
Quo Vadis: Hybrid Machine Learning Meta-Model
based on Contextual and Behavioral Malware

Representations
Dmitrijs Trizna
d.trizna@pm.me

Microsoft

Abstract
We propose a hybrid machine learning architecture that
simultaneously employs multiple deep learning models ana-
lyzing contextual and behavioral characteristics of Windows
portable executable, producing a final prediction based on
a decision from the meta-model. The detection heuristic in
contemporary machine learning Windows malware classi-
fiers is typically based on the static properties of the sample
since dynamic analysis through virtualization is challenging
for vast quantities of samples. To surpass this limitation, we
employ a Windows kernel emulation that allows the acquisi-
tion of behavioral patterns across large corpora withminimal
temporal and computational costs. We partner with a secu-
rity vendor for a collection of more than 100k int-the-wild
samples that resemble the contemporary threat landscape,
containing raw PE files and filepaths of applications at the
moment of execution. The acquired dataset is at least ten
folds larger than reported in related works on behavioral
malware analysis. Files in the training dataset are labeled
by a professional threat intelligence team, utilizing manual
and automated reverse engineering tools. We estimate the
hybrid classifier’s operational utility by collecting an out-
of-sample test set three months later from the acquisition
of the training set. We report an improved detection rate,
above the capabilities of the current state-of-the-art model,
especially under low false-positive requirements. Addition-
ally, we uncover a meta-model’s ability to identify malicious
activity in both validation and test sets even if none of the
individual models express enough confidence to mark the
sample as malevolent. We conclude that the meta-model can
learn patterns typical to malicious samples out of representa-
tion combinations produced by different analysis techniques.
Furthermore, we publicly release pre-trained models and
anonymized dataset of emulation reports.

CCS Concepts: • Security and privacy→Malware and
its mitigation; • Computing methodologies→ Neural
networks; • Hardware → Simulation and emulation.

Keywords: malware, emulation, neural networks, convolu-
tions, reverse engineering

1 Introduction
Machine learning (ML) algorithms have become essential
to malicious software (malware) detection in conventional
cybersecurity intrusion prevention systems. Such systems
can learn common patterns across a vast malware dataset,
obtaining a predictive power to classify previously unseen
malicious samples. However, there is evidence that contem-
porary state-of-the-art models lack epistemic capacity due
to limited contextual and behavioral awareness [15] since
they mostly rely on representations acquired from static
properties of the executable files [3, 21].
Human-produced malware analysis typically is based on

static and dynamic properties of sample [29]. Static evalu-
ation of malicious specimen provides readily available yet
limited insights on its functionality, usually surpassed by
a dynamic analysis through sample “detonation” in a con-
trolled environment. However, the collection of Windows
portable executable (PE) behavioral patterns through dy-
namic analysis sufficient for ML algorithms, especially if
based on deep learning architectures, poses a significant
challenge due to the computational burden of virtualization
technology and the necessity to revert operating system
setup from the contamination after malware detonation.

We perform dynamic analysis withmalware-orientedWin-
dows kernel emulator [18], thus achieving high analysis rates
compared to virtualization. Because of data heterogeneity,
we consider a composite solution with multiple individual
pre-trained modules and a meta-model rather than building
a single feature vector with end-to-end trainable architec-
ture. This architecture allows extending the modularity of
the decision heuristic with minimal efforts by retraining only
a meta-model. In the scope of this publication assessment
of hybrid ML architecture relied on three distinct analysis
techniques:

• contextual information in the form of a file path on a
system at the moment of execution;

• sample behavior expressed as a sequence of Windows
kernel API calls;

• static representations obtained from the Windows PE
structure.

We expect further work on additional behavioral mod-
els like network or filesystem telemetry analysis. There-
fore, we release an anonymized emulation dataset publicly.



