.1.2, using a Raspberry Pi 3 B+,
connected to a brushed ESC, a brushed DC motor and the dynanometer. The target is running a script that increases the
PWM duty-cycle of the BDC motor until the motor hits ∼25 RPM range.

Setup: Two separate LiPO batteries were introduced to the testing environment, one charged at 50% voltage (7.62V)
and in a low-voltage state (∼6.5V), considered below the recommended alerting level of 7.4V for this particular LiPO
battery. Each LiPO battery is the same model 7.4V 2 cell battery with with a capacity of ∼5000 mAh, manufactured by
Awanfi INC.

22



Low Voltage Disruption: The baseline test run used the 7.62V LiPO and a second test run used a ∼6.5V LiPO
(discharged over time due to normal usage). Prior to testing, the monitor on the ∼6.5V LiPO alerted that the voltage
level was low. When the test run with the ∼6.5V LiPO began, the battery popped, almost like a gunshot, and briefly
shook the test bench. The left graph in Figure 24 show that the start of the run with the ∼6.5V LiPO, the motor hesitated
to increase speed (this is when the pop occurred). Then the motor speed increased to ∼16K RPM, and began to decline
as the motor struggled to pull electric current to operate. By contrast, the right graph shows the starting torque between
the good 7.62V LiPO (∼280 N*mm) and the low-voltage ∼6.5V LiPO (∼75N*mm), the motor torque significantly
declined by about 205%. Power output also significantly declined with the ∼6.5V LiPO. As the motor began backing
off from its peak speed of ∼16K RPM, the output power dropped to negative Watts, per the dynanometer.

Figure 24: (Left): Comparing speed of 7.62V LiPO vs. similar low-voltage LiPO, RPM of motor vs. Time(S), (Right):
Comparing torque and power output of 7.62V LiPO vs. similar low-voltage LiPO, Torque / Power Output vs. RPM of
motor

Analysis: Although not an attack scenario per se, low voltage can significantly impact the performance of an electric
motor, possibly causing them to stall and/or overheat as torque and power output are limited. Motors require some rated
voltage in order to provide the desired performance output, and low voltage conditions result in a loss of flux density
within the air gap between the rotor and stator impacting torque and output power. If an adversary tampered with power
settings, resulting in a brownout scenario, the motor will under-perform and also overheat if operated for a prolonged
period of time. Safety protections are generally designed into systems to limit operations when electrical power issues
are a threat in operational environments.

4.6 MOTOR Layer Experimentation

The MOTOR layer has one level of attacks typically requiring physical access to the motor in order for an adversary to
disrupt movements. We describe two experiments that show how adversarial physical access can change the movement
characteristics of an EM.

4.6.1 MOTOR Attack 1: Motor Performance in Presence of External Electromagnet

This experiment shows the potential behavioral change of an electric motor when additional electromagnetic forces are
introduced into the operational environment by introducing an electromagnet during operation.

Target: This is the same configuration setup as identified in Section 4.1.2, using a Raspberry Pi 3 B+, connected to a
brushed ESC, a brushed DC motor, and the dynanometer. The target motor is a sized 540 BDC with 17T. The target is
running a script that increases the PWM duty-cycle of the BDC motor until the motor hits ∼25K RPM.

Setup: An electromagnet (model WF-P50/27, produced by Wuxue Wan Fang Electric Co. Ltd.) is used for testing,
which produces 500N of suction power when energized by a 12V DC power supply. The power supply and electromagnet
can be seen on the test bench in Figure 25.

23



Figure 25: (Left): Test bench with electromagnet and 12V power supply; (Right): Visualization of external casing
ventilation holes on BDC motor next to electromagnet.

Electromagnetic Behavioral Change: The baseline test run is demonstrated without any additional electromagnetic
force. During testing, the electromagnet had no noticeable impact on the motor’s performance when power was applied
and the magnet was attached to the side of the motor casing without ventilation holes. When the magnet was applied
over the ventilation holes, the motor’s speed, torque, and power output all noticeably increased.

Figure 26 compares the results of the baseline test against two separate attack runs where the electromagnet was applied
during testing. Attack run 1 had the electromagnet applied during the entire test run, resulting in a speed increase to 26K
RPM or approximately 3.92% increase against the baseline run. Attack run 2 started with the applied electromagnet, and
it was removed at the 15 second mark. As can be seen in the left graph in Figure 26, the removal of the electromagnet
resulted in a decrease in speed back to the baseline value. The right graph in Figure 26 compares torque and power
output between the baseline run and attack run 2, showing that after the electromagnet was removed, torque and power
output also both returned to expected baseline values.

