
REVERSE ENGINEERING WHATSAPP ENCRYPTION FOR CHAT
MANIPULATION AND MORE
Roman Zaikin – Security Researcher

Oded Vanunu – Head of Products and Vulnerability Research

WhatsApp as evidence in court

The Communication Flow

WhatsApp Cloud

WhatsApp Behind the Scenes

ENCRYPTION: Open Whisper System -> Signal -> WhatsApp

COMMUNICATION: WebSocket -> protobuf2 -> JSON

ENCRYPTION: Open Whisper System -> Signal -> WhatsApp

On November 18, 2014, Open Whisper Systems announced a partnership
with WhatsApp to provide end-to-end encryption by incorporating the Signal
Protocol into each WhatsApp client platform.

On April 5, 2016, WhatsApp and Open Whisper Systems announced that they had
finished adding end-to-end encryption to "every form of communication" on
WhatsApp, and that users could now verify each other's keys.

https://en.wikipedia.org/wiki/WhatsApp
https://en.wikipedia.org/wiki/End-to-end_encryption

COMMUNICATION: WebSocket -> protobuf2 -> JSON

The WebSocket API is an advanced technology that makes it possible to open a two-way
interactive communication session between the user's browser and a server without
having to poll the server for a reply.

The protobuf is a method of serializing structured data. It is useful in developing
programs to communicate with each other – think XML, but smaller, faster, and simpler.

JSON is a JSON

Is someone can decrypt the traffic?

WhatsApp Reversing Process
Before generating the QR code, WhatsApp Web generates a Public and Private Key that is used for
encryption and decryption Process

These keys were created by using curve25519_donna by using random 32 bytes.

In cryptography, Curve25519 is an elliptic curve offering 128 bits of security and designed for use with
the elliptic curve Diffie–Hellman (ECDH) key agreement scheme. It is one of the fastest ECC curves and
is not covered by any known patents

WhatsApp Reversing Process

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman

To decrypt the data we will start to create a decryption code. This will take the private key from
WhatsApp Web instead of the random bytes because we need to have the same keys in order to
decrypt the data:

self.private_key = curve25519.Private(“”.join([chr(x) for x in priv_key_list]))
self.public_key = self.private_key.get_public()

WhatsApp Reversing Process

Then, after scanning the QR code with the phone we have to take the generated secret:

WhatsApp Reversing Process

WhatsApp Reversing Process – Shared Secret

Then we have 2 interesting functions:
• setSharedSecret – This function divides the secret into slices and configure the shared secret.
• E.SharedSecret – This function uses two parameters which were the first 32 bytes and the private

key from the QR generation:

WhatsApp Reversing Process – Shared Secret

Next we have the expanded shared secret which is 80 bytes:

By diving in we can see that the function uses the HKDF, is a simple hmac key derivation function (KDF) function.

WhatsApp Reversing Process – Shared Secret

https://en.wikipedia.org/wiki/Key_derivation_function

WhatsApp Reversing Process – Shared Secret

We next have the hmac validation function which takes the expanded data as parameter ‘e’ and divides it into 3
parameters:

i – The first 32 bytes of shared_expended is the aes key
r – The next 32 bytes is the hmac
o – The last 16 bytes is the aes data part

WhatsApp Reversing Process – hmac_sha256

WhatsApp Reversing Process – hmac_sha256

Then the function HmacSha256 will be called with the parameter ‘r’ and it will sign the data with the parameter
‘s’, after that ‘n’ will receive the hmac verifier which will be compared to ‘r’(the hmac from extended shared
secret)

In python it will look like this:

check_hmac = HmacSha256(shared_expended[32:64], self.secret[:32] + self.secret[64:])
if check_hmac != self.secret[32:64]:

raise ValueError(“hmac mismatch”)

WhatsApp Reversing Process – hmac_sha256

WhatsApp Reversing Process – hmac_sha256

The last encryption related function in this block is ‘aesCbcDecrypt’ which uses two parameters:
• s – which is a concatenation between the last 16 bytes of the expanded shared secret and the data from byte

64 of the secret.
• i – which is the aes key.

WhatsApp Reversing Process – AES Keys

WhatsApp Reversing Process – AES Keys

1

2

This way we will get the AES Key ‘t’ and HMAC Key ‘n’

WhatsApp Reversing Process – AES Keys

WhatsApp Reversing Process – AES Keys

WhatsApp Reversing Process – Code
self.secret = None

self.private_key = None

self.public_key = None

self.shared_secret = None

self.shared_secret_ex = None

self.aes_key = None

self.private_key = curve25519.Private("".join([chr(x) for x in priv_key_list]))

self.public_key = self.private_key.get_public()

assert (self.public_key.serialize() == "".join([chr(x) for x in pub_key_list]))

self.secret = base64.b64decode(ref_dict["secret"])

self.shared_secret = self.private_key.get_shared_key(curve25519.Public(self.secret[:32]), lambda key: key)

self.shared_secret_ex = HKDF(self.shared_secret, 80)

check_hmac = hmac_sha256(self.shared_secret_ex[32:64], self.secret[:32] + self.secret[64:])

if check_hmac != self.secret[32:64]:

raise ValueError("hmac mismatch")

key_decrypted = aes_decrypt(self.shared_secret_ex[:32], self.shared_secret_ex[64:] + self.secret[64:])

self.aes_key = key_decrypted[:32]

self.mac_key = key_decrypted[32:64]

WhatsApp Reversing Process – protobuf data

By using the keys we can decrypt any incoming message, the decryption result will be
the protobuf message.

In order to deserialize the protobuf we have to create our mapping, based on whatsapp
protobuf that can be found in the file app:

WhatsApp Reversing Process – protobuf data

WhatsApp Reversing Process – protobuf data
This is a part of our
protobuf file:

Burp Extension

Accessing the Keys – Burp Extension Keys

Let’s start with WhatsApp Web. Before generating the QR code,
WhatsApp Web generates a Public and Private Key that is used for encryption and decryption

Accessing the Keys – Burp Extension Secret
After the QR code is created, after scanning it with a phone
We can send the following information to WhatsApp Web over a WebSocket.

The Extension

Decrypt the incoming data

conversation – This is the actual content which is sent.

participant – This is the participant that actually sent the content.

fromMe – This parameter indicates if I sent the data or someone else in

the group.

remoteJid – This parameter indicates to which group/contact the data is

sent.

id – The id of the data. The same id will appear in the phone databases.

Decrypt the incoming data

Decrypt the outgoing data

Decrypt the outgoing data

Decrypt the outgoing data

DEMO

Manipulation #1 – fake reply from someone in the group

Demo

ppt1_1.mp4
ppt1_1.mp4
demo1.mp4

Manipulation #2 – Fake reply to someone not in the group

Demo

Demo2.mp4

Manipulation #3 – Send a private message in group chat to a specific person

Attacker User 1 User 2

Demo

Demo3.mp4

Manipulation #4: send messages to myself

Demo

Demo3.mp4

THANK YOU!