Trizna

The lack of publication artifacts is a notorious drawback
in any research and contributes to science’s reproducibility
crisis. Hence we disclose1 the source code and pre-trained
PyTorch [19], and scikit-learn [25] models, as well as pro-
vide scikit-learn-like [20] API for our model adhering
to widely adopted interface of a machine learning objects.
To our knowledge, we are the first in the security research
community to publish a model that incorporates a single
decision heuristic based on (a) contextual, (b) static, and (c)
dynamic properties of the PE file.
We collect an out-of-sample dataset three months after

model training. We acknowledge that malware classifica-
tion based on hybrid representations of software yields im-
proved detection performance and reduced false-positive
rates against the evolving nature of malevolent logic com-
pared to any individual method capabilities.
This article is structured as follows - Section 2 reviews

related work, Section 3 describes dataset and its collection
specifics, Section 4 covers architecture of hybrid architecture
and data preprocessing, Section 5 reports performance of
our model, Sections 6 draws conclusions from empirical
observations and outlines future work options.

2 Related Work
Since the idea of malware detection using ML techniques
was introduced by Schultz et al. [26], the field in research and
industry has grown significantly. The prevailing part of ML
malware classification is based on static analysis techniques,
ML heuristics are applied to representations acquired from
fixed properties of malware files [28, 31]. One of the first
neural network applications for malware classification was
shown by Raff et al. [21] who presented a MalConv model -
a "featureless" Deep Neural Network (DNN) that reads raw
bytes of executable and proceeds with embeddings and one-
dimensional convolution.
Gradient Boosted Decision Tree (GBDT) models achieve

notable success in malware classification, specifically the
approach introduced by Anderson et al. [3]. Their work is
meant to provide a benchmark dataset based on specific, pre-
extracted properties frommalware files, thus the title: EMBER
(Endgame Malware BEnchmark for Research). At the same
time, the paper includes an evaluation of LightGBM [12]
model performance, describing an approach that employs
a clever feature engineering phase. Ember representations
incorporate domain knowledge into many effective static
characteristics of PE files, becoming a de facto standard for
static feature extraction from PE files in modern malware
classification research. An interesting approach is shared by
Rudd et al. [24], which utilizes Ember representation vectors
to train a feed-forward neural network (FFNN).
ML algorithms are proven fruitful by utilizing dynamic

analysis telemetry from malware "detonation" in a sandbox.

1https://github.com/dtrizna/quo.vadis

Generally, dynamic PE analysis methods use API call teleme-
try to represent PE activity. Rosenberg et al. [23] construct a
one-hot encoded vector out of encountered API calls. This
approach is the simplest possible and ignores API sequences.
Kolosnjaji et al. [14] showed that it is possible to perform
API call processing to preserve sequential information. An-
other example is described by Yen et al. [33], who obtain a
behavioral representation based on API call frequency.
The hybrid analysis allows to surpass the limitations of

each malware analysis method, and several security research
groups provided insights on utilizing the hybrid approach
with ML algorithms. For example, Shijo and Salim [27] doc-
ument a way to construct a feature vector leveraging data
from static and dynamic analysis techniques and processed
by a single ML model. On the contrary, Ma et al. [17] use an
ensemble of different classifiers to perform a hybrid analy-
sis, similarly to modeling techniques proposed in our work,
building separate feature sets from static and dynamic anal-
ysis telemetry.
Observing malware in a sandbox is costly in terms of

required computational resources and execution time. There-
fore, it is hard to collect dynamic analysis telemetry in quan-
tities beneficial for most ML algorithms, especially based
on deep learning architectures, with conclusions that gen-
eralize well across the true distribution of malicious sample
properties. For instance, Shijo and Salim [27] evaluate their
technique on 997 virus and 490 clean files, Ma et al. [17]
use 282 samples, Kolosnjaji et al. [14] have a dataset of 4753
executables, Yen et al. [33] use 4519 files.
Emulators do not require to mobilize full-fledged operat-

ing system operations, as they allow getting vast amounts of
telemetry reasonably fast, without the need for virtualization
infrastructure. Therefore, the utilization of emulators as a
telemetry source of ML models for dynamic malware analy-
sis research is promising yet not commonly adopted. To our
knowledge, the first occurrence of emulator utilization for
system call collection was reported by Athiwaratkun and
Stokes in 2017 [4]. Their model resembles recurrent schemes
used in Natural Language Processing (NLP). This work is
further developed by Agrawal et al. [2] who present a similar
architecture adopted for arbitrary long API call sequences ac-
quired with the help of an emulator. Mandiant’s data science
team performs promising research with emulation-based
dynamic analysis. Specifically, Li et al. [16] provides an ex-
tended abstract that reports utilization of emulator [18] for
hybrid analysis with architecture similar to ours.