Figure 26: (Left): Electromagnet impact on speed, RPM of motor vs. Time(S); The circle highlights when the
electromagnet was removed in the second attack run, (Right): Comparing torque and power output of baseline run vs.
attack run 2, Torque / Power Output vs. RPM of motor

Analysis: This test was involved the intentional application of additional electromagnetic force to a test BDC on a
test bench, and is not indicative of the behavior of all electric motors under similar conditions. In this experiment, the
additional magnetic flux produced by the electromagnet changed the expected motor behavior by increasing speed,
torque and power output. Under precisely tuned motor applications, additional electromagnetic forces may result in
different behaviors other than intended by the system owner.

4.6.2 MOTOR Attack 2: Reprogramming Digital Servo Motor

This experiment shows the ease of reprogramming a digital servo motor to change its control and movement characteris-
tics. Generally, digital servo manufacturers have programming tools available for refactoring the motor’s direction,
speed, failsafe, overload and deadband width properties. Many programmers have additional support to test other
vendor’s digital servos by providing PWM to allow for precise adjustment of the duty cycle to change the servo angle.

24



Target: A sample system was set up using a Raspberry Pi 3 B+ as a controller (Raspbian GNU/Linux 9 (stretch), Linux
v. raspberrypi 4.14.71-v7+ #1145), leveraging the servosix library provided by the board’s manufacturer for servo
control [18]. The motor drive controller is a Servo Six embedded board connected to the Pi via pin GPIO17, and one
Hitec HS-5055MG digital servo is connected to the servo rail for demonstration purposes. The left image in Figure 27
shows the Hitec HFP-30 digital servo programmer receiving power from the target board to make programming
adjustments to the connected servo, and depicts some of the options for the digital servo. The programmer is not in the
loop during test runs, and the digital servo is connected back to the servo rail on the Six Servo board for testing.

Figure 27: (Left): Servo test setup with Hitec HFP-30 programmer, (Right): Changing servo direction from CW to
CCW.

Attacker Reconnaissance: Assuming the target application leverages a digital servo for movement, a programmer is
procured by the adversary in order to modify the anticipated movement behaviors of the digital servo.

Disrupt: An initial series of test runs is conducted, changing the angle of the servo to 25◦, 45◦, 90◦ and 120◦. The
servo is disconnected from the servo rail and connected to the programmer, where the direction of the servo is changed
from clockwise (CW) to counter-clockwise (CCW). The servo is reconnected to the servo rail, and the same run of tests
is conducted again changing the angle of the servo to 25◦, 45◦, 90◦ and 120◦. A visual comparison between the two
test runs can be seen in Figures 28 and 29. The directional change reflected the angular rotation of the servo from the
controller’s perspective.

Figure 28: Directional results of initial servo run with CW movement at 25◦, 45◦, 90◦ and 120◦.

Figure 29: Reflected Results of Changing Direction of Servo Rotation from CW to CCW, showing 25◦, 45◦, 90◦ and
120◦.

25



Analysis: By reprogramming the servo to move in a counter-clockwise direction, we changed the angular output of
expected movement. Digital servos and their programmers do not leverage authentication for testing or modifying
configurations. The controller may not be aware of such behavioral changes in its software unless additional sensors
are leveraged monitoring the angular movement of the servo. If an intentional adjustment was made against some
application, the system may be left in some unsafe state or production output may be impacted.

4.7 LOAD Layer Experimentation

The LOAD layer has one level of attacks typically requiring physical access to the applications load to disrupt movement,
possibly permanently. We provide an experiment to describe the effect of stalling an electric motor under heavy load
conditions.

4.7.1 LOAD Attack: Overheating and Stalling a Motor

This attack experiment is designed to show the impact of stalling and overheating an electric motor. An attack against a
movement system does not necessarily need to be cyber in nature, as physical sabotage of the output load could be
used to prohibit movement. When movement is physically prohibited, control systems are unable to issue movement
commands and are limited in operational control of the system’s movements.

Target and Setup: Two-speed 6" desk fans were used with the intention of stalling the motor and destroying the fans.
The fans draw 0.5 Amps of current in single-phase power, and have a 2.5 Amp fuse installed for overload protection.
Figure 30 shows the fan. The motor is a brushless DC motor where copper is wrapped around the base of the iron
outrunner stator, energizing two windings in the stator to produce movement.

Figure 30: (Left): Target desktop fan, (Right): Obstructing movement with a pen

Disrupt: The fan was plugged into a single-phase electrical power source and turned on at the higher speed. Movement
was physically obstructed by hand to monitor the temperature and ensure that a fire did not start in the test environment.
Every ten minutes, the fan was allowed to run for a few seconds to measure angular speed using a tachometer. During
testing, a thermometer loop was applied to measure and monitor the temperature of the stator and shaft. Figure 31
shows the graphs of speed and temperature over time. The motor burned out after 61 minutes.

