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Who we are

● @DamianoMelotti
● Security researcher @ Quarkslab
● Interested in low-level mobile 

security and fuzzing

● @max_r_b
● Security researcher 

& team leader @ Quarkslab
● Working on mobile and embedded 

software security

http://twitter.com/DamianoMelotti
http://twitter.com/max_r_b


What is Titan M?

● Security chip made by Google, 

for Pixel devices

● Implements critical security features

○ Keymaster/Strongbox, Weaver, AVB, etc.

● Client-server model

● Introduced to:

○ Mitigate side-channel attacks

○ Protect against hardware tampering
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Titan M specs

● Security chip based on ARM Cortex-M3
● Closed source but based on EC

○ An open source OS made by Google
○ Written in C and conceptually simple
○ No dynamic allocation

● Most of the code is divided into tasks
● SPI bus used to communicate with Android
● UART bus used for logs and minimalistic console
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Communication with the chip



Our previous work in 4 slides
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What we already did

Firmware 
reverse

Interact 
with the 
chip

Implemented some tools to interact with the chip

Sniff and send custom commands

● From Android using Frida

and our tool nosclient

● On this hardware level thanks to 

@doegox’s magic hands
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What we already did

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution
First code 
execution

Several vulnerabilities reported

● CVE-2021-0939: A memory leak allowing to reveal parts of the Boot ROM
● CVE-2021-1043: A downgrade issue allowing to flash any firmware

→ With a side effect: all the secrets are erased
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What we already did

Leaked various hidden parts of the firmware, including the Boot ROM

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution
First code 
execution
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What we show today

● Fuzzing is useful also against Titan M
○ Even on such contrainted target, we can get interesting results

● Two approaches
○ Black-box fuzzer vs emulation-based fuzzer

● Exploiting without debuggers or stack traces
● How a single software vulnerability can lead to

○ Code execution
○ Compromise of the security properties guaranteed by the chip
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Blackbox fuzzing



● Target: tasks
● Arbitrary messages with nosclient

○ Known format of the messages
○ We get a return code, and an actual response if successful

→ Mutate the message, check return code
○ If greater than 1, something happened
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Black Box fuzzing
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external/nos/host/generic/nugget/include/application.h 1

enum app_status {
  /* A few values are common to all applications */
  APP_SUCCESS = 0,
  APP_ERROR_BOGUS_ARGS, /* caller being stupid */
  APP_ERROR_INTERNAL,   /* application being stupid */
  APP_ERROR_TOO_MUCH,   /* caller sent too much data */
  APP_ERROR_IO,         /* problem sending or receiving data */
  APP_ERROR_RPC,        /* problem during RPC communication */
  APP_ERROR_CHECKSUM,   /* checksum failed, only used within protocol */
  APP_ERROR_BUSY,       /* the app is already working on a command */
  APP_ERROR_TIMEOUT,    /* the app took too long to respond */
  APP_ERROR_NOT_READY,  /* some required condition is not satisfied */
}

[1]: https://android.googlesource.com/platform/external/nos/host/generic/+/refs/tags/android-platform-12.1.0_r1/nugget/include/application.h#307

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/tags/android-platform-12.1.0_r1/nugget/include/application.h#307
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Implementation

● Plug libprotobuf-mutator2 in nosclient
○ Very straightforward
○ void Mutate(protobuf::Message* message, size_t max_size_hint);

● Basic corpus generation
○ Messages are quite simple
○ Start from empty ones, but add some non-trivial fields

● Store and triage inputs generating faulty states

[2]: https://github.com/google/libprotobuf-mutator

https://github.com/google/libprotobuf-mutator
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Results

Firmware: 2020-09-25, 0.0.3/brick_v0.0.8232-b1e3ea340
● 2 buffer overflows (1 exploited for code exec)
● 4 null pointer dereferences
● 2 unknown bugs causing a reboot

Firmware: latest (at the time), 0.0.3/brick_v0.0.8292-b3875afe2
● 2 null-ptr deref still make the chip crash
● Bug reported → not a vulnerability

All of this after a few minutes of fuzzing…
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Comments and limitations

✅ Bugs!
✅ Very simple to implement
✅ Decent performance: ~74 msg/sec
✅ Testing in real world

❌ Only “scratching the surface”
❌ Prone to false positives
❌ Detection is tricky

Bottom line: hard to know what’s going on the target
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Emulation-based fuzzing



● We know how the OS works
● We can leak arbitrary memory with an exploit on an old firmware

○ Helps setting up memory

● With emulation, we control what is executed
○ Good feedback for a fuzzer
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Switching to emulation-based



● Played with several frameworks
● Choice: Unicorn3

● Why?
○ Emulates CPU only
○ We do not care about full-system emulation
○ Easy to setup & tweak
○ Integrates nicely with AFL++
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Emulating Titan M

[3]: https://www.unicorn-engine.org/

https://www.unicorn-engine.org/


● AFL++ in Unicorn mode
○ Instrument anything that can be emulated with Unicorn
○ Fuzz with the classic AFL experience

● Once the emulator works, not much needs to be done
○ place_input_callback to copy input sample
○ Crashes detected at Unicorn errors (e.g. UC_ERR_WRITE_UNMAPPED)

● Custom mutators depending on needs
○ AFL_CUSTOM_MUTATOR_LIBRARY=<mutator.so>
○ AFL_CUSTOM_MUTATOR_ONLY=1 to use only that one
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Fuzzing with AFL++



● Pretty much anything!
● All you need is:

○ An entry point
○ Valid memory state
○ Registers set at the right values
○ One or more exit points

● Keep attack surface into account
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What to fuzz



● SPI rescue allows to flash new firmware
○ No password required
○ Wipes user data
○ Can be triggered from bootloader

● Firmware sent as rec file
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SPI rescue feature



● Are input files parsed and processed 
correctly?