The sparsity of work on emulation-based behavior analy-
sis is due to their limitations. Emulation is an abstraction on
top of the operating system where the emulator runs, and no
direct interaction with hardware happens. Theoretically, the
perfect emulator could spoof the logic behind any system
call. Nonetheless, kernels like Windows NT incorporate mas-
sive functionality, yielding the implausible achievement of
one-to-one replicas. Hence real-world emulators implement

Preprint — do not distribute.

https://github.com/dtrizna/quo.vadis


Hybrid Machine Learning Meta-Model

only a subset of all possible kernel manipulations, and sophis-
ticated malware samples can identify a limited emulation
environment, preventing detailed behavior analysis.

We report a detailed error rate and data diversity compar-
ison to related virtualization-based work datasets in Section
3.2. We argue that modern Windows kernel emulation has
a vast potential in ML malware detectors based on empir-
ical evidence. Emulation reports produce rich and diverse
telemetry, bypassing static analysis limitations. It contains a
sequence of kernel API calls invoked by the executable and
describes manipulations with files or registry entries and
attempted network communications.

3 Dataset
The functionality of a hybrid solution presented in this work
is based on input data consisting of both (a) armed PE files
suitable for dynamic analysis and (b) contextual filepath
information. The necessity to acquire contextual data yields
impossible the utilization of public data collections since for
every data sample we need to possess both raw PE bytes and
filepath data on an in-the-wild system.

To the best of our knowledge, none of the known datasets
provide contextual information about PE sampleswith filepath
values at the moment of file execution. For example, Kyadige
and Rudd et al. [15] rely on a proprietary Sophos’ threat in-
telligence feed and do not release their dataset publicly. The
private nature of contextual data is understandable since
such telemetry would contain sensitive components, like
directories on personal computers.

Therefore, we partner with an undisclosed security vendor
for a vast dataset collection, containing both raw PE files
and filepaths of samples from personal customer systems
that would resemble an up-to-date threat landscape. Data is
treated with respect to the privacy policy accepted by all cus-
tomers. Therefore, we do not publicly release the file path
and raw PE dataset. Sensitive data components like user-
names or custom environment variables are from telemetry
during the pre-processing stage and have not been resembled
within model parameters or emulation reports.

3.1 Dataset structure
We collect the dataset in two sessions. The first session forms
the foundation of our analysis, consisting of 98 966 samples,
329 GB of raw PE bytes. 80% of this corpus is used as a
fixed training set, and 20% form an in-sample validation set.
We pre-train models and investigate our hybrid solution
configuration using this data.
The second dataset acquisition session occurred three

months later, forming an out-of-sample test set from 27 500
samples, about 100 GB of data. This corpus is used to evalu-
ate the real-world utility of the hybrid model and investigate
model behavior on the evolved malevolent landscape.

The PE files in the dataset are tagged by a professional
threat intelligence team, utilizing manual and automated
reverse engineering tools operated by the malware analysts.
The dataset spans seven malware families and benignware,
with detailed distribution parameters described in Table 1.
All labels except “Clean” represent malicious files. There-
fore, we collected relatively more “Clean” samples to balance
malicious and benign labels in the dataset.

Table 1. Dataset structure and size.

Train & valid. sets Test set
File label Size (Gb) Counts Size (Gb) Counts
Backdoor 30.0 11089 7.4 2500
Clean 127.0 26061 47.0 10000

Coinminer 46.0 10044 11.0 2500
Dropper 36.0 11275 9.0 2500
Keylogger 34.0 7817 9.8 2500
Ransomw. 14.0 10014 4.6 2500

RAT 5.5 9537 2.5 2500
Trojan 40.0 13128 7.1 2500
Total 329 98966 98 27500

Since most malware is compiled as x86 binaries, we focus
on 32-bit (x86) images and deliberately skip the collection of
64-bit (x64) images to maintain homogeneity and label bal-
ance of the dataset. Furthermore, malware authors prefer x86
binaries because of Microsoft backward compatibility, which
allows to execution of 32-bit binaries on a 64-bit system,
but not vice versa. The dataset is formed out of executables
(.exe), and we intentionally omit library PE files (.dll).