During the run, the vibration of electrical energy was noticeable to the touch and audibly present. After 20 minutes,
the motor had a distinct electrical burning smell that filled the test environment. When the motor finally burned out,
the electrical vibration and sound came to a stop. The fuse was checked and verified that it was not blown. Figure 32
compares the dead (bad) motor and fuse against a known good motor and fuse, and there does not appear to be a visible
difference with this motor.

26



Figure 31: (Left): Comparing Speed of Stalled BLDC vs. Time (min), (Right): Comparing Temperature of the Stalled
BLDC vs. Time (min)

Figure 32: (Left): Visual Comparison of Dead (bad) Motor with Good Motor, (Right): Visual Comparison of the Dead
(bad) Motor’s Fuse with a Good Fuse; Neither comparison resulted in a noticeable visual difference

Analysis: Without protections, overloading a system could be leveraged to obstruct movement and prevent the system
from moving by destroying the motor, both accidentally and intentionally. In critical operational environments, sensors
and safety systems are designed to identify obstructions to movement and protect the electrical motor and moving
system. Regular maintenance and motor redundancies are also used to mitigate or limit motor wear and destruction due
to uneven or heavy loads.

5 Related Work

For each of the MTM layers, we can find examples in literature on identifying vulnerabilities and methods to exploit
them. We provide some discussion to augment the stacked MTM model.

5.1 OPERATOR Layer Security Literature Review

Network attacks against operator interfaces in moving systems are a common issue, as confidentiality, integrity and
availability can all be targeted to take control or prohibit movement. In [19], unauthenticated FTP was exploited by
researchers in to perform three different attacks against an industrial robot arm from the operator interface, modifying
calibration parameters, control loop parameters, and altering user inputs. In [20], an unauthenticated Bluetooth injection
attack, called FacePlant, was demonstrated against an electric skateboard, where researchers showed how they reverse
engineered the control protocol in order to issue a brake command to the EMs to halt the skateboard. Some motion
systems are operator controlled over proprietary wireless interfaces, in which case [21] notes that such attacks could
include sniffing, wardriving, replay, jamming, data link layer channel reservation abuse, evil twin, firmware update
mechanisms and physical layer protocol abuse. SCADA systems are also known for their reliance on insecure protocols

27



for command and control [22], such as Modbus, Common Industrial Protocol (CIP) and Distributed Network Protocol
(DNP3) [23].

In particular, research on attacking drones provides many examples of network attacks against the OPERATOR layer that
could be applicable to other systems. The Mavlink protocol used for communicating with drones from ground stations
has a number of issues, including packet forwarding attacks, eavesdropping, and hijacking [24]. Many drones provide a
Wi-Fi network for command and control, allowing attacks such as de-authorising the drone owner, downloading and
using the drone’s app from a smart device and exploiting unauthenticated telnet, or backdoor credentials [25]. Both
types of attacks were used in [26] to create HoneyDrone, which would identify attackers trying to target drones using
Mavlink or Wi-Fi.

Modifications and access to operator interfaces can leave the system and surrounding humans in an unsafe state, possibly
allowing the adversary to achieve some goal. In industrial robots, safety standards mandate that safety-critical operations
require user confirmation. When these standards are controlled in software, [27] showed it was possible for an attacker
to bypass this requirement, as they manipulated the user interface to lead the user to believe that the robot was not
operational and then moved the robot while this unsafe state. In an extensive study of over 250+ HMI vulnerabilities
from 2015-2016, [28] provided details regarding remote code execution, backdoor accounts, code injection, privilege
escalation and admin passwords exposed through certain URLs. The BLACKENERGY2 and CRASHOVERRIDE
malware campaigns from the Sandworm team, in particular, targeted libraries and configuration files of HMIs to learn
more about the targeted ICS and electric grid environments [29].

5.2 SENSOR Layer Security Literature Review

Sensors have had considerable focus in recent CPS security research. We provide a background here on how the
networks and physics of sensors and safety systems can be attacked, to describe some of the associated risks.

Transduction attacks can be leveraged to intentionally modify the analog readings of a sensor to manipulate a system’s
output or cause system errors. Malicious back-door coupling caused by resonating attacker-controlled carrier waves at
the same frequency which a sensor was designed to handle for normal operation could result in such consequences to
induce movement in a system [30]. For example, MicroElectro Mechanical Systems (MEMS) found in inertial sensors,
such as gyroscopes or accelerometers, could be targeted using amplified acoustical waves at resonating frequencies to
change and control the sensor output forcing the control system to adjust intended movements [31]. The WALNUT
attack [32] demonstrated a Samsung Galaxy phone running an application that moved a toy-grade car tied to the phone’s
MEMS-based accelerometer could be controlled by an attacker using a controlled acoustic frequency. Similarly, the
Dolphinattack showed how hidden voice commands could be introduced at inaudible frequencies received by MEMS
microphones listening in AI-assistants, such as Siri, Google Now, Cortana and Alexa [33]. If smart applications that
can move EM devices allow for leveraging such services, it could be possible to inaudibly control or induce movement
from such an attack.