● Input is structured
○ Let’s mutate it smartly :)

● We use FormatFuzzer4

○ Allows to generate and parse binary files
○ Follows the bt template format, from the 

010 editor
○ Requires a modified version of AFL++
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SPI rescue handler

[4]: https://github.com/uds-se/FormatFuzzer

… also this time, no bugs (but some interesting internals revealed)

https://github.com/uds-se/FormatFuzzer


● Tasks use protobuf
● Rely again libprotobuf-mutator

○ With some tricks to embed the message name in the bytes it generates

● Focused on Identity and Keymaster
○ The largest and most complex tasks
○ We fuzzed Weaver too, but it is not as interesting

● First, can we find the same bugs we know about?
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Going back to the tasks

Yes! (apart from one…)



● Emulation is not a silver bullet!
● Embedded targets → hw-dependant code everywhere…

○ Lots of hooks
○ Code that can’t be exercised
○ Especially true in system functions

● A bug doesn’t always make Unicorn crash
○ No ASAN-like instrumentation
○ In-page overflows, off-by-ones won’t be detected

● No full system emulation → miss some parts of code
○ No system state
○ The bug we missed makes the scheduler crash
○ … and we don’t emulate the scheduler 🙃
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There is no free lunch



● Much more capabilities compared to pure black-box
● A few heuristics we implemented:

○ Monitor consecutive reads in the Boot ROM → spot buggy memcpy
○ Hook accesses to specific global buffers
○ Even more specific ones on different commands

● At the same time, everything comes at a cost
○ Hooks impact performance
○ In our case, not a big deal due to very specific harnesses

29

Tweaks
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The vulnerability



● param_find_digests_internal
○ Checks DIGEST tags

in KeyParameter objects

● Out-of-bounds write of 1 byte to 
0x1
○ Can be repeated multiple times
○ Huge constraints on the offset

● Looks like a minor issue…
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CVE-2022-20233

message KeyParameter {
  Tag tag = 1;
  uint32 integer = 2;
  uint64 long_integer = 3;
  bytes blob = 4;
}

message KeyParameters {
  repeated KeyParameter params = 1;
}
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CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}
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CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
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    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}
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CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
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  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
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  *(undefined *)(buffer + *offset) = 1;
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  *param_4 = offset;
}

0xdeadbeef



35

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbeef
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CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbe??

00000???
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CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbe??

00000??0

 



● Multiple ways to reach the vulnerable code
○ A few different command handlers call it
○ Different base addresses for the OOB-write

● Titan M’s memory is completely static
○ All structures are always located at the same addresses

● Setting one byte can be enough to break the system
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What can we do?



● Generate all writable addresses
● Highlight them in Ghidra
● …🔍
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Our approach

KEYMASTER_SPI_DATA

c8 92 01 00

void * callback_addr

char * cmd_request_addr

char * cmd_response_addr



● Generate all writable addresses
● Highlight them in Ghidra
● …🔍
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Our approach

KEYMASTER_SPI_DATA

c8 01 01 00

void * callback_addr

char * cmd_request_addr

char * cmd_response_addr



KEYMASTER_SPI_DATA
● Global structure
● Stores info about SPI commands
● cmd_request_addr: where to store incoming Keymaster requests
● 0x192c8 → 0x101c8
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What to overwrite
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😈



● Remainder:
○ Communication through nosclient
○ Send request using Android libs
○ Get a return code and (maybe) a response
○ A few logs on logcat

● What if we crash the chip?
○ Error code 2

● That’s it
● Debugging an exploit is… challenging 
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But first…
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Accessing the UART

RX TX



 

● Allows basic 
interaction 

● Prints logs
○ Useful when 

exploiting
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UART console



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens
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So, what’s in 0x101c8?
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So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens
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So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing
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So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing
● What if we put a valid address at the end?
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So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing
● What if we put a valid address at the end?
● \o/
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So, what’s in 0x101c8?



