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Worm Attack via Arbitrary Code Execution on Broadcom Wi-Fi chip (aka BroadPwn)

– Nitay Artenstein at Black Hat USA 2017

Remote Compromise of Peripheral Chips
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Vulnerability used to achieve Arbitrary Code Execution on Shannon Baseband Chip

– Amat Cama at Mobile Pwn2Own

Remote Compromise of Peripheral Chips



5
Arbitrary Code Execution on Broadcom Wi-Fi chips and Main Processor 

– Gal Beniamini at Google Project Zero

Remote Compromise of Peripheral Chips
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(A diverse set of) Sandboxes
• App sandbox, e.g., per-app UID
• Mandatory access control, i.e., SELinux
• Browser sandbox, e.g., seccomp
• I/O daemons

Sandbox: Page-granularity IOMMU

System Call Boundary
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Lack of Mitigations
• Typically resource-constrained (CPU 

and memory)
• Firmware often runs bare-metal and 

lacks MMU

(A diverse set of) Mitigations
• ASLR and DEP
• Control-Flow Integrity
• Secure Heap Allocator

ARMv8ARMv7, Xtensa, MIPS, …
(aka microcontrollers)

Memory Exploit Mitigations:
Peripheral Firmware vs. User-mode Process
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System Call Boundary
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• Syzkaller
• TriforceLinuxSyscallFuzzer
• Trinity
• DIFUZE (CCS’17)
• MoonShine (Security’18)

• FaceDancer
• vUSBf
• Syzkaller USB fuzzing
• NexMon
• SymDrive (OSDI’12)
• PeriScope (NDSS’19)

Analysis Tools:
Hardware-OS Boundary vs. System Call Boundary
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• Device Adaptation
• Pros: Non-intrusive (OS-independent)
• Cons: Need for programmable device + limited visibility into 

driver
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(e.g., FaceDancer21 custom USB)

I/O mappings
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State-of-the-art: Analyzing HW-OS Interface (1/3)



Virtual machine
(e.g., QEMU or other emulator/hypervisor)

Device 
Driver

Peripheral 
Device

I/O mappings

12

• Virtual Machine Introspection
• Pros: High visibility yet non-intrusive
• Cons: Need for virtual device and/or virtualization HW 

support

State-of-the-art: Analyzing HW-OS Interface (2/3)



Symbolic execution environment (e.g., S2E)

• Symbolic Devices
• Pros: No need for physical/virtual device
• Cons: Inherits cons of symbolic execution

Device 
Driver

Symbolic input
I/O mappings
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State-of-the-art: Analyzing HW-OS Interface (3/3)



PeriScope

• In-kernel, page-fault-based monitoring
• Pros: No device-specific/virtual device requirement yet fine-

grained monitoring
• Cons: OS-dependent
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OS Kernel

PeriScope – Our Approach
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• Goal: To find vulnerabilities in kernel drivers reachable from a 
compromised device

• Therefore, PeriFuzz fuzzes Driver’s Read Accesses to MMIO and 
DMA mappings
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PeriFuzz – Fuzzer for the HW-OS boundary
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PeriScope Framework
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Attacker can write any value to the I/O mappings 
even multiple times at any time
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Threat Model Review



if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00 
00 00 11 00

...

Peripheral 
Device

An I/O mapping

Device 
Driver
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Potential Double-fetch Bugs in I/O Mappings



if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00 
00 00 11 00

...
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00 11
Device 
Driver00 11
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& check passes

Potential Double-fetch Bugs in I/O Mappings
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...
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& check passes

DE AD

Potential Double-fetch Bugs in I/O Mappings



if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00 
00 00 11 00

...
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Device

An I/O mapping

❶ First fetch
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❸ Overlapping fetch 
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00 11
Device 
Driver00 11
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& check passes

DE AD
DE AD

Potential Double-fetch Bugs in I/O Mappings
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Fuzzing Loop

• Each iteration of the fuzzing loop 
consumes a single fuzzer-
generated input

• aligned to the execution of 
software interrupt (softirq) 
handler’s enter & exit

• can have one or more reads 
from I/O mappings.
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• Based on Linux kernel 4.4 for AArch64 (Google Pixel 2)

• Ported to 3.10 (Samsung Galaxy S6)

• AFL 2.42b as PeriFuzz front-end
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Prototype Implementation



Broadcom’s Wi-Fi driver
in Samsung Galaxy S6

Qualcomm’s Wi-Fi driver
in Google Pixel 2
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Fuzzing Target: Wi-Fi Drivers