3.2 Sample emulation
All the samples represented in Table 1 were processed with a
Windows kernel emulator. We utilize Speakeasy [18] Python-
based emulator released and actively maintained by Mandi-
ant under MIT license. The Speakeasy version used in our
tests is 1.5.9. It relies on QEMU [6] CPU emulation frame-
work. We obtained 108204 successful emulation reports,
with a mean runtime of 12.23 seconds per report, emulating
90857 samples from training and validation sets, and 17347
samples in the test set.
Unfortunately, some sample emulations were erroneous,

primarily due to an invalid memory read of write assembly
instructions. However, another common reason for emula-
tion errors is a call of unsupported API function or anti-
debugging techniques. Figure 1 shows the error rate across
different malware families.
Speculatively, one of the potential drawbacks of the em-

ulated dataset might be its relative sparsity if compared to
the live execution of samples in a sandbox. However, empir-
ical evidence shows that our dataset is more diverse than
reported by other groups performing similar data acquisition

Preprint — do not distribute.



Trizna

benign trojan dropper backdoor ransomware rat coinminer keylogger
0

5000

10000

15000

20000

25000

Emulation success and error counts per malware family
success
errors

total
0.0

0.2

0.4

0.6

0.8

1.0

Ratio

Figure 1. PE emulation error distribution across malware families in in-sample training and validation sets.

Table 2. Dataset diversity preserved and in-sample validation set’s F1-score based on choice of top API calls.

Top API calls 100 150 200 300 400 500 600 700
Dataset % 95.53 97.67 98.73 99.48 99.74 99.85 99.91 99.94

Val. F1-score 0.9707 0.9712 0.9725 0.9740 0.9752 0.9747 0.9759 0.9754

using full Windows system virtualization. For instance, we
acquire 2822 unique API calls within training and validation
dataset reports. This behavior is significantly more hetero-
geneous than in related work datasets - Athiwaratkun and
Stokes [4] have a total of 114 unique API calls, Kolosnjaji et
al. [14] report 60 unique API calls, Yen et al. [33] have 286
different API calls, Rosenberg et al. [23] have 314 individual
API calls. Partially such observation can be described by the
larger volume of our dataset since the number of unique calls
positively correlates with the number of samples. However,
we emphasize this as evidence of emulation technique effi-
ciency. Emulation reports produce rich and diverse telemetry,
equivalent by quality to sandboxing for dynamic analysis
purposes.

4 System Architecture
A general overview of the hybrid model architecture is vi-
sualized in Figure 2. The composite architecture consists of
multiple independent models 𝜙 , that are “fused” together for
a final decision produced by a meta-model 𝜓 . Three early
fusion models 𝜙 are:

• file-path 1D convolutional neural network (CNN), 𝜙 𝑓 𝑝

• emulated API call sequence 1D CNN, 𝜙𝑎𝑝𝑖
• FFNN model processing Ember feature vector, 𝜙𝑒𝑚𝑏

Each early fusion model reports a 128-dimensional vector
of representations acquired from input data. Furthermore,
all three models’ outputs are concatenated together forming
an 384-dimensional vector. Therefore, given an input sample
𝑥 , consisting of raw PE as bytes and its filepath as string,
early fusion pass collectively is denoted as:

𝜙 (𝑥) = [𝜙 𝑓 𝑝 , 𝜙𝑎𝑝𝑖 , 𝜙𝑒𝑚𝑏] ∈ [0, 1]384

The intermediate vector 𝜙 (𝑥) is passed to a meta-model
𝜓 , which produces the final prediction:

𝑦 = 𝜓 (𝜙 (𝑥)) ∈ [0, 1]
All early fusion networks are pre-trained separately with

detailed definition of model configurations and training pro-
cess in Section 4.3. We want to emphasize that decision to
construct a modular system with multiple individually pre-
trained components instead of building a single end-to-end
trainable architecture is deliberate. First of all, it is shown
by Yang et al. [32] that composite neural networks with a
high probability surpass the performance of individual pre-
trained components.
However, the main reason is the vast potential for ex-

panding a hybrid decision heuristic with complementary
modules by only retraining a meta-model. Malicious activ-
ity classification problem relies on highly heterogeneous

Preprint — do not distribute.



