FINDING A NEEDLE IN AN ENCRYPTED HAYSTACK:

LEVERAGING CRYPTOGRAPHIC ABILITIES TO DETECT THE MOST PREVALENT ATTACKS ON ACTIVE DIRECTORY

Marina Simakov Yaron Zinar

ABOUT US

Marina Simakov (@simakov_marina)

- Senior Security Researcher @Preempt
- M.Sc. in computer science, with several published articles, with a main area of expertise in graph theory
- Previously worked as a Security Researcher @Microsoft
- Spoke at various security conferences such as Black Hat, Blue Hat IL and DefCon

Yaron Zinar (@YaronZi)

- Senior Security Researcher Lead @Preempt
- M.Sc. in Computer Science with a focus on statistical analysis
- Spent over 12 years at leading companies such as Google and Microsoft
- Among his team latest finding are CVE-2017-8563, CVE-2018-0886, CVE-2019-1040 and CVE-2019-1019

AGENDA

1. Introduction:

- Common attacks on Active Directory
- NTLM
 - Design weaknesses
 - NTLM Relay
 - Offered mitigations

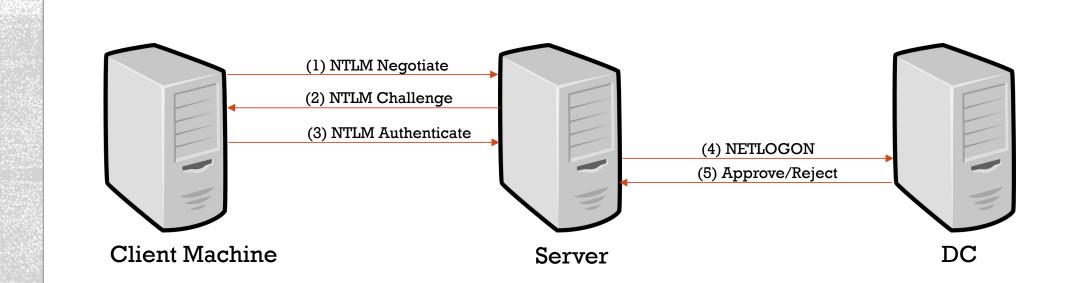
2. Vulnerabilities

- Known vulnerabilities
 - LDAPS Relay
 - CVE-2015-0005
- New vulnerabilities
 - Your session key is my session key
 - Drop the MIC
 - EPA bypass

3. Detections

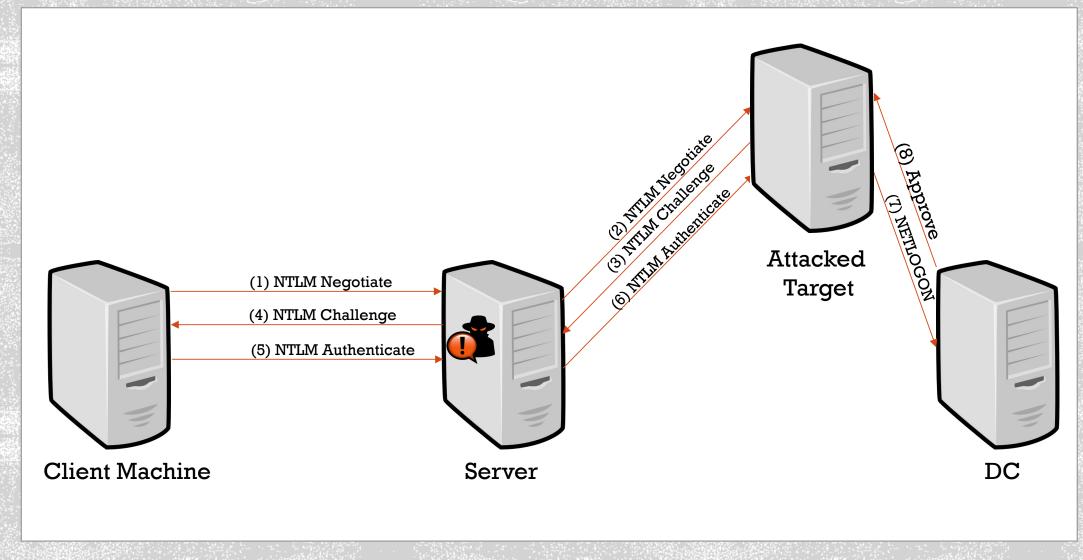
- Known detections
 - Logs
 - Network traffic
- New detections
 - Encrypted data
 - NTLM Relay deterministic detection

4. Takeaways



INTRODUCTION: ACTIVE DIRECTORY

- Main secrets storage of the domain
 - Stores password hashes of all accounts
 - In charge of authenticating accounts against domain resources
- Authentication protocols
 - LDAP
 - NTLM
 - Kerberos
- Common attacks
 - Golden & Silver Ticket
 - Forged PAC
 - PTT
 - PTH
 - NTLM Relay


NTLM

Authentication is *not* bound to the target server!