 

● Our guess:
○ We are actually in the stack of a task (idle)
○ We overwrite a function pointer that was pushed to the stack
○ At some point, the function jumps back to it

● From here on, things get complex
○ No space to write a ROP chain there
○ We need to move $sp

● In the end, we send another command to complete the exploit
● Blogpost arriving soon :)
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Exploiting
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Impact

● Control the execution flow of the chip
○ We did not try to reconfigure the MPU
○ … but we can do pretty much anything using ROP

● We implemented again a leak command
○ This time based on a 0-day
○ Data is not erased by the downgrade like before!
○ We can leak all the secrets stored in the chip's memory
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Impact

Can we leak Strongbox keys?
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Strongbox

● StrongBox: hardware-backed version of Keystore

○ Generate, use and encrypt cryptographic material

● Titan M does not store keys

○ Key blobs encrypted with a Key Encryption Key

■ This KEK is derived in the chip from various internal elements

○ Key blobs are sent to the chip to perform crypto operations

○ root can use any key, but not extract it



56

Strongbox

There are 3 commands to use strongbox keys:
● BeginOperation

○ Contains the keyblob and the characteristics of the key
○ The chip will decrypt the keyblob
○ And save it for later into a fixed address

● UpdateOperation
○ Contains the data on which the operation is performed
○ Return the output bytes

● FinishOperation
○ Contains the data on which the operation is performed
○ Return the output bytes
○ End the operation
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Leak strongbox keys

Our strategy:
1. Get the keyblob from the device

○ Stored in /data/misc/keystore/persistent.sqlite

2. Forge a BeginOperation request
3. Leak the decrypted key from the chip memory 

“Live demo or it didn’t happen!”
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Conditions

● Ability to send commands to the chip
○ Being root
○ Or direct access to the SPI bus

● Access to the keyblobs
○ Being root
○ Or find a way to bypass FBE…
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Mitigation

KeyGenParameterSpec spec = new KeyGenParameterSpec.Builder("key_name",
   KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
        .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
        .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
        .setIsStrongBoxBacked(true)
        .setUserAuthenticationRequired(true)
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Conclusion
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Conclusion

● Titan M was an interesting target
○ Limited attack surface, but enough to expose some vulnerabilities

● With black box fuzzing, you easily get the surface bugs
● Emulation-based fuzzing is particularly effective of such target

○ Yet few tricks are required to optimize the results

● We found a critical 0-day
○ Allowed us to execute code on the chip
○ Permit to leak anything from the chip's memory

● A single software vulnerability is enough to leak strongbox keys



Tools & resources:
https://github.com/quarkslab/titanm

contact@quarkslab.com
@max_r_b
@DamianoMelotti

Thank you!

https://github.com/quarkslab/titanm
https://twitter.com/@max_r_b
https://twitter.com/@DamianoMelotti


Backup - EC Tasks

63

idle

hook
→ system events, timers

nugget    → system control task

AVB       → secure boot management

faceauth  → biometric data

identity  → identity documents support

keymaster → key generation and cryptographic operations

weaver    → storage of secret tokens

console   → debug terminal and logs



Backup - Communication with the chip
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package nugget.app.keymaster;
// ...
service Keymaster {
  // ...
  rpc AddRngEntropy (AddRngEntropyRequest) returns (AddRngEntropyResponse);
  rpc GenerateKey (GenerateKeyRequest) returns (GenerateKeyResponse);
  // ...

message AddRngEntropyRequest {
  bytes data = 1;
}
message AddRngEntropyResponse {
  ErrorCode error_code = 1;
}

message GenerateKeyRequest {
  KeyParameters params = 1;
  uint64 creation_time_ms = 2;
}

● Protobuf-based
○ Serialization framework by Google
○ Language agnostic
○ Titan M uses the nanopb library
○ Limited risk of input validation bugs

● Protobuf definitions are part of the AOSP



Backup - Command Handling Example on Titan M

uint32_t keymaster_AddRngEntropy (...,
    keymaster_AddRngEntropyRequest *request, ...,
    keymaster_AddRngEntropyResponse *response) {

  // ...

  iVar1 = pb_decode_ex(param_1,param_2,request,(uint)param_4);
  if (iVar1 == 0)
    return 1;

  km_add_entropy(request,response);
  iVar1 = pb_encode(param_4,param_5,response);

  return iVar1 == 0 ? 2 : 0;
}
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Firmware Security Measures

● No dynamic allocation → no UaF and similar
● Secure boot (images are signed and verified at boot)
● MPU to give permissions to the memory partitions

○ Custom interface to set the eXecute permission
○ No WX permissions by default

● Only software protection: hardcoded stack canary

66Backup - Firmware security
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Backup - Key Blob Structure
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KEK: SHA256(Root of Trust || salt || req1 || req2 || flash_bytes)
HMAC KEY: SHA256(Root of Trust || salt || flash_bytes)



● Thanks to the 1-day exploit, we leaked the Boot ROM
● A bug there would be disastrous
● Not much code to test (only 16 KB)
● Idea: fuzz the image loader

○ We could flash them with SPI rescue
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Backup - Fuzzing the Boot ROM

… no interesting results
● The function is simple, and not processing much
● Samples are just image headers
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Backup - Strongbox

KEKs are derived from a key ladder
● Still quite mysterious since we did not reverse it
● It uses

○ An internal root key
■ Not readable from the Titan M firmware

○ A Root Of Trust provided by the bootloader at first boot
○ A salt that is randomly generated when RoT is provisioned

→ We can leak most of the secrets, but not the key ladder root key


