

PeriScope: An Effective Probing and Fuzzing
Framework for the Hardware-OS Boundary

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn Volckaert,
Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, Michael Franz

3
Worm Attack via Arbitrary Code Execution on Broadcom Wi-Fi chip (aka BroadPwn)

– Nitay Artenstein at Black Hat USA 2017

Remote Compromise of Peripheral Chips

4
Vulnerability used to achieve Arbitrary Code Execution on Shannon Baseband Chip

– Amat Cama at Mobile Pwn2Own

Remote Compromise of Peripheral Chips

5
Arbitrary Code Execution on Broadcom Wi-Fi chips and Main Processor

– Gal Beniamini at Google Project Zero

Remote Compromise of Peripheral Chips

I/O MMU

6

Main processor

Peripheral
Device

Physical
Memory

Device
memory

Kernel mode
User mode

Direct Memory Access
(DMA)

MMU

Device
Driver

Memory-mapped I/O
(MMIO)

User-
Process

Hardware-OS Interface: MMIO and DMA

7

I/O MMU
Main processor

Peripheral
Device

Physical
Memory

Device
memory

Kernel mode
User mode

Direct Memory Access
(DMA)

MMU

Device
Driver

Memory-mapped I/O
(MMIO)

User-
Process

Peripheral
Device Device

memory

Threat Model

8

(A diverse set of) Sandboxes
• App sandbox, e.g., per-app UID
• Mandatory access control, i.e., SELinux
• Browser sandbox, e.g., seccomp
• I/O daemons

Sandbox: Page-granularity IOMMU

System Call Boundary

Hardware-OS Boundary

Main processor

Physical
Memory

Kernel mode
User mode

Device
Driver

User-
Process

MMU

Hardware-OS Boundary vs. System Call Boundary

Physical
Memory

Main processor

Kernel mode

User mode

Device
Driver

User-
Process

Peripheral
Device Device

memory

Lack of Mitigations
• Typically resource-constrained (CPU

and memory)
• Firmware often runs bare-metal and

lacks MMU

(A diverse set of) Mitigations
• ASLR and DEP
• Control-Flow Integrity
• Secure Heap Allocator

ARMv8ARMv7, Xtensa, MIPS, …
(aka microcontrollers)

Memory Exploit Mitigations:
Peripheral Firmware vs. User-mode Process

9

System Call Boundary

Hardware-OS Boundary

Main processor

Physical
Memory

Kernel mode

User mode

Device
Driver

User-
Process

MMU

• Syzkaller
• TriforceLinuxSyscallFuzzer
• Trinity
• DIFUZE (CCS’17)
• MoonShine (Security’18)

• FaceDancer
• vUSBf
• Syzkaller USB fuzzing
• NexMon
• SymDrive (OSDI’12)
• PeriScope (NDSS’19)

Analysis Tools:
Hardware-OS Boundary vs. System Call Boundary

10

• Device Adaptation
• Pros: Non-intrusive (OS-independent)
• Cons: Need for programmable device + limited visibility into

driver

Device
Driver

Peripheral
Device

Reprogram the device
(e.g., FaceDancer21 custom USB)

I/O mappings

11

State-of-the-art: Analyzing HW-OS Interface (1/3)

Virtual machine
(e.g., QEMU or other emulator/hypervisor)

Device
Driver

Peripheral
Device

I/O mappings

12

• Virtual Machine Introspection
• Pros: High visibility yet non-intrusive
• Cons: Need for virtual device and/or virtualization HW

support

State-of-the-art: Analyzing HW-OS Interface (2/3)

Symbolic execution environment (e.g., S2E)

• Symbolic Devices
• Pros: No need for physical/virtual device
• Cons: Inherits cons of symbolic execution

Device
Driver

Symbolic input
I/O mappings

13

State-of-the-art: Analyzing HW-OS Interface (3/3)

PeriScope

• In-kernel, page-fault-based monitoring
• Pros: No device-specific/virtual device requirement yet fine-

grained monitoring
• Cons: OS-dependent

Device
Driver

Peripheral
Device

Page
fault

I/O mappings

14

OS Kernel

PeriScope – Our Approach

15OS kernel

M
M
U

Page Table

Device
Driver

MMIO/DMA
Allocation

API

❷ PeriScope marks
allocated pages as not
present

❶ Driver allocates
MMIO/DMA
mappings

Normal driver execution
PeriScope-induced flow

PeriScope Overview

16OS kernel

M
M
U

Page Table

Device
Driver

Kernel Page
Fault

Handler

Examine faults

User-registered Hooks

❷ Page fault

❺ PeriScope resumes driver execution❶ Driver accesses
MMIO/DMA mappings

❸ PeriScope fault handler

❹ PeriScope calls
user-registered
hooks

Normal driver execution
PeriScope-induced flow

PeriScope Overview

• Goal: To find vulnerabilities in kernel drivers reachable from a
compromised device