Research and development of systems monitoring using wireless sensor networks has grown over the past decade.
Attacks on wireless sensor networks (WSNs), such as those used in industrial or transportation settings, include access
attacks (modifying sensor data at the controller, as previously discussed), privacy attacks (capturing data to pinpoint
location or system internals) and integrity attacks (jamming, spoofing, injection, etc.) [34]. Monitoring WSNs could
allow for privacy concerns in moving systems, as has shown to be the case with tire pressure monitoring systems
(TPMS) in automobiles [35].

Attacking the timing and positioning of moving systems using GPS sensors may also allow the adversary to control,
disrupt or monitor movement. GPS was first publicly reported as a threat back in 2003, as the low power receivers found
in civilian and military positioning systems are susceptible to jamming or spoofing due to the low power transmission
received from satellites on the ground [36]. To this day, the U.S. Department of Homeland Security (DHS) has labeled
the GPS threat the single point of failure for critical infrastructure [37]. Many examples of GPS attacks and mitigations
can be found in literature. As an example on how to build such an attack, [38] detailed the process to develop a GPS
spoofing attack using a BladeRFx40 SDR against a DJI Matrice 100 Quadcopter. As an example on how GPS spoofing
could be used to fool an operator, researchers showed how an attack could introduce variations in the GPS location of
passenger vehicles to result in changed directional information from smart device applications, such as Google Maps,
Apple Maps, PokeMon Go, Waze, Uber, Lyft, etc [39].

As an industrial safety system example, in 2017 the TRITON malware campaign targeted a Middle Eastern oil and
gas petrochemical facility’s Triconex Safety Instrumented System from Schneider Electric by managing to execute a
dropper file on an operator’s laptop within the safety network and pivoting to the Triconex system. They reprogrammed
the system, resulting in a failed state and a complete shutdown of all operational processes as a fail-safe reaction. Details
reverse engineering the attack and Triconex hardware can be found in [40].

28



5.3 CONTROL Layer Security Literature Review

As a background, we provide some discussion here focused on what types of movement attacks are possible, given
CONTROL layer access. The emerging area of robot security provides a number of examples of controller attacks and
attacks against the CONTROL-DRIVE channel. In [27], researchers detailed how an adversary with controller access
could modify robotic arm tuning parameters. They noted that safety and servo kinematics and configuration parameters
are stored in configuration files or dynamically in memory to change the force, speed or precision of desired set-points
of EMs in axis joints. In [41], a targeted attack was demonstrated on a RAVEN II tele-operated surgical robots, in
which the adversary with controller access was able to stop the robot during operation or inject torque commands that
caused the surgergical robot to jerk while conducting sensitive movements.

Research into PLC security has expanded over the past decade. With access to the ICS network, PLCs have been
shown to be vulnerable to weak user credentials, poor access controls, or even insecure ICS network protocols which
could exploited to read and write memory [42]. Such attacks to gain access may be lateral movements from the
OPERATOR layer, exploiting protocols intended for operator control, or from the DRIVE layer, exploiting protocols
used by the controller to communicate instructions to drives. Researchers have also found that major ICS drive controller
manufacturers, Schneider-Electric, Allen-Bradley, ABB and Vacon, have designed variable frequency drives to allow
unauthenticated Modbus commands to read and write motor speeds and identify critical parameters such as the critical
speed of the motor [43]. As an EM-related PLC example, researchers have shown PLCs could be targeted to move EMs
that lock/unlock doors in correctional facilities [44].

The Stuxnet malware campaign targeted and exploited a Seimans S7-315 in its second attack, explicitly focused on
destroying centrifuge rotors by injecting commands to the centrifuge drive system. The second attack ran once a month
and issued commands to the frequency drives to speed the rotors up, from 63,000 RPM to 84,600 RPM, for fifteen
minutes. The second month the attack sequence ran, it was modified to drop rotor speed down to 120 RPM, only to
speed them up again. It was unclear how effective these modifications were in destroying centrifuges [45]. Although
centrifuge rotors operate similarly to rotors in electric motors, we note they are not the same and this is only an example
of modifying speed with the intent of causing destruction.

5.4 DRIVE Layer Security Literature Review

Drives controllers have not had as much security research focus, possibly because their designs focus on availability
over confidentiality and integrity. We provide some details here as to how drives can be accessed, managed, and possibly
exploited.

Hobbyists have been hacking and modifying ESC firmware and hardware for years to improve performance, speed,
and torque in their applications. Open source firmware, such as SimonK [46], is widely used to reflash ATmega-based
microcontrollers found in commercial ESCs. As a recent open source hardware example, Electronoobs’ PCB schematic
can be downloaded, printed, configured and programmed using Arduino C [47].