1. Large codebase
• Qualcomm’s: 443,222 SLOC and Broadcom’s: 122,194 SLOC

2. Highly concurrent
• heavy use of bottom-half handlers, kernel threads, etc.

3. Lots of code runs in interrupt & kernel thread contexts
• rather than system call contexts

4. No virtual device implementation available

5. No hypervisor support
• EL2 not available in production smartphones

Fuzzing Target: Wi-Fi Drivers
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• Different classes of bugs
• 9 buffer overreads or overwrites
• 4 double-fetch issues
• 1 kernel address leak
• 3 reachable assertions
• 2 null pointer dereferences

• In total, 15 vulnerabilities discovered
• 9 previously unknown
• 8 new CVEs assigned

32

Bugs Found
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idx = *(pdev->rx_ring.alloc_idx.vaddr);

if ((idx < 0) || (idx > pdev->rx_ring.size_mask) ||
(num > pdev->rx_ring.size)) {

QDF_TRACE(QDF_MODULE_ID_HTT,
QDF_TRACE_LEVEL_ERROR,
"%s:rx refill failed!", __func__);

return filled;
}

... // use of idx

Patch

idx

DMA I/O mapping Driver Source Code

vaddr

Driver used a value read from a DMA mapping as an index into an array 
without validation (now patched!)

Buffer Overflow (CVE-2018-11902)



❶ The driver computes and verifies the checksum of a message
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msg

static uint8 dhd_prot_d2h_sync_xorcsum(...)
...
prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);
if (prot_checksum == 0U) { /* checksum is OK */
if (msg->epoch == ring_seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma_completed;

...

DMA I/O mapping Driver Source Code

Double-fetch Bug – Initial Fetch & Check



Unable to handle kernel paging request at virtual 
address 2f6d657473797337

Kernel panic - not syncing: Fatal exception in 
interrupt

msg

❷ The driver fetches the same bytes again from msg

35

Out-of-bounds access

Overlapping fetch (fuzzed)

DMA I/O mapping

ifidx = msg->cmn_hdr.if_id; 
...

ifp = dhd->iflist[ifidx];

Driver Source Code

Double-fetch Bug – Overlapping Fetch & OOB



Symptom:
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Unable to handle kernel paging request at virtual address 
17000000d7ff0008

Kernel panic - not syncing: Fatal exception in interrupt

A fuzzed value provided by PeriFuzz
was directly being dereferenced.

Kernel Address Leak (CVE-2018-11947)



❶ Driver sends a kernel pointer to the device

❷ Device sends the cookie back, which is then dereferenced by the driver
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non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));
...
// use pointer as cookie (which is later sent to the device)
cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);
...

req = ol_txrx_u64_to_stats_ptr(cookie);
...
req->... // A value read from I/O mapping is dereferenced

DMA I/O mappings

Write
cookie

Read
cookie

(fuzzed)

Driver Source Code

Kernel Address Leak (CVE-2018-11947)
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cf) On Pixel 2, Syzkaller achieves on average 24 program executions per second (max: ~60).

(1 proc ADB-based configuration measured for a 15-min period) 

Phone/Driver I/O 
Mapping

Peak Throughput
(# of test inputs/sec)

Pixel 2 -
QCACLD-3.0

QC1 23.67
QC2 15.64
QC3 18.77
QC4 7.63

Galaxy S6 -
BCMDHD4358

BC1 9.90
BC2 14.28
BC3 10.49
BC4 15.92

• Fuzzing throughput is about 7~24 
inputs/sec depending on the nature of 
the I/O mapping being fuzzed.

• The number of page faults is the main 
contributor. (e.g., 50 page faults per 
iteration gives around 20 inputs/sec)

• Rooms for improvement. (Details in 
the paper)

Fuzzing Throughput



• Minimizing the impact of shallow bugs
• All bugs found in less than 10,000 inputs
• Shallow bugs frequently hit, which causes system restarts (reboot takes 

1 min)
• We had to manually disable subpaths rooted at bugs already found

• Improving throughput
• Slower than, for example, typical user-space fuzzing
• Possible optimizations and trade-offs outlined in the paper
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Future Work



• Remote peripheral compromise poses a serious threat to OS kernel 
security.

• PeriScope and PeriFuzz are practical dynamic analysis tools that can 
analyze large, complex drivers along the hardware-OS boundary.

• PeriScope and PeriFuzz are effective at finding vulnerabilities along 
the HW-OS boundary.

• Memory overreads/overwrites, address leak, null pointer dereferences, 
reachable assertions, and double-fetch bugs

40

Conclusion



Q & A
Thank you!

Contact
Dokyung Song

Ph.D. Student at UC Irvine
dokyungs@uci.edu
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