• Therefore, PeriFuzz fuzzes Driver’s Read Accesses to MMIO and
DMA mappings

17

PeriFuzz – Fuzzer for the HW-OS boundary

OS kernel

Device Driver

Kernel Page
Fault Handler

Examine faults

User-registered Hooks

18

PeriScope Framework

Fuzzer

0xDEADBEEF

Executor

regs[dest]=0xDEADBEEF

❷ Overwrite the
destination register with
a fuzzer-provided value

PeriFuzz Hook

❸ Resume driver’s execution

Injector

User space

Kernel space

❶ Request fuzzing
drivers’ read accesses

PeriFuzz Overview

Attacker can write any value to the I/O mappings
even multiple times at any time

Peripheral
Device

Device
Driver

I/O mappings

19

Threat Model Review

if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00
00 00 11 00

...

Peripheral
Device

An I/O mapping

Device
Driver

20

Potential Double-fetch Bugs in I/O Mappings

if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00
00 00 11 00

...

Peripheral
Device

An I/O mapping

❶ First fetch

00 11
Device
Driver00 11

21

& check passes

Potential Double-fetch Bugs in I/O Mappings

if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00
00 00 11 00

...

Peripheral
Device

An I/O mapping

❶ First fetch

❷ Malicious Update

00 11
Device
Driver00 11

22

& check passes

DE AD

Potential Double-fetch Bugs in I/O Mappings

if (*map_ptr <= 0x00FF) {
...

array[*map_ptr] = ...;

00 00 00 00
00 00 11 00

...

Peripheral
Device

An I/O mapping

❶ First fetch

❷ Malicious Update

❸ Overlapping fetch
(without rechecking)

00 11
Device
Driver00 11

23

& check passes

DE AD
DE AD

Potential Double-fetch Bugs in I/O Mappings

DE AD 01 23
DE AD 45 67

DE AD 01 23
DE AD 45 67

DE AD BE EF

DE AD BE EF
An I/O mapping

01 23 45 67
89 AB CD EF
01 23 45 67
89 AB CD EF

Kernel space

User space

Device
Driver

Fuzzer

Injector

Sequential Fuzzer
Input Consumption

24

DE AD 01 23
DE AD 45 67

DE AD 01 23
DE AD 45 67

DE AD BE EF

DE AD BE EF
An I/O mapping

01 23 45 67
89 AB CD EF
01 23 45 67
89 AB CD EF

Page Fault DE AD
Kernel space

User space

Device
Driver

Fuzzer

Injector

Sequential Fuzzer
Input Consumption

25

DE AD 01 23
DE AD 45 67

DE AD 01 23
DE AD 45 67

DE AD BE EF

DE AD BE EF
An I/O mapping

01 23 45 67
89 AB CD EF
01 23 45 67
89 AB CD EF

Page Fault DE AD

Overlapping Fetch

Kernel space

User space

BE EF

Device
Driver

Fuzzer

Injector

Sequential Fuzzer
Input Consumption

26

DE AD 01 23
DE AD 45 67

DE AD 01 23
DE AD 45 67

DE AD BE EF

DE AD BE EF
An I/O mapping

01 23 45 67
89 AB CD EF
01 23 45 67
89 AB CD EF

Page Fault DE AD

Overlapping Fetch

Kernel space

User space

BE EF

Device
Driver

NON-overlapping Fetch

DE AD
Page Fault

Fuzzer

Injector

Sequential Fuzzer
Input Consumption

27

Fuzzing Loop

• Each iteration of the fuzzing loop
consumes a single fuzzer-
generated input

• aligned to the execution of
software interrupt (softirq)
handler’s enter & exit

• can have one or more reads
from I/O mappings.

28

Kernel
Execution

Reads from
I/O mappings

Single
iteration

...