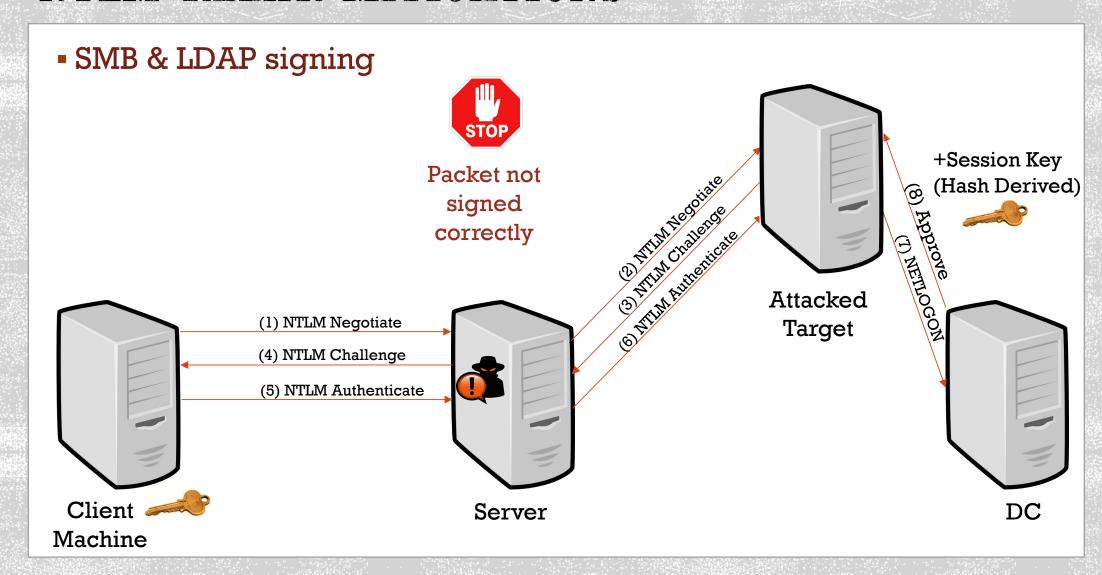
NTLM RELAY

NTLW RELAY: MITGATIONS

NTLM RELAY: MITIGATIONS

• Mitigations:

- SMB Signing
- LDAP Signing
- EPA (Enhanced Protection for Authentication)
- LDAPS channel binding
- Server SPN target name validation
- Hardened UNC Paths


NTLM RELAY: MITIGATIONS

SMB & LDAP signing

- After the authentication, all communication between client and server will be signed
- The signing key is derived from the authenticating account's password hash
- The client calculates the session key by itself
- The server receives the session key from the DC in the NETLOGON response
- An attacker with relay capabilities has no way of retrieving the session key

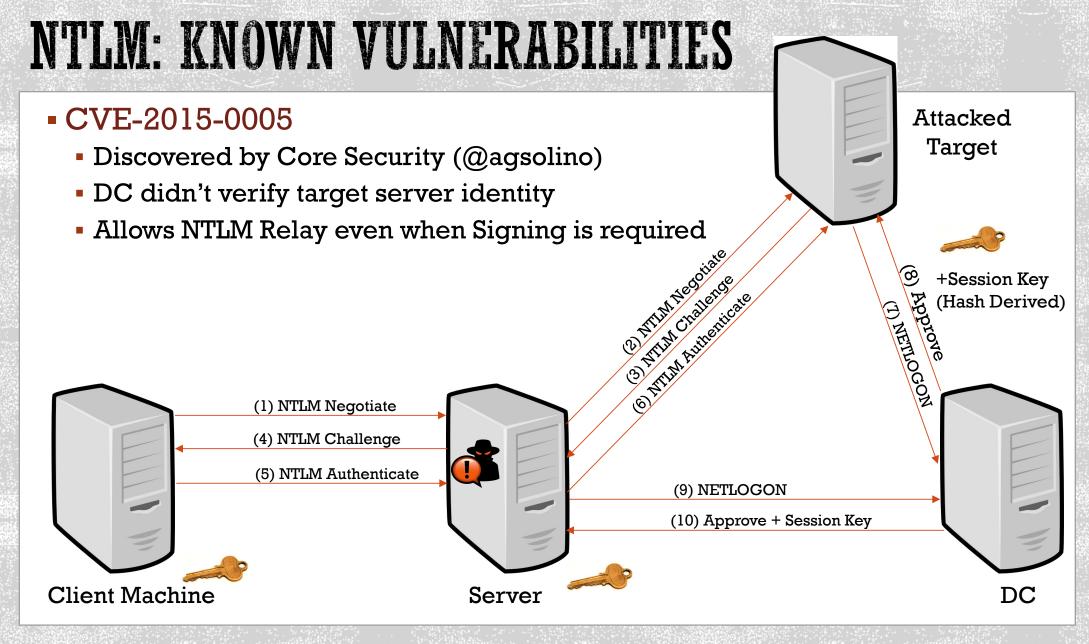
NTLW RELAY: MITIGATIONS



NTLW RELAY: MITIGATIONS

- EPA (Enhanced Protection for Authentication)
 - RFC 5056
 - Binds the NTLM authentication to the secure channel over which the authentication occurs
 - The final NTLM authentication packet contains a hash of the target service's certificate, signed with the user's password hash
 - An attacker with relay capabilities is using a different certificate than the attacked target, hence the client will respond with an incompatible certificate hash value

