
Damiano Melotti
Maxime Rossi Bellom

Attack on Titan M, Reloaded
Vulnerability Research 
on a Modern Security Chip



2

Who we are

● @DamianoMelotti
● Security researcher @ Quarkslab
● Interested in low-level mobile 

security and fuzzing

● @max_r_b
● Security researcher 

& team leader @ Quarkslab
● Working on mobile and embedded 

software security

http://twitter.com/DamianoMelotti
http://twitter.com/max_r_b


What is Titan M?

● Security chip made by Google, 

for Pixel devices

● Implements critical security features

○ Keymaster/Strongbox, Weaver, AVB, etc.

● Client-server model

● Introduced to:

○ Mitigate side-channel attacks

○ Protect against hardware tampering

3



4

Titan M specs

● Security chip based on ARM Cortex-M3
● Closed source but based on EC

○ An open source OS made by Google
○ Written in C and conceptually simple
○ No dynamic allocation

● Most of the code is divided into tasks
● SPI bus used to communicate with Android
● UART bus used for logs and minimalistic console



5

Communication with the chip



Our previous work in 4 slides



7

What we already did

Firmware 
reverse

Interact 
with the 
chip

Find vulns First code 
execution

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution



8

What we already did

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution

Interact 
with the 
chip

Find vulns First code 
execution



9

What we already did

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution



10

What we already did

Firmware 
reverse

Interact 
with the 
chip

Implemented some tools to interact with the chip

Sniff and send custom commands

● From Android using Frida

and our tool nosclient

● On this hardware level thanks to 

@doegox’s magic hands



11

What we already did

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution
First code 
execution

Several vulnerabilities reported

● CVE-2021-0939: A memory leak allowing to reveal parts of the Boot ROM
● CVE-2021-1043: A downgrade issue allowing to flash any firmware

→ With a side effect: all the secrets are erased



12

What we already did

Leaked various hidden parts of the firmware, including the Boot ROM

Firmware 
reversing

Interact 
with the 
chip

Find vulns First code 
execution
First code 
execution



13

What we show today

● Fuzzing is useful also against Titan M
○ Even on such contrainted target, we can get interesting results

● Two approaches
○ Black-box fuzzer vs emulation-based fuzzer

● Exploiting without debuggers or stack traces
● How a single software vulnerability can lead to

○ Code execution
○ Compromise of the security properties guaranteed by the chip



14

Blackbox fuzzing



● Target: tasks
● Arbitrary messages with nosclient

○ Known format of the messages
○ We get a return code, and an actual response if successful

→ Mutate the message, check return code
○ If greater than 1, something happened

15

Black Box fuzzing



16

external/nos/host/generic/nugget/include/application.h 1

enum app_status {
  /* A few values are common to all applications */
  APP_SUCCESS = 0,
  APP_ERROR_BOGUS_ARGS, /* caller being stupid */
  APP_ERROR_INTERNAL,   /* application being stupid */
  APP_ERROR_TOO_MUCH,   /* caller sent too much data */
  APP_ERROR_IO,         /* problem sending or receiving data */
  APP_ERROR_RPC,        /* problem during RPC communication */
  APP_ERROR_CHECKSUM,   /* checksum failed, only used within protocol */
  APP_ERROR_BUSY,       /* the app is already working on a command */
  APP_ERROR_TIMEOUT,    /* the app took too long to respond */
  APP_ERROR_NOT_READY,  /* some required condition is not satisfied */
}

[1]: https://android.googlesource.com/platform/external/nos/host/generic/+/refs/tags/android-platform-12.1.0_r1/nugget/include/application.h#307

https://android.googlesource.com/platform/external/nos/host/generic/+/refs/tags/android-platform-12.1.0_r1/nugget/include/application.h#307


17

Implementation

● Plug libprotobuf-mutator2 in nosclient
○ Very straightforward
○ void Mutate(protobuf::Message* message, size_t max_size_hint);

● Basic corpus generation
○ Messages are quite simple
○ Start from empty ones, but add some non-trivial fields

● Store and triage inputs generating faulty states

[2]: https://github.com/google/libprotobuf-mutator

https://github.com/google/libprotobuf-mutator


18

Results

Firmware: 2020-09-25, 0.0.3/brick_v0.0.8232-b1e3ea340
● 2 buffer overflows (1 exploited for code exec)
● 4 null pointer dereferences
● 2 unknown bugs causing a reboot