Driver
Execution

PeriFuzz
Execution

...
...

softirq
enter

exit

#PF

#PF

• Based on Linux kernel 4.4 for AArch64 (Google Pixel 2)

• Ported to 3.10 (Samsung Galaxy S6)

• AFL 2.42b as PeriFuzz front-end

29

Prototype Implementation

Broadcom’s Wi-Fi driver
in Samsung Galaxy S6

Qualcomm’s Wi-Fi driver
in Google Pixel 2

30

Fuzzing Target: Wi-Fi Drivers

1. Large codebase
• Qualcomm’s: 443,222 SLOC and Broadcom’s: 122,194 SLOC

2. Highly concurrent
• heavy use of bottom-half handlers, kernel threads, etc.

3. Lots of code runs in interrupt & kernel thread contexts
• rather than system call contexts

4. No virtual device implementation available

5. No hypervisor support
• EL2 not available in production smartphones

Fuzzing Target: Wi-Fi Drivers

31

• Different classes of bugs
• 9 buffer overreads or overwrites
• 4 double-fetch issues
• 1 kernel address leak
• 3 reachable assertions
• 2 null pointer dereferences

• In total, 15 vulnerabilities discovered
• 9 previously unknown
• 8 new CVEs assigned

32

Bugs Found

33

idx = *(pdev->rx_ring.alloc_idx.vaddr);

if ((idx < 0) || (idx > pdev->rx_ring.size_mask) ||
(num > pdev->rx_ring.size)) {

QDF_TRACE(QDF_MODULE_ID_HTT,
QDF_TRACE_LEVEL_ERROR,
"%s:rx refill failed!", __func__);

return filled;
}

... // use of idx

Patch

idx

DMA I/O mapping Driver Source Code

vaddr

Driver used a value read from a DMA mapping as an index into an array
without validation (now patched!)

Buffer Overflow (CVE-2018-11902)

❶ The driver computes and verifies the checksum of a message

34

msg

static uint8 dhd_prot_d2h_sync_xorcsum(...)
...
prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);
if (prot_checksum == 0U) { /* checksum is OK */
if (msg->epoch == ring_seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma_completed;

...

DMA I/O mapping Driver Source Code

Double-fetch Bug – Initial Fetch & Check

Unable to handle kernel paging request at virtual
address 2f6d657473797337

Kernel panic - not syncing: Fatal exception in
interrupt

msg

❷ The driver fetches the same bytes again from msg

35

Out-of-bounds access

Overlapping fetch (fuzzed)

DMA I/O mapping

ifidx = msg->cmn_hdr.if_id;
...

ifp = dhd->iflist[ifidx];

Driver Source Code

Double-fetch Bug – Overlapping Fetch & OOB

Symptom:

36

Unable to handle kernel paging request at virtual address
17000000d7ff0008

Kernel panic - not syncing: Fatal exception in interrupt

A fuzzed value provided by PeriFuzz
was directly being dereferenced.

Kernel Address Leak (CVE-2018-11947)

❶ Driver sends a kernel pointer to the device

❷ Device sends the cookie back, which is then dereferenced by the driver

37

non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));
...
// use pointer as cookie (which is later sent to the device)
cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);
...

req = ol_txrx_u64_to_stats_ptr(cookie);
...
req->... // A value read from I/O mapping is dereferenced

DMA I/O mappings

Write
cookie

Read
cookie

(fuzzed)

Driver Source Code

Kernel Address Leak (CVE-2018-11947)

38
cf) On Pixel 2, Syzkaller achieves on average 24 program executions per second (max: ~60).

(1 proc ADB-based configuration measured for a 15-min period)

Phone/Driver I/O
Mapping

Peak Throughput
(# of test inputs/sec)

Pixel 2 -
QCACLD-3.0

QC1 23.67
QC2 15.64
QC3 18.77
QC4 7.63

Galaxy S6 -
BCMDHD4358

BC1 9.90
BC2 14.28
BC3 10.49
BC4 15.92

• Fuzzing throughput is about 7~24
inputs/sec depending on the nature of
the I/O mapping being fuzzed.

• The number of page faults is the main
contributor. (e.g., 50 page faults per
iteration gives around 20 inputs/sec)

• Rooms for improvement. (Details in
the paper)

Fuzzing Throughput

• Minimizing the impact of shallow bugs
• All bugs found in less than 10,000 inputs
• Shallow bugs frequently hit, which causes system restarts (reboot takes

1 min)
• We had to manually disable subpaths rooted at bugs already found

• Improving throughput
• Slower than, for example, typical user-space fuzzing
• Possible optimizations and trade-offs outlined in the paper

39

Future Work

• Remote peripheral compromise poses a serious threat to OS kernel
security.

• PeriScope and PeriFuzz are practical dynamic analysis tools that can
analyze large, complex drivers along the hardware-OS boundary.

• PeriScope and PeriFuzz are effective at finding vulnerabilities along
the HW-OS boundary.

• Memory overreads/overwrites, address leak, null pointer dereferences,
reachable assertions, and double-fetch bugs

40

Conclusion

Q & A
Thank you!

Contact
Dokyung Song

Ph.D. Student at UC Irvine
dokyungs@uci.edu

41

mailto:dokyungs@uci.edu