Networked variable speed drives (VSDs) have remote management capabilities, but we did not identify publicly
available research focused on vulnerability exploitation of VSDs. To provide an idea of what types of vulnerabilities
may be present in networked VSDs, we will provide details regarding CVEs reported by ICS-CERT on VSDs and
variable frequency drives (VFDs). A DoS exploit was recently identified in Rockwell Automation’s PowerFlex 525,
detailed in [48], which could allow an attacker to deny services to the Common Industrial Protocol (CIP). This particular
vulnerability would result in denying new client connections to issue movement commands while allowing the attacker
to continue to send movement commands (CVE-2018-19282). In 2018, a stack-based buffer overflow in Eaton 9000X
drive (used in industrial manufacturing) was identified allowing for remote code execution (CVE-2018-8847) [49].
Also in 2018, researchers identified 3 CVEs in Fuji Electric’s Alpha 5 Smart servo system, including a heap-based
buffer overflow allowing for arbitrary code execution and a buffer overflow allowing for privilege escalation [50].

In 2016, [51] noted that an attacker with access to a controller could modify the internal pin control settings via 2
different attacks. In the first pin control attack, with root access, an attacker could change the control of a LED pin
from OUTPUT to INPUT, resulting in a lack of control of the pin from the controlling application. If the pin was
being used to drive PWM for a motor under such an attack, the motor could be stopped and prevented from moving, as
we described in this paper. In the second pin configuration attack, with access equivalent to the running application,
an attacker could modify the pin settings and still disable the pin. As control to the pin output is assumed by a drive
application, unless the pin’s settings are continuously monitored and checked, an attack could modify the duty cycle of
the motor at the pin level as a TOCTOU attack and change the motor’s drive settings. We demonstrated the effects of
these attacks using experimentation earlier in the paper.

29



5.5 POWER Layer Security Literature Review

Attacks against the POWER layer are mostly limited to physical access attacks. However, we note that [52] showed how
to modify the firmware on embedded controllers found in lithium ion batteries by targeting Smart Battery Specification
(SBS) communications over the SMBus [52]. They demonstrated that by targeting a battery’s controller, it is possible to
change settings beyond safety specifications such as the charge level of the battery or current flow, which could result in
overheating or fire.

5.6 MOTOR Layer Security Literature Review

MOTOR layer attacks are mostly physical access attacks. In 2011, the Illinois Statewide Terrorism and Intelligence
Center released a report entitled Public Water District Cyber Intrusion detailing how Russian hackers were able to
turn the system on and off resulting in the burnout of a water pump (electric water pumps use EMs to pump water). A
week later, DHS and the FBI concluded that it was not a cyber-related attack. The scare was caused when the system
owner logged into the SCADA system while on vacation from Russia several months before the incident. When the
pump later burned out, the SCADA logs were reviewed, and the Russian IP address in the logs became the focus of the
investigation [53].

5.7 LOAD Layer Security Literature Review

LOAD layer attacks are also mostly limited to physical access attacks. We were unable to find examples in security
literature of disrupting movement in control by specifically targeting the load. Preventing system overload risks
is typically a focus of critical systems safety engineering where typically with multiple layers of safety controls.
Discussion about how to size a motor and design a system to handle loads can be found extensively in [2]. Overloading
a system under adverse conditions can result in the failure of mechanical components in a motor, such as the bearings,
or cause overheating leading to insulation failure of the windings.

6 Conclusion

This paper focused on addressing the challenge of securing digital systems that leverage electric motors to move and
interact with the physical world. These problems can be summarized in three ways: (1) rotary motors are designed to
move continuously but digital command over these movements involves discrete instructions varying the speed, torque,
and power output of the system; (2) multiple layers are required for motor control, especially in complex systems, and
securing all of these layers and channels is not possible especially if physical access is permitted; and (3) existing threat
models do not focus specifically on threat modeling actuation and movement within these systems.

To address these challenges, we introduced the Motor Threat Model as a starting point in identifying attack vectors
within moving systems that were designed following the principles outlined in control theory. The model was intended
to be simple and show the relationships between both cyber and physical attacks against a system along with an
attacker’s goals and potential outcomes. We provided discussion on how to leverage the model to create attack trees and
multi-layered kill chains to allow defenders to identify security vulnerabilities within these systems. After a reviewing
multiple systems that leverage electric motors, we proposed this layered approach that fits most electric motor control
systems under most conditions.

To augment our model, we provided attack experiments at each of the layers to demonstrate the related security concerns.
Similar attacks and approaches may be leveraged by security researchers targeting other systems in order to identify
potential physical outcomes that could be harmful to society. We also provided a security literature review intended to
provide a background on attacks at each of the layers, which also showed gaps in security research, especially at the
lower layers.