Firmware: latest (at the time), 0.0.3/brick_v0.0.8292-b3875afe2
● 2 null-ptr deref still make the chip crash
● Bug reported → not a vulnerability

All of this after a few minutes of fuzzing…



19

Comments and limitations

✅ Bugs!
✅ Very simple to implement
✅ Decent performance: ~74 msg/sec
✅ Testing in real world

❌ Only “scratching the surface”
❌ Prone to false positives
❌ Detection is tricky

Bottom line: hard to know what’s going on the target



20

Emulation-based fuzzing



● We know how the OS works
● We can leak arbitrary memory with an exploit on an old firmware

○ Helps setting up memory

● With emulation, we control what is executed
○ Good feedback for a fuzzer

21

Switching to emulation-based



● Played with several frameworks
● Choice: Unicorn3

● Why?
○ Emulates CPU only
○ We do not care about full-system emulation
○ Easy to setup & tweak
○ Integrates nicely with AFL++

22

Emulating Titan M

[3]: https://www.unicorn-engine.org/

https://www.unicorn-engine.org/


● AFL++ in Unicorn mode
○ Instrument anything that can be emulated with Unicorn
○ Fuzz with the classic AFL experience

● Once the emulator works, not much needs to be done
○ place_input_callback to copy input sample
○ Crashes detected at Unicorn errors (e.g. UC_ERR_WRITE_UNMAPPED)

● Custom mutators depending on needs
○ AFL_CUSTOM_MUTATOR_LIBRARY=<mutator.so>
○ AFL_CUSTOM_MUTATOR_ONLY=1 to use only that one

23

Fuzzing with AFL++



● Pretty much anything!
● All you need is:

○ An entry point
○ Valid memory state
○ Registers set at the right values
○ One or more exit points

● Keep attack surface into account

24

What to fuzz



● SPI rescue allows to flash new firmware
○ No password required
○ Wipes user data
○ Can be triggered from bootloader

● Firmware sent as rec file

25

SPI rescue feature



● Are input files parsed and processed 
correctly?

● Input is structured
○ Let’s mutate it smartly :)

● We use FormatFuzzer4

○ Allows to generate and parse binary files
○ Follows the bt template format, from the 

010 editor
○ Requires a modified version of AFL++

26

SPI rescue handler

[4]: https://github.com/uds-se/FormatFuzzer

… also this time, no bugs (but some interesting internals revealed)

https://github.com/uds-se/FormatFuzzer


● Tasks use protobuf
● Rely again libprotobuf-mutator

○ With some tricks to embed the message name in the bytes it generates

● Focused on Identity and Keymaster
○ The largest and most complex tasks
○ We fuzzed Weaver too, but it is not as interesting

● First, can we find the same bugs we know about?

27

Going back to the tasks

Yes! (apart from one…)



● Emulation is not a silver bullet!
● Embedded targets → hw-dependant code everywhere…

○ Lots of hooks
○ Code that can’t be exercised
○ Especially true in system functions

● A bug doesn’t always make Unicorn crash
○ No ASAN-like instrumentation
○ In-page overflows, off-by-ones won’t be detected

● No full system emulation → miss some parts of code
○ No system state
○ The bug we missed makes the scheduler crash
○ … and we don’t emulate the scheduler 🙃

28

There is no free lunch



● Much more capabilities compared to pure black-box
● A few heuristics we implemented:

○ Monitor consecutive reads in the Boot ROM → spot buggy memcpy
○ Hook accesses to specific global buffers
○ Even more specific ones on different commands

● At the same time, everything comes at a cost
○ Hooks impact performance
○ In our case, not a big deal due to very specific harnesses

29

Tweaks



30

The vulnerability



● param_find_digests_internal
○ Checks DIGEST tags

in KeyParameter objects

● Out-of-bounds write of 1 byte to 
0x1
○ Can be repeated multiple times
○ Huge constraints on the offset

● Looks like a minor issue…

31

CVE-2022-20233

message KeyParameter {
  Tag tag = 1;
  uint32 integer = 2;
  uint64 long_integer = 3;
  bytes blob = 4;
}

message KeyParameters {
  repeated KeyParameter params = 1;
}



32

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}



33

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}



34

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbeef



35

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbeef



36

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbe??