NTLM RELAY: MITIGATIONS


NTLW RELAY: KNOWN VULNERABILITIES

NTLW: KNOWN VULNERABILITIES

- LDAPS Relay (CVE-2017-8563)
 - Discovered by Preempt in 2017
 https://blog.preempt.com/new-ldap-rdp-relay-vulnerabilities-in-ntlm
 - Group Policy Object (GPO) "Domain Controller: LDAP server signing requirements"
 - Requires LDAP sessions to be signed **OR**
 - Requires session to be encrypted via TLS (LDAPS)
 - TLS does not protect from credential forwarding!

NTLW: KNOWN VULNERABILITIES

- **CVE-2015-0005**
 - NTLM Challenge message:
 - Contains identifying information about the target computer

```
▲ NTLM Secure Service Provider
    NTLMSSP identifier: NTLMSSP
    NTLM Message Type: NTLMSSP_CHALLENGE (0x00000002)
  ▶ Target Name: PREEMPT
  ▶ Negotiate Flags: 0x02898205, Negotiate Version, Negotiate Target Info,
    NTLM Server Challenge: 5254321a3ca3b35b
    Reserved: 000000000000000000

■ Target Info

       Length: 164
       Maxlen: 164
                                                           Attacked Target
       Offset: 76

    Attribute: NetBIOS computer name: TEST-01

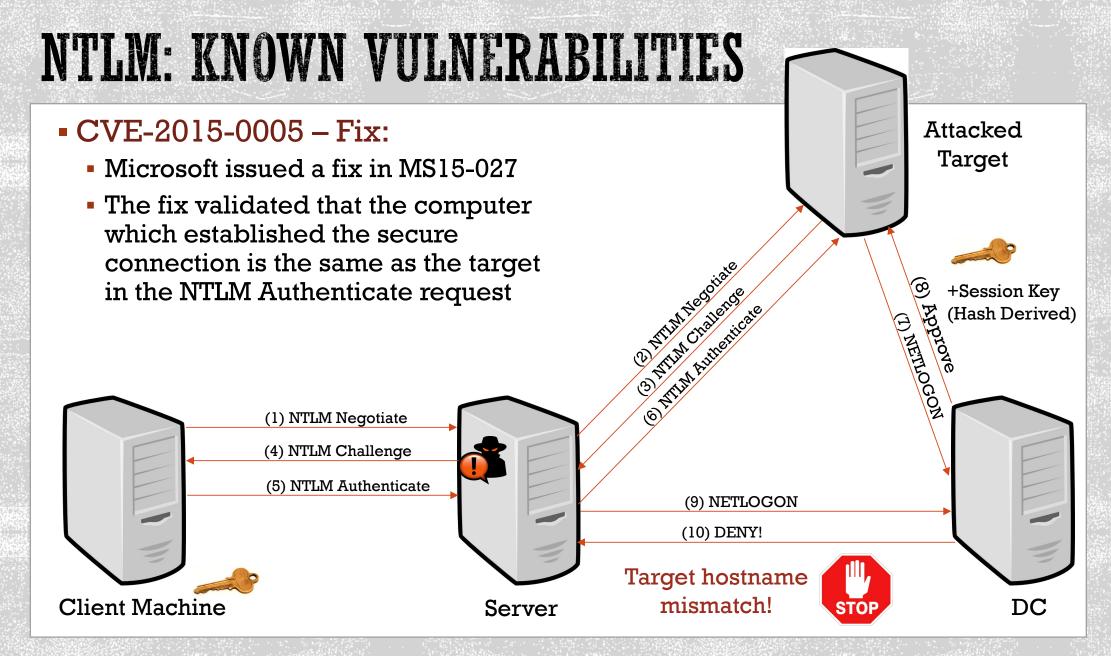
     DATTIBUTE: DNS domain name: preempt
     DATTIBUTE: DNS computer name: TEST-01.preempt

    Attribute: DNS tree name: preempt

    Attribute: End of list

  Version 6.3 (Build 9600); NTLM Current Revision 15
```


- **CVE-2015-0005**
 - NTLM Authenticate message:
 - User calculates HMAC_MD5 based on the challenge message using his NT Hash


```
NTLMv2 Response: 6c1da1bba6a09b2f637a7a18b20eb16501010000000000000...
   NTProofStr: 6c1da1bba6a09b2f637a7a18b20eb165
   Response Version: 1
   Hi Response Version: 1
   Z: 0000000000000
   Time: May 28, 2019 08:21:41.061147500 UTC
   NTLMv2 Client Challenge: 2d30979d36e171b5
                                             Attacked Target
   Z: 00000000
  ▶ Attribute: NetBIOS domain name: PREEMPT
  DNS domain name: preempt

    Attribute: DNS tree name: preempt

  ▶ Attribute: Timestamp

    Attribute: Target Name: cifs/10.1.1.1
  D Attribute: End of list
```