References

[1] M. Scarpino, Motors for Makers: A Guide to Steppers, Servos, and other Electrical Machines. Indianapolis,
Indiana: Que, 2016.

[2] W. Tong, Mechanical design of electric motors. Boca Raton: CRC Press, 2014.
[3] A. Hughes and W. Drury, Electric Motors and Drives, 4th Edition. Newnes, 4 ed., February 2013.
[4] National Electric Manufacturers Association (NEMA), “Motors and Generators.” Standards Publication MG1-

2016, 2016.
[5] I. M. Gottlieb, Practical Electric Motor Handbook. Oxford, UK: Newnes, 1997.

30



[6] S. Ghosh, Electrical Machines. Delhi: Dorling Kindersley India, 2 ed., 2012.
[7] D. W. Spitzer, Variable Speed Drives Principles and Applications for Energy Cost Savings. New York, N.Y.] (222

East 46th Street, New York, NY 10017): Momentum Press, 4th ed. ed., 2012.
[8] R. Rifaat, “Industrial Motor Protection [History],” IEEE Industry Applications Magazine, vol. 18, pp. 10,11,

November 2012.
[9] Department of Energy, “10 C.F.R. 431, Subpart B - Electric Motors.” www.ecfr.gov/cgi-bin/text-idx?

SID=1d4a3e47894c42e30b45a27277fbdf5d&mc=true&node=sp10.3.431.b&rgn=div6, 2019. Accessed:
2019-07-05.

[10] Department of Energy, “10 C.F.R. 431, Subpart X - Small Electric Motors.” www.ecfr.gov/cgi-bin/
text-idx?SID=ff7f131ef3415ead7976d82050477c6f&mc=true&node=sp10.3.431.x&rgn=div6, 2019.
Accessed: 2019-07-05.

[11] M. J. Assante and R. M. Lee, “The Industrial Control System Cyber Kill Chain,” Tech. Rep. 36297, SANS
Institute, October 2015.

[12] O. Alexander, “ICS ATT&CK Framework: Adversary Tactics and Techniques
(S4x19).” www.brighthubengineering.com/commercial-electrical-applications/
78579-determining-causes-for-electric-motor-failure/, January 2019. Accessed: 2019-07-
05.

[13] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P. Miller, C. Wampler, S. M. Whitley, and
R. D. Wolf, “Finding Cyber Threats with ATT&CKTM-Based Analytics,” Tech. Rep. MTR170202, The MITRE
Corporation, Annapolis Junction, Maryland, June 2017.

[14] M. Rocchetto and N. O. Tippenhauer, “On Attacker Models and Profiles for Cyber-Physical Systems,” in Computer
Security – ESORICS 2016 (I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows, eds.), (Cham), pp. 427–449,
Springer International Publishing, 2016.

[15] joan2937, “pigpio.” github.com/joan2937/pigpio/, 2019. Accessed: 2019-07-15.
[16] Broadcom, “BCM2835 ARM Peripherals.” www.raspberrypi.org/wp-content/uploads/2012/02/

BCM2835-ARM-Peripherals.pdf. Accessed: 2019-07-05.
[17] Gordon, “WiringPi.” github.com/WiringPi/WiringPi, 2018. Accessed: 2019-07-15.
[18] S. Monk, “servosix.” github.com/simonmonk/servosix, 2019. Accessed: 2019-07-15.
[19] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and S. Zanero, “Breaking the Laws of Robotics -

Attacking Industrial Robots,” Black Hat USA, July 2017.
[20] R. Healey and M. Ryan, “Hacking Electric Skateboards: Vehicle Research for Mortals,” DEF CON 23, July 2015.
[21] M. Knight and M. Newlin, “Radio Exploitation 101: Characterizing, Contextualizing, and Applying Wireless

Attack Methods,” DEF CON 25, July 2017.
[22] Z. Drias, A. Serhrouchni, and O. Vogel, “Taxonomy of Attacks on Industrial Control Protocols,” in 2015

International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of
Distributed Systems (NTDS), pp. 1–6, July 2015.

[23] S. East, J. Butts, M. Papa, and S. Shenoi, “A Taxonomy of Attacks on the DNP3 Protocol,” in Critical Infrastructure
Protection III (C. Palmer and S. Shenoi, eds.), (Berlin, Heidelberg), pp. 67–81, Springer Berlin Heidelberg, 2009.

[24] J. A. Marty, Vulnerability Analysis of the MAVLink Protocol for Command and Control of Unmanned Aircraft.
PhD thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 2014.

[25] J. Valente and A. Cardenas, “Understanding Security Threats in Consumer Drones Through the Lens of the
Discovery Quadcopter Family,” in Proceedings of the 2017 Workshop on internet of things security and privacy,
IoTS&P ’17, pp. 31,36, ACM, November 2017.