00000???



37

CVE-2022-20233

ldr.w   r1,[r2,#-0x4]
ldr     r3,[PTR_DAT_0005d808] ; 0x20005
cmp     r1,r3
bne     increment_loop_vars
ldr     r3,[r2,#0x0]
uxtb    r0,r3
cmp     r0,#0x4
bhi     error_exit
movs    r1,#0x1
lsl.w   r0,r1,r0
tst     r0,#0x15
beq     error_exit
strb    r1,[r7,r3]

if (((nugget_app_keymaster_KeyParameter *)(offset + -1))->tag ==
    0x20005) {
  masked = *offset & 0xff;
  if ((4 < masked) || ((1 << masked & 0x15U) == 0)) {
    return 0x26;
  }
  *(undefined *)(buffer + *offset) = 1;
  *param_3 = *param_3 + 1;
  *param_4 = offset;
}

0xdeadbe??

00000??0

 



● Multiple ways to reach the vulnerable code
○ A few different command handlers call it
○ Different base addresses for the OOB-write

● Titan M’s memory is completely static
○ All structures are always located at the same addresses

● Setting one byte can be enough to break the system

38

What can we do?



● Generate all writable addresses
● Highlight them in Ghidra
● …🔍

39

Our approach

KEYMASTER_SPI_DATA

c8 92 01 00

void * callback_addr

char * cmd_request_addr

char * cmd_response_addr



● Generate all writable addresses
● Highlight them in Ghidra
● …🔍

40

Our approach

KEYMASTER_SPI_DATA

c8 01 01 00

void * callback_addr

char * cmd_request_addr

char * cmd_response_addr



KEYMASTER_SPI_DATA
● Global structure
● Stores info about SPI commands
● cmd_request_addr: where to store incoming Keymaster requests
● 0x192c8 → 0x101c8

41

What to overwrite



42

😈



● Remainder:
○ Communication through nosclient
○ Send request using Android libs
○ Get a return code and (maybe) a response
○ A few logs on logcat

● What if we crash the chip?
○ Error code 2

● That’s it
● Debugging an exploit is… challenging 

43

But first…



44

Accessing the UART

RX TX



 

● Allows basic 
interaction 

● Prints logs
○ Useful when 

exploiting

45

UART console



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

46

So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

47

So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

48

So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing

49

So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing
● What if we put a valid address at the end?

50

So, what’s in 0x101c8?



 

● Data doesn’t seem to be used
● How do we hijack execution flow?
● Idea:

○ Send progressively bigger payloads
○ In parallel monitor the UART
○ … and see what happens

● At some point, the chip starts crashing
● What if we put a valid address at the end?
● \o/

51

So, what’s in 0x101c8?



 

● Our guess:
○ We are actually in the stack of a task (idle)
○ We overwrite a function pointer that was pushed to the stack
○ At some point, the function jumps back to it

● From here on, things get complex
○ No space to write a ROP chain there
○ We need to move $sp

● In the end, we send another command to complete the exploit
● Blogpost arriving soon :)

52

Exploiting



53

Impact

● Control the execution flow of the chip
○ We did not try to reconfigure the MPU
○ … but we can do pretty much anything using ROP

● We implemented again a leak command
○ This time based on a 0-day
○ Data is not erased by the downgrade like before!
○ We can leak all the secrets stored in the chip's memory



54

Impact

Can we leak Strongbox keys?



55

Strongbox

● StrongBox: hardware-backed version of Keystore

○ Generate, use and encrypt cryptographic material

● Titan M does not store keys

○ Key blobs encrypted with a Key Encryption Key

■ This KEK is derived in the chip from various internal elements

○ Key blobs are sent to the chip to perform crypto operations

○ root can use any key, but not extract it



56

Strongbox

There are 3 commands to use strongbox keys:
● BeginOperation

○ Contains the keyblob and the characteristics of the key
○ The chip will decrypt the keyblob
○ And save it for later into a fixed address

● UpdateOperation
○ Contains the data on which the operation is performed
○ Return the output bytes

● FinishOperation
○ Contains the data on which the operation is performed
○ Return the output bytes
○ End the operation



57

Leak strongbox keys

Our strategy:
1. Get the keyblob from the device

○ Stored in /data/misc/keystore/persistent.sqlite

2. Forge a BeginOperation request
3. Leak the decrypted key from the chip memory 

“Live demo or it didn’t happen!”