Hybrid Machine Learning Meta-Model

information sources, beyond raw PE bytes, and such archi-
tecture preserves ability on adding heuristics that rely on
system logging. At themoment of this publicationwe already
incorporate filepath information, that can be acquired, for in-
stance, from Sysmon2 telemetry. However, knowledge from
within Sysmon data or Speakeasy reports can be extracted
further.

4.1 API Call Preprocessing
To acquire a numeric value of API call sequences, we select
the top most common calls based on variable vocabulary size
𝑉 . Preserved API calls are label-encoded, and calls that are
not part of the vocabulary are replaced with a dedicated label.
The final sequence is truncated or padded using a padding
label to a fixed length 𝑁 .
Table 2 shows the statistics behind dataset diversity and

respective model performance. Even though 100 most com-
mon calls contain more than 95% API calls within a dataset,
experiments show that themodel still benefits from relatively
large vocabulary size values, so we have chosen 𝑉 = 600
for our final configuration. This observation might be ex-
plained by the distribution of API calls per sample. Verbose
executables with hundreds of calls bias system call frequency,
whereas executables with modest API sequences perform
more unique function combinations.

4.2 Path Preprocessing
The first part of path pre-processing includes path normaliza-
tion since some parts of filepath semantics have variability
that is irrelevant for security analysis through the deep learn-
ing model. These include specific drive letters or network
location if a universal naming convention (UNC) format is
used, as well as individual usernames. Therefore, during nor-
malization, we introduced universal placeholders for those
path components as presented below:

[drive]\users\[user]\desktop\04-ca\8853.vbs
[drive]\users\[user]\appdata\local\file.tmp
[net]\company\priv\timesheets\april2021.xlsm

Additionally, it is necessary to parse Windows environ-
ment variables to resemble the actual filepath rather than
the environment alias used as a variable name. Therefore, we
built a variable map consisting of about 30 environment vari-
ables that represent specific paths on a system and are used
across contemporary and legacy Windows systems. Some
examples of a variable map are presented below:

r"%systemdrive%": r"[drive]",
r"%systemroot%": r"[drive]\windows",
r"%userprofile%": r"[drive]\users\[user]"
...

We perform the encoding of unique letters against the
UTF-8 character set. A similar approach was used by Saxe et

2https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

al. [25] when evaluating URL maliciousness, and by Kyadige
and Rudd et al. [15] on a filepath data, using 100 and 150 most
frequent UTF-8 bytes, respectively. Rare characters below a
frequency threshold are discarded and replaced by a single
dedicated label.

4.3 Early Fusion Model Architectures
As mentioned in Section 3, we cannot rely on publicly re-
leased malware collections since the model requires con-
textual information in the form of filepaths at the moment
of execution, which is not available publicly. Therefore, to
preserve the ability of assessmentmodel performance in com-
parison to existing research, we can rely only on malware
classification models released with pre-trained parameters
by other research groups, with further evaluation of those
on our dataset. Unfortunately, none of hybrid or dynamic
analysis publications [14, 17, 23, 27, 33] provide such arti-
facts.

Luckily, multiple static analysis publications were accom-
panied by artifacts in the form of the code repositories [3, 21,
24]. For instance, it is possible directly use Ember LightGBM
[12] model, pre-trained on Ember dataset [3] as released in
2019 by Endgame3. However, we do not include this model
in our composite solution since the decision tree model does
not learn representations that can be used by themeta-model,
providing only final prediction in scalar form. We still rely
on Ember feature extraction scheme [3], but use a FFNN as
published by Rudd et al. [24] with three hidden layers or 512,
512, and 128 hidden neurons respectively, all using ELU [9]
non-linearity, with layer normalization [5] and dropout [30]
rate 𝑝 = 0.05. We retrained FFNN for 200 epochs on 600k
feature vectors from Ember training set [3] and 72k samples
from our training set.
The analysis of file path and API call sequences can be