[26] J. Daubert, D. Boopalan, M. Mühlhäuser, and E. Vasilomanolakis, “HoneyDrone: A Medium-Interaction Un-
manned Aerial Vehicle Honeypot,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, pp. 1257–1262, April 2018.

[27] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and S. Zanero, “An Experimental Security
Analysis of an Industrial Robot Controller,” in 2017 IEEE Symposium on Security and Privacy (SP), pp. 268–286,
May 2017.

[28] B. Gorenc and F. Sands, “Hacker Machine Interface - The State of SCADA HMI Vulnerabilities,” tech. rep., Trend
Micro Zero Day Initiative Team, 2017.

[29] Dragos Inc., “CRASHOVERRIDE: Analysis of the Threat to Electric Grid Operations,” Tech. Rep. 2.20170613,
Dragos Inc., Dover, DE, June 2017.

[30] K. Fu and W. Xu, “Risks of Trusting the Physics of Sensors,” Communications of the ACM, vol. 61, pp. 20,23,
January 2018.

[31] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and Delivered: Fabricating Implicit Control over Actuation Systems by
Spoofing Inertial Sensors,” 27th USENIX Security Symposium, August 2018.

31

www.ecfr.gov/cgi-bin/text-idx?SID=1d4a3e47894c42e30b45a27277fbdf5d&mc=true&node=sp10.3.431.b&rgn=div6
www.ecfr.gov/cgi-bin/text-idx?SID=1d4a3e47894c42e30b45a27277fbdf5d&mc=true&node=sp10.3.431.b&rgn=div6
www.ecfr.gov/cgi-bin/text-idx?SID=ff7f131ef3415ead7976d82050477c6f&mc=true&node=sp10.3.431.x&rgn=div6
www.ecfr.gov/cgi-bin/text-idx?SID=ff7f131ef3415ead7976d82050477c6f&mc=true&node=sp10.3.431.x&rgn=div6
www.brighthubengineering.com/commercial-electrical-applications/78579-determining-causes-for-electric-motor-failure/
www.brighthubengineering.com/commercial-electrical-applications/78579-determining-causes-for-electric-motor-failure/
github.com/joan2937/pigpio/
www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
github.com/WiringPi/WiringPi
github.com/simonmonk/servosix


[32] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT: Waging Doubt on the Integrity of MEMS
Accelerometers with Acoustic Injection Attacks,” in 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 3,18, IEEE, 2017-04.

[33] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “DolphinAttack: Inaudible Voice Commands,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on computer and communications security, CCS ’17, pp. 103,117,
ACM, October 2017.

[34] A. G. Finogeev and A. A. Finogeev, “Information Attacks and Security in Wireless Sensor Networks of Industrial
SCADA Systems,” Journal of Industrial Information Integration, vol. 5, pp. 6,16, March 2017.

[35] K. T. Sterne, J. M. Ernst, D. K. Kilcoyne, A. J. Michaels, and G. Moy, “Tire Pressure Monitoring System
Sensor Radio Frequency Measurements for Privacy Concerns,” Transportation Research Record, vol. 2643, no. 1,
pp. 34,44, 2017.

[36] J. V. Carroll, “Vulnerability Assessment of the U.S. Transportation Infrastructure that Relies on the Global
Positioning System,” Journal of Navigation, vol. 56, pp. 185,193, May 2003.

[37] Resilient Navigation and Timing Foundation, “Prioritizing Dangers to the United States from Threats to GPS,”
Tech. Rep. ICSA-18-193-01, RNT Foundation, November 2016.

[38] E. Horton and P. Ranganathan, “Development of a GPS Spoofing Apparatus to Attack a DJI Matrice 100
Quadcopter,” The Journal of Global Positioning Systems, vol. 16, pp. 1,11, December 2018.

[39] K. Zeng, Y. Shu, S. Liu, Y. Dou, and Y. Yang, “A Practical GPS Location Spoofing Attack in Road Navigation
Scenario,” in Proceedings of the 18th International Workshop on mobile computing systems and applications,
HotMobile ’17, pp. 85,90, ACM, February 2017.

[40] A. D. Pinto, Y. Dragoni, and A. Carcano, “TRITON: The First ICS Cyber Attack on Safety Instrument Systems,”
Black Hat USA, August 2018.

[41] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. Kalbarczyk, and R. Iyer, “Targeted Attacks on Teleoperated
Surgical Robots: Dynamic Model-Based Detection and Mitigation,” in Proceedings - 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2016, (United States), pp. 395–406, 9 2016.

[42] D. Beresford, “Exploiting Siemens Simatic S7 PLCs,” Black Hat USA, August 2011.
[43] K. Zetter, “An Easy Way for Hackers To Remotely Burn Industrial Motors.” www.wired.com/2016/01/

an-easy-way-for-hackers-to-remotely-burn-industrial-motors/, January 2016. Accessed: 2019-
07-15.