NTLN RELAY: NEW VULNERABILITIES

- Your session key is my session key
 - Retrieve the session key for any NTLM authentication
 - Bypasses the MS15-027 fix
- Drop the MIC
 - Modify session requirements (such as signing)
 - Overcome the MIC protection
- EPA bypass
 - Relay authentication to servers which require EPA
 - Modify packets to bypass the EPA protection

YOUR SESSION KEY IS MY SESSION KEY

- Your session key is my session key
 - MS15-027 fix validates target NetBIOS name
 - But what is the target NetBIOS name field is missing?

Original challenge:

▲ NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_CHALLENGE (0x00000002)

▶ Target Name: PREEMPT

▶ Negotiate Flags: 0x02898205, Negotiate Version, Negotiate

NTLM Server Challenge: 5254321a3ca3b35b

Reserved: 00000000000000000

■ Target Info

Length: 164 Maxlen: 164 Offset: 76

Attribute: NetBIOS domain name: PREEMPT

Attribute: NetBIOS computer name: TEST-01

Attribute: DNS domain name: preempt

DNS tree name: preempt

Attribute: Timestamp

Attribute: End of list

Version 6.3 (Build 9600); NTLM Current Revision 15

Modified challenge:

■ NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_CHALLENGE (0x000000002)

Darget Name: PREEMPT

▷ Negotiate Flags: 0x02898205, Negotiate Version, Negotiate

NTLM Server Challenge: 5254321a3ca3b35b

Reserved: 0000000000000000

▲ Target Info

Length: 164 Maxlen: 164 Offset: 76

DNS domain name: preempt

Attribute: DNS tree name: preempt

Attribute: End of list

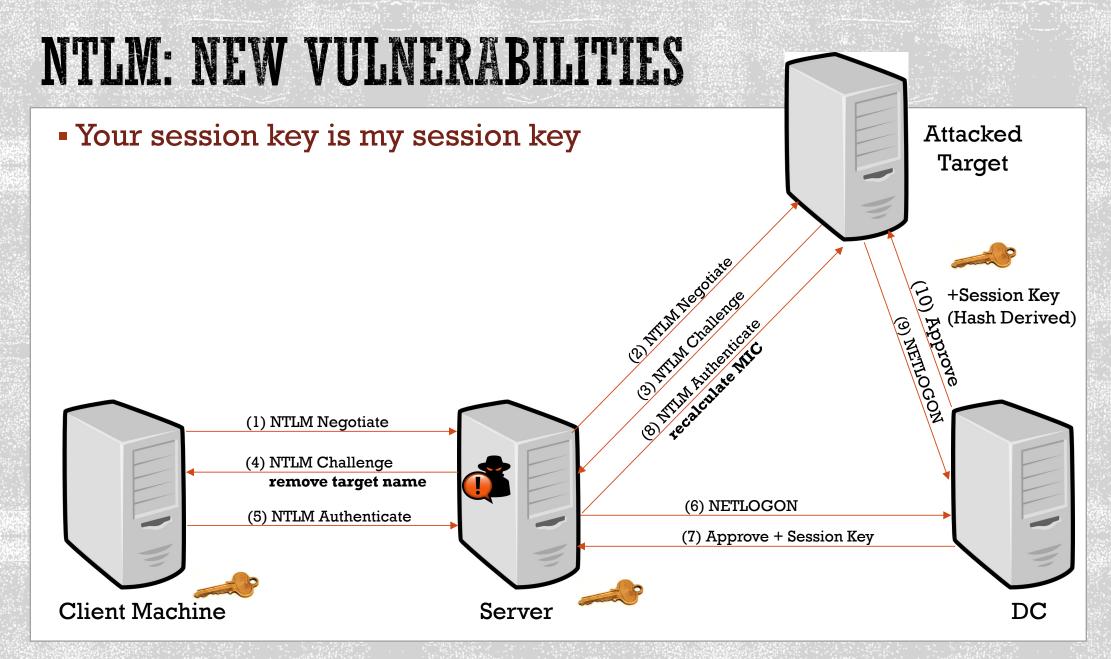
Version 6.3 (Build 9600); NTLM Current Revision 15

- Your session key is my session key
 - The client responds with an NTLM_AUTHENTICATE message with target NetBIOS field missing
 - The NETLOGON message is sent without this field
 - The domain controller responds with a session key!