formulated as a related optimization problem, namely the
classification of a 1-dimensional (1D) sequence. We utilize
similar neural architecture in both models influenced by
Kyadige and Rudd et al. [15], namely embedding layer with
a 1D convolutional neural network (CNN) for representation
extraction and a fully connected neural network learning
classifiers function. We are aware of multiple choices to
model sequence classification problems with alternate archi-
tectures, such as recurrent neural networks (RNN) [8, 10].
However, as shown in related work on API call sequence
classification, both model architectures report similar perfor-
mance [14, 23], yet it is shown that 1D CNN is significantly
less computationally demanding [34].
Encoded input vector 𝑥 with fixed length 𝑁 is provided

to embedding layer with dimensions 𝐻 and vocabulary size
𝑉 . These parameters are subject to hyperparameter opti-
mization. The optimal values for file path model obtained
by hyperparameter optimization on validation set are: input

3https://github.com/endgameinc/malware_evasion_competition

Preprint — do not distribute.

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://github.com/endgameinc/malware_evasion_competition


Trizna

File Path

Portable
Executable

Emulation
Report

64

File path
embedding

1024

512

256
128

96

API call sequence
embedding

1024

512

256
128

Ember features

2381

512 512

128

384
Meta
model

Prediction

Convolutional
layer

Pooling
layer

Dense
layer Concatenation

Figure 2. General view of hybrid model architecture with three separate modules.

vector 𝑥 𝑓 𝑝 length 𝑁 = 100, embedding dimension 𝐻 = 64,
vocabulary size𝑉 = 150. Respective values for emulated API
call sequence model are: input vector 𝑥𝑒𝑚 length 𝑁 = 150,
embedding dimension 𝐻 = 96, and vocabulary size 𝑉 = 600.
The vocabulary of the file path model is formed out of the
most common UTF-8 bytes, and for the API call sequences
model, the most common system calls are selected. Both
vocabularies are enriched with two labels used for padding
and rare characters.

The output of the embedding layer is passed to four sepa-
rate 1D convolution layers with kernel sizes of 2, 3, 4, and 5
characters, and the number of output channels𝐶 = 128.With
lower 𝐶 values model underperforms. For instance, having
𝐶 = 64 file path’s module validation set F1-score is as low as
0.962, while with 𝐶 ∈ {100, 128, 160} scores plateau around
0.966.

The output of all four convolution layers is concatenated to
a vector of size 4× 𝐶 and passed to a FFNN with four hidden
layers holding 1024, 512, 256, and 128 neurons. Hidden layers
of FFNN are activated using rectified linear unit (ReLU) [1].
The final layer uses a sigmoid activation. Batch normalization
[11] is applied to hidden layers of FFNN before the ReLU

activation. Additionally, to prevent overfitting, dropout [30]
with a 𝑝 = 0.5 rate is applied.

All early fusion networks are fitted using binary cross-
entropy loss function:

𝐿(𝑥,𝑦;𝜃 ) = −𝑦 log(𝜙 (𝑥 ;𝜃 )) + (1 − 𝑦) log(1 − 𝜙 (𝑥 ;𝜃 )) .

𝜙 (𝑥 ;𝜃 ) denotes function approximated by deep learning
model given parameters 𝜃 , and 𝑦 ∈ {0, 1} are the ground-
truth labels. Optimization is performed using Adam opti-
mizer [13] with 0.001 learning rate and fixed batch size of
1024 samples. We constructed both 1D convolutional net-
works, Ember FFNN, and training routine using PyTorch [19]
deep learning library.

4.4 Meta-Model
The output of early fusion models 𝜙 (𝑥) is used to train the
meta-model𝜓 . Three different architectures types were eval-
uated, Logistic Regression and FFNN were implemented us-
ing scikit-learn library [20], and gradient boosted deci-
sion tree classifier based on xgboost [7] implementation.

Preprint — do not distribute.