[44] T. Newman, T. Rad, and J. Strauchs, “SCADA & PLC Vulnerabilities in Correctional Facilities,” tech. rep.,
Newman, Rad, Strauchs, July 2011.

[45] R. Langner, “To Kill a Centrifuge,” tech. rep., The Langner Group, Dover, DE, November 2013.
[46] S. Kirby, “tgy – Open Source Firmware for ATmega-based Brushless ESCs.” github.com/sim-/tgy, 2017.

Accessed: 2019-07-15.
[47] Electronoobs, “My Open Source ESC.” www.electronoobs.com/eng_arduino_tut91.php, 2019. Accessed:

2019-07-15.
[48] L. O’Donnell, “Critical Rockwell Automation Bug in Drive Component Puts IIoT Plants at Risk.” threatpost.

com/critical-rockwell-automation-bug-in-drive-component-puts-iiot-plants-at-risk/
143258/, March 2019. Accessed: 2019-07-15.

[49] Cybersecurity and Infrastructure Security Agency, “ICS Advisory (ICSA-18-193-01) Eaton 9000X Drive,” Tech.
Rep. ICSA-18-193-01, Department of Homeland Security, July 2018.

[50] E. Kovacs, “No Patches for Critical Flaws in Fuji Electric Servo System, Drives.” www.securityweek.
com/no-patches-critical-flaws-fuji-electric-servo-system-drives, September 2018. Accessed:
2019-07-15.

[51] A. Abbasi and M. Hashemi, “Ghost in the PLC: Designing an Undetectable Programmable Logic Controller
Rootkit via Pin Control Attack,” Black Hat Europe, November 2016.

[52] C. Miller, “Battery Firmware Hacking: Inside the Innards of a Smart Battery,” Black Hat USA, July 2011.
[53] K. Zetter, “Comedy of Errors Led To False ’Water-Pump Hack’ Report.” www.wired.com/2011/11/

water-pump-hack-mystery-solved/, November 2011. Accessed: 2019-07-15.

32

www.wired.com/2016/01/an-easy-way-for-hackers-to-remotely-burn-industrial-motors/
www.wired.com/2016/01/an-easy-way-for-hackers-to-remotely-burn-industrial-motors/
github.com/sim-/tgy
www.electronoobs.com/eng_arduino_tut91.php
threatpost.com/critical-rockwell-automation-bug-in-drive-component-puts-iiot-plants-at-risk/143258/
threatpost.com/critical-rockwell-automation-bug-in-drive-component-puts-iiot-plants-at-risk/143258/
threatpost.com/critical-rockwell-automation-bug-in-drive-component-puts-iiot-plants-at-risk/143258/
www.securityweek.com/no-patches-critical-flaws-fuji-electric-servo-system-drives
www.securityweek.com/no-patches-critical-flaws-fuji-electric-servo-system-drives
www.wired.com/2011/11/water-pump-hack-mystery-solved/
www.wired.com/2011/11/water-pump-hack-mystery-solved/

	Introduction
	Background on Electric Motor Systems
	Types of Electric Motors
	Motor Structure, Components, and Behavior
	Torque, Speed, and Power
	Torque and Speed
	Power

	Control Theory and Motor System Design
	Safety Regulations for Motor Systems

	Threat Modeling for Motor Driven Systems
	Relevance of Kill Chains to Motor Attacks
	The Motor Threat Model
	Attacker Modeling
	Refining Attack Objectives
	MTM Layers of Access
	MTM Multi-Layered Kill Chain and Attack Trees

	Experimentation
	OPERATOR Layer Experimentation
	OPERATOR Attack 1: Wireless Exploitation
	OPERATOR Attack 2: Remote Pin Configuration Attack

	SENSOR Layer Experimentation
	SENSOR Attack: Accelerator Data Injection

	CONTROL Layer Experimentation
	CONTROL Attack 1: Timing Impacts of Discrete Command Injections on Motor Control
	CONTROL Attack 2: Hardware Implant Targeting PWM Channel

	DRIVE Layer Experimentation
	DRIVE Attack: Pin Control and Configuration Attacks

	POWER Layer Experimentation
	POWER Attack: Motor Performance due to Low Voltage

	MOTOR Layer Experimentation
	MOTOR Attack 1: Motor Performance in Presence of External Electromagnet
	MOTOR Attack 2: Reprogramming Digital Servo Motor

	LOAD Layer Experimentation
	LOAD Attack: Overheating and Stalling a Motor


	Related Work
	OPERATOR Layer Security Literature Review
	SENSOR Layer Security Literature Review
	CONTROL Layer Security Literature Review
	DRIVE Layer Security Literature Review
	POWER Layer Security Literature Review
	MOTOR Layer Security Literature Review
	LOAD Layer Security Literature Review

	Conclusion