- Your session key is my session key
 - But what if the NTLM AUTHENTICATE message includes a MIC?
 - MIC: Message integrity for the NTLM NEGOTIATE, NTLM CHALLENGE, and NTLM AUTHENTICATE
 - MIC = HMAC_MD5(SessionKey, ConcatenationOf(NTLM_NEGOTIATE, NTLM_CHALLENGE, NTLM_AUTHENTICATE))
 - ▼ NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_AUTH (0x00000003)


- - LMv2 Client Challenge: 00000000000000000
- > NTLM Response: 1336da946b1e967178af213a953bc69b01010000000000000...
- > Domain name: PREEMPT
- > User name: user01
- > Host name: TEST-01
- > Session Key: b694a2f88063a2fc0e8f122d33b90523
- > Negotiate Flags: 0xe2888215, Negotiate 56, Negotiate Key Exchange, Negotiate 128,
- > Version 10.0 (Build 17134); NTLM Current Revision 15

MIC: 7b7f086333cdd6d48a694c3c0cd2aa8d

- Your session key is my session key
 - Overcoming the MIC problem:
 - By removing the target hostname we are able to retrieve the session key
 - We have all 3 NTLM messages
 - The client provides a MIC which is based on the modified NTLM_CHALLENGE message
 - We recalculate the MIC based on the original NTLM_CHALLENGE message

- Your session key is my session key Fix:
 - Windows servers deny requests which do not include a target

• Issues:

- NTLMv1
 - messages do not have av_pairs -> no target field
 - Such authentication requests remain vulnerable to the attack
- Non-Windows targets are still vulnerable
- Patching is not enough

DROP TILE WIG

- Drop the MIC
 - MIC = HMAC_MD5(SessionKey, ConcatenationOf(NTLM_NEGOTIATE, NTLM_CHALLENGE, NTLM_AUTHENTICATE))
 - If client & server negotiate session privacy/integrity, attackers cannot take over the session

The MIC protects the NTLM negotiation from tampering

Drop the MIC

- SMB clients turn on the signing negotiation flag by default & use a MIC
- It is not possible (or at least, not trivial) to relay SMB to another protocol which relies on this negotiation flag (in contrast to other protocols such as HTTP)
- How can we overcome this obstacle?
 - MIC can be modified only if the session key is known
 - Otherwise, it can be simply removed ©
 - [In order to remove the MIC, the version needs to be removed as well, as well as some negotiation flags]
- Result: It is possible to tamper with any stage of the NTLM authentication flow when removing the MIC

Drop the MIC

Original NTLM_AUTHENTICATE:

NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_AUTH (0x00000003)

LMv2 Client Challenge: 00000000000000000

> NTLM Response: b0eea4395eea94869ae86aef3e7f72d101010000000000000...

Domain name: PREEMPTUser name: user01Host name: TEST-01

> Session Key: f2ee625796ccac3fd657e015dd25454a

> Negotiate Flags: 0xe2888215, Negotiate 56, Negotiate Key Exchange, Negotiate

> Version 6.1 (Build 7601); NTLM Current Revision 15

MIC: e746de89e1e239ad880738eccfe687dc

Modified NTLM_AUTHENTICATE:

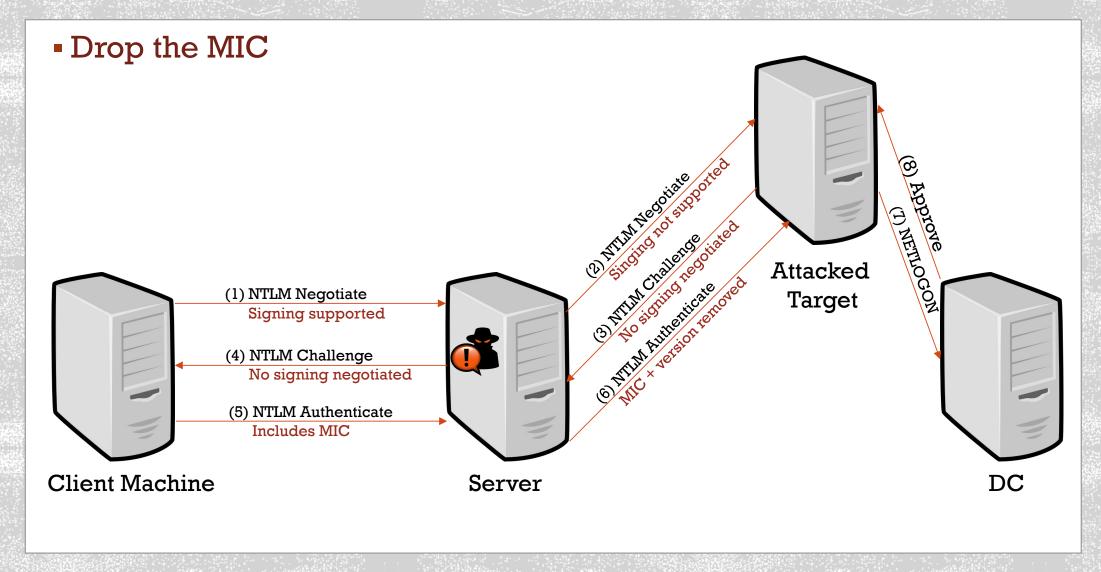
▼ NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_AUTH (0x00000003)

LMv2 Client Challenge: 00000000000000000

> NTLM Response: b0eea4395eea94869ae86aef3e7f72d101010000000000000...