58

Conditions

● Ability to send commands to the chip
○ Being root
○ Or direct access to the SPI bus

● Access to the keyblobs
○ Being root
○ Or find a way to bypass FBE…



59

Mitigation

KeyGenParameterSpec spec = new KeyGenParameterSpec.Builder("key_name",
   KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
        .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
        .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
        .setIsStrongBoxBacked(true)
        .setUserAuthenticationRequired(true)



60

Conclusion



61

Conclusion

● Titan M was an interesting target
○ Limited attack surface, but enough to expose some vulnerabilities

● With black box fuzzing, you easily get the surface bugs
● Emulation-based fuzzing is particularly effective of such target

○ Yet few tricks are required to optimize the results

● We found a critical 0-day
○ Allowed us to execute code on the chip
○ Permit to leak anything from the chip's memory

● A single software vulnerability is enough to leak strongbox keys



Tools & resources:
https://github.com/quarkslab/titanm

contact@quarkslab.com
@max_r_b
@DamianoMelotti

Thank you!

https://github.com/quarkslab/titanm
https://twitter.com/@max_r_b
https://twitter.com/@DamianoMelotti


Backup - EC Tasks

63

idle

hook
→ system events, timers

nugget    → system control task

AVB       → secure boot management

faceauth  → biometric data

identity  → identity documents support

keymaster → key generation and cryptographic operations

weaver    → storage of secret tokens

console   → debug terminal and logs



Backup - Communication with the chip

64

package nugget.app.keymaster;
// ...
service Keymaster {
  // ...
  rpc AddRngEntropy (AddRngEntropyRequest) returns (AddRngEntropyResponse);
  rpc GenerateKey (GenerateKeyRequest) returns (GenerateKeyResponse);
  // ...

message AddRngEntropyRequest {
  bytes data = 1;
}
message AddRngEntropyResponse {
  ErrorCode error_code = 1;
}

message GenerateKeyRequest {
  KeyParameters params = 1;
  uint64 creation_time_ms = 2;
}

● Protobuf-based
○ Serialization framework by Google
○ Language agnostic
○ Titan M uses the nanopb library
○ Limited risk of input validation bugs

● Protobuf definitions are part of the AOSP



Backup - Command Handling Example on Titan M

uint32_t keymaster_AddRngEntropy (...,
    keymaster_AddRngEntropyRequest *request, ...,
    keymaster_AddRngEntropyResponse *response) {

  // ...

  iVar1 = pb_decode_ex(param_1,param_2,request,(uint)param_4);
  if (iVar1 == 0)
    return 1;

  km_add_entropy(request,response);
  iVar1 = pb_encode(param_4,param_5,response);

  return iVar1 == 0 ? 2 : 0;
}

65



Firmware Security Measures

● No dynamic allocation → no UaF and similar
● Secure boot (images are signed and verified at boot)
● MPU to give permissions to the memory partitions

○ Custom interface to set the eXecute permission
○ No WX permissions by default

● Only software protection: hardcoded stack canary

66Backup - Firmware security

66



Backup - Key Blob Structure

67

KEK: SHA256(Root of Trust || salt || req1 || req2 || flash_bytes)
HMAC KEY: SHA256(Root of Trust || salt || flash_bytes)



● Thanks to the 1-day exploit, we leaked the Boot ROM
● A bug there would be disastrous
● Not much code to test (only 16 KB)
● Idea: fuzz the image loader

○ We could flash them with SPI rescue

68

Backup - Fuzzing the Boot ROM

… no interesting results
● The function is simple, and not processing much
● Samples are just image headers



69

Backup - Strongbox

KEKs are derived from a key ladder
● Still quite mysterious since we did not reverse it
● It uses

○ An internal root key
■ Not readable from the Titan M firmware

○ A Root Of Trust provided by the bootloader at first boot
○ A salt that is randomly generated when RoT is provisioned

→ We can leak most of the secrets, but not the key ladder root key