Domain name: PREEMPTUser name: user01

> Host name: TEST-01

> Session Key: 30002e0030002e003300390000000000

> Negotiate Flags: 0xa0880205, Negotiate 56, Negotiate 128, Negotiate Target

- Drop the MIC Problem
 - The MIC presence is notified in the msvAvFlags attribute in the NTLM authentication message
 - msvAvFlags is signed with the user's password hash

MsvAvFlags

A 32-bit value indicating server or client configuration.

0x00006

0x0000001: Indicates to the client that the account authentication is constrained.

0x00000002: Indicates that the client is providing message integrity in the MIC field (section 2.2.1.3) in the AUTHENTICATE_MESSAGE.<a href="mailto:
0x00000004: Indicates that the client is providing a target SPN generated from an untrusted source.<<15>

Attribute: Timestamp

Attribute: Flags
 NTLMV2 Response Item Type: Flags (0x0006)
 NTLMV2 Response Item Length: 4
 Flags: 0x00000002

Attribute: Restrictions

Attribute: Channel Bindings

Attribute: Target Name: cifs/10.1.0.107

Attribute: End of list

Attribute: End of list

Attribute: Attribute: End of list

Attribute: Target Name: cifs/10.1.0.107

Attribute: End of list

Attribute: End of list

Attribute: Target Name: Cifs/10.1.0.107

Attribute: End of list

Attribute: Target Name: Cifs/10.1.0.107

Attribute: End of list

 Even if the corresponding bit is set, the target server does not verify that the MIC is indeed present

- MIC bypass Fix:
 - If msvAvFlags indicate that a MIC is present, verify its presence.
- Issues:
 - Some clients don't add a MIC by default (Firefox on Linux or MacOS)
 - These clients are still vulnerable to NTLM session tampering
 - More serious issue:
 CVE-2019-1166 –
 Drop The MIC 2 ☺

EPA BYPASS

- EPA (Enhanced Protection for Authentication) bypass
 - EPA binds authentication packets to a secure TLS channel
 - Servers protected by EPA:
 - AD-FS
 - OWA
 - LDAPS
 - Other HTTP servers (e.g. Sharepoint)
 - Unfortunately by default, EPA is disabled on all of the above servers
 - In most cases, these servers are vulnerable to much simpler attack vectors

- EPA (Enhanced Protection for Authentication) bypass
 - Adds a Channel Bindings field to the NTLM_AUTHENTICATE message based on the target server certificate
 - Prevents attackers from relaying the authentication to another server
 - Modification requires knowledge of the user's NT HASH

▼ NTLMv2 Response: 848ad4f1104a741871069e735d124a120101000000000000...

NTProofStr: 848ad4f1104a741871069e735d124a12

Response Version: 1

Hi Response Version: 1

Z: 000000000000

Time: May 30, 2019 11:04:16.356383400 UTC NTLMv2 Client Challenge: e35869f876174a6f

Z: 00000000

Attribute: NetBIOS domain name: PREEMPTAttribute: NetBIOS computer name: TEST-01

> Attribute: DNS domain name: preempt

> Attribute: DNS computer name: TEST-01.preempt

> Attribute: DNS tree name: preempt

Attribute: Timestamp

> Attribute: Flags

> Attribute: Restrictions

▼ Attribute: Channel Bindings

NTLMV2 Response Item Type: Channel Bindings (0x000a)

NTLMV2 Response Item Length: 16

Channel Bindings: 26b0b57ea3af3852664834351af38549

> Attribute: Target Name: HTTP/10.1.1.1

> Attribute: End of list

- EPA (Enhanced Protection for Authentication) bypass
 - Modifying the Channel Bindings in the NTLM_AUTHENTICATE message is not possible
 - But what if we add a Channel Bindings field to the NTLM_CHALLENGE message before we send it to the client?

▼ NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_CHALLENGE (0x000000002)

> Target Name: PREEMPT

> Negotiate Flags: 0xe2898215, Negotiate 56, Negotiate Key Exchange,

NTLM Server Challenge: cd755f40de40662d

Reserved: 00000000000000000

▼ Target Info

Length: 184

Maxlen: 184

Offset: 76

> Attribute: NetBIOS computer name: TEST-01

> Attribute: NetBIOS domain name: PREEMPT

> Attribute: DNS computer name: TEST-01.preempt

> Attribute: DNS domain name: preempt

> Attribute: DNS tree name: preempt

Attribute: Timestamp

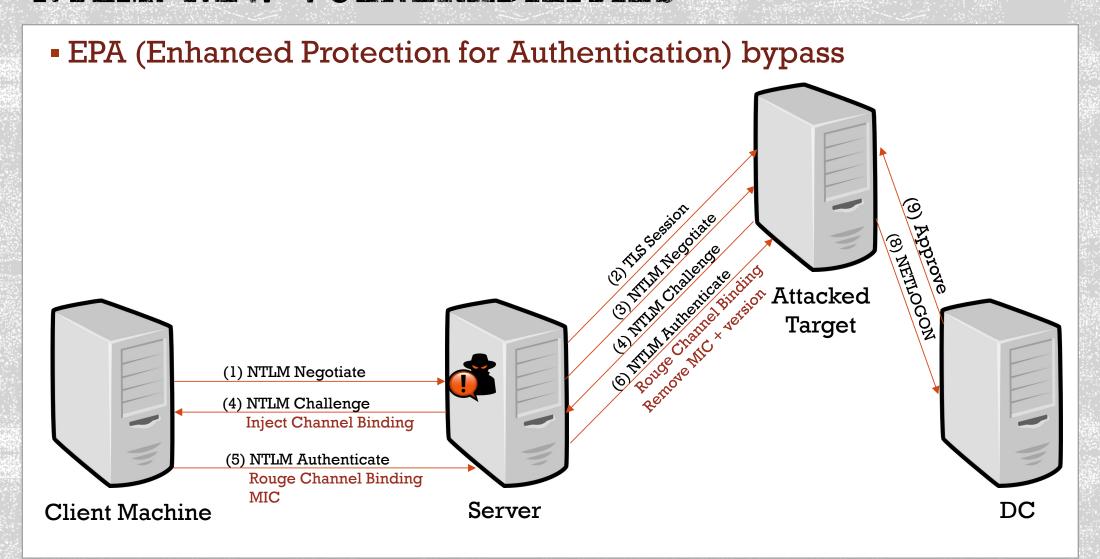
▼ Attribute: Channel Bindings

Target Info Item Type: Channel Bindings (0x000a)

Target Info Item Length: 16

Channel Bindings: 26b0b57ea3af3852664834351af38549

Attribute: End of list


- EPA (Enhanced Protection for Authentication) bypass
 - Client will add our crafted field to the NTLM_AUTHENTICATE message!
 - Additional fields would be added to the message, including a second Channel Binding
 - Server takes the first Channel Binding for verification
 - What if the NTLM_AUTHENTICATE message includes a MIC?
 - DROP THE MIC!

▼ NTLMv2 Response: b0eea4395eea94869ae86aef3e7f72d101010000000000000... NTProofStr: b0eea4395eea94869ae86aef3e7f72d1 Response Version: 1 Hi Response Version: 1 Z: 000000000000 Time: Apr 18, 2019 14:17:09.242052800 UTC NTLMv2 Client Challenge: 26b00961558b7b4a Z: 00000000 > Attribute: NetBIOS computer name: TEST-01 Attribute: NetBIOS domain name: PREEMPT Attribute: DNS computer name: TEST-01.preempt > Attribute: DNS domain name: preempt > Attribute: DNS tree name: preempt Attribute: Timestamp ▼ Attribute: Channel Bindings NTLMV2 Response Item Type: Channel Bindings (0x000a) NTLMV2 Response Item Length: 16 Channel Bindings: 26b0b57ea3af385ae64834351e5a2f49 > Attribute: Flags Attribute: Restrictions Attribute: Channel Bindings NTLMV2 Response Item Type: Channel Bindings (0x000a) NTLMV2 Response Item Length: 16

Attribute: Target Name: HTTP/10.1.1.1

Attribute: End of list

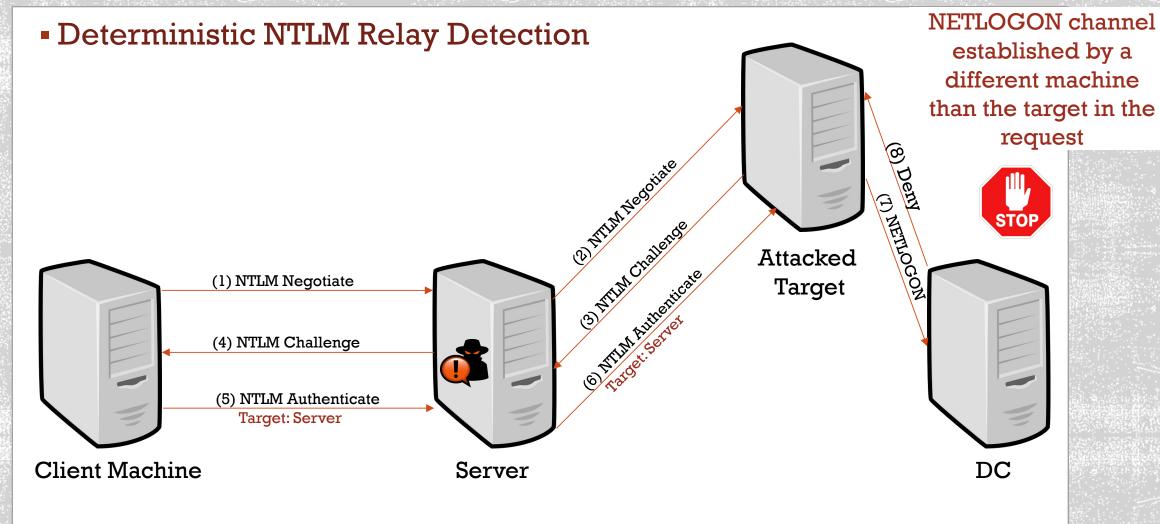
EPA bypass - Fix:

 Servers deny authentication requests which include more than one channel binding value

Issues:

- Some clients don't support EPA & don't add a MIC (Firefox on Linux or MacOS)
- These clients are still vulnerable to the EPA bypass
- One such client is enough to make the entire domain vulnerable

- Common data sources used today:
 - Raw network traffic
 - Event logs
- Proposed data source:
 - Encrypted traffic


Attack	Known Detections	New Detections
Golden & Silver ticket	Weak encryption typeTicket lifetime	- Ticket contents (PAC)
Attack tools (BloodHound)	LDAP queriesETW	- LDAPS traffic
NTLM relay	- Heuristic detections based on anomalous NTLM access	- NETLOGON message source + decrypted content

- Deterministic NTLM Relay Detection
 - An NTLM_AUTHENTICATE request includes the target of the authentication
 - The NTProofStr ensures attackers are unable to modify this field

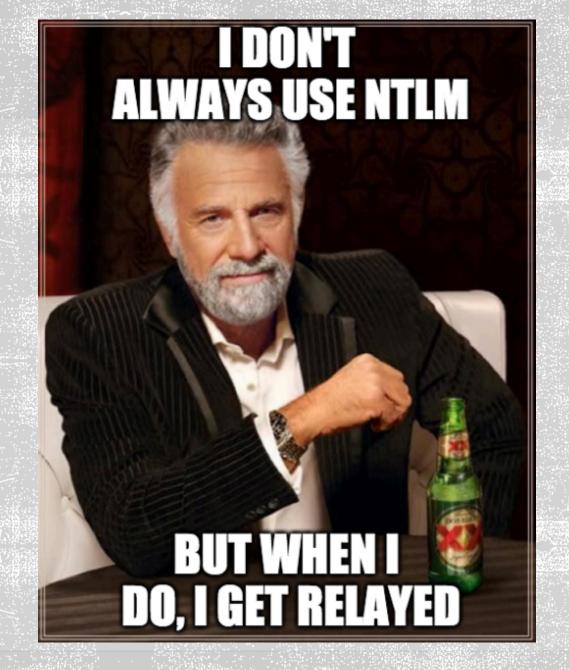
```
NTLMv2 Response: 1336da946b1e967178af213a953bc69b0101000000000000...
    NTProofStr: 1336da946b1e967178af213a953bc69b
     Response Version: 1
     Hi Response Version: 1
     Z: 000000000000
     Time: Jun 5, 2019 11:49:52.675828200 UTC
     NTLMv2 Client Challenge: 06beccc4ae1bfc04
     Z: 00000000
   Attribute: NetBIOS domain name: PREFMPT
  Attribute: NetBIOS computer name: TEST-01
  Attribute: DNS domain name: preempt
   Attribute: DNS computer name: TEST-01.preempt
   > Attribute: DNS tree name: preempt
   > Attribute: Timestamp
  > Attribute: Flags
  Attribute: Restrictions
  > Attribute: Channel Bindings
    Attribute: Target Name: cifs/10.1.1.1
  Attribute: End of list
```


Deterministic NTLM Relay Detection

- Requirements:
 - Domain controllers sniffers / agents
 - Decrypt NETLOGON messages
 - Extract the hashes of all computers in the domain
 - Associate an SPN / IP to the corresponding machine
- Uncovered scenario:
 - MITM: NETLOGON channel would be established with the same machine name as in the NTLM_AUTHENTICATE message
 - The Kerberos protocol is also vulnerable to this scenario (if signing is not negotiated)

TAKEAWAYS

TAKEAWAYS


- Patch all vulnerable machines!
- Restrict NTLM usage as much as possible
 - NTLM authentication is susceptible to NTLM relay attacks
 - Always prefer Kerberos usage
- Disable NTLMv1 in your environment
 - Configure the GPO 'Network security: LAN Manager authentication level' to: 'Send NTLMv2 response only. Refuse LM & NTLM'
 - https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-security-lan-manager-authentication-level
- Incorporate NTLM relay mitigations:
 - SMB & LDAP signing
 - LDAP channel binding
 - EPA
- Incorporate advanced detections in your domain
 - NTLM relay detection
 - Consider using encrypted traffic to gain stronger defensive capabilities

CREDITS

- The Preempt Research Team
 - Eyal Karni (@eyal_karni)
 - Sagi Sheinfeld
- Alberto Solino (@agsolino)
 - Some of the vulnerabilities are merged into impacket!
 - https://github.com/SecureAuthCorp/impacket

THANK YOU