Hybrid Machine Learning Meta-Model

0.01 1 100 250 500 1000 2500 5000 10000
False positive rate (FPR), x in 105

ember

filepaths

emulation

filepaths &
emulation

ember &
emulation

ember &
filepaths

ember &
filepaths &
emulation

M
od
ul
es

56.86 56.86 56.86 59.92 68.75 78.58 87.03 92.36 96.52

33.31 33.31 33.31 40.09 51.33 62.27 75.45 86.43 91.49

10.24 10.24 33.89 36.24 38.96 50.51 63.98 70.19 74.44

77.36 77.36 77.36 77.36 77.36 78.34 88.87 92.32 95.07

67.26 67.26 67.26 67.26 67.26 73.53 76.98 79.30 82.91

84.55 84.55 84.55 84.55 84.55 84.55 90.48 93.28 94.91

86.28 86.28 86.28 86.28 86.28 87.78 92.70 94.18 95.83

Detection rate (%) with fixed false positive rate (FPR)

20

30

40

50

60

70

80

90

Figure 3. Detection rate (%) on out-of-sample test set with fixed false positive rate based on different combinations of enabled
modules in hybrid solution.

Table 3. In-sample validation set metrics assessed against various meta-model architectures.

Model AUC F1-score Recall Precision Accuracy Convergence
time

LR 0.9987 0.9898 0.9876 0.9920 0.9853 2.52 s
GBDT 0.9986 0.9864 0.9867 0.9862 0.9803 34.92 s

FFNN, 2 layers 0.9973 0.9903 0.9884 0.9923 0.9860 14.30 s
FFNN, 3 layers 0.9965 0.9900 0.9882 0.9918 0.9855 24.52 s
FFNN, 4 layers 0.9957 0.9904 0.9881 0.9926 0.9861 57.48 s
FFNN, 5 layers 0.9954 0.9901 0.9889 0.9913 0.9857 36.73 s

Since meta-model 𝜓 performs a relatively complex non-
linear mapping [0, 1]384 → [0, 1], based on performance
metrics from Table 3 we conclude that the fused classification
surface is not smooth and presents combinations that utilizes
representations from all three feature extraction methods for
final decision, which simple models like Logistic Regression
are not able to learn. We selected a four layer FFNN with
384, 128, 64, and 16 neurons as a meta-model for our final
evaluations since it has close to optimal scores.

5 Experiments and Results
Experiments show that simultaneous utilization of static, dy-
namic, and contextual information yields significantly better
detection rates than individual model performance, espe-
cially under low false positive requirements. Such demands
are commonly expressed toward machine learning solutions
in the security industry. Solutions that do not match low
false positive needs are often not allowed to produce alerts
for human analysts [22].
Detection rates (%) given fixed false-positive rate (FPR)

for the out-of-sample test set are visualised in Figure 3. For

Preprint — do not distribute.



Trizna

Table 4. Hybrid solution final metrics on validation and
test sets with enabled Ember FFNN, API call sequence, and
filepath modules using decision threshold of meta-model
0.98.

Metric Valid. set Test set
F1-score 0.9900 0.9483
Recall 0.9865 0.9167

Precision 0.9934 0.9822
Accuracy 0.9855 0.9459
AUC 0.9847 0.9485

instance, setting an alert threshold with FPR of only 100 mis-
classifications in 105 cases, individual model detection rates
are 56.86%, 33.31%, and 33.89% for Ember FFNN, filepath, and
emulation models respectively. However, by combining rep-
resentations learned from all three processing techniques,
the hybrid solution can correctly classify 86.28% from all
samples in the test set collected three months after training.
Surprising observations produce filepath and emulation

models. Both models individually perform relatively poorly,
especially if compared to ember FFNN. A potential explana-
tion behind this observation is the ember FFNN training set
consisting of 600k feature vectors from the original Ember
publication [3]. Such training corpora produce a much better
generalization of "true" malicious PE distribution than our
100k samples reflecting threat landscape in a specific time
window.

However, under low false-positive requirements, just a
combination of filepath and emulation model, omitting static
analysis, outperforms the state-of-the-art Ember feature ex-
traction scheme trained on a much broader dataset, with
detection rates 77.36% versus 55.86% given FPR of one sam-
ple in 105.
Moreover, combining both models result in a detection

rate above the cumulative capabilities of individual mod-
els, highlighting the hybrid meta-model’s superiority over
narrow solutions even more. For example, while individual
filepath and emulation models detect only 33.31% and 10.24%
of samples with FPR of one false alert in 105, a combination
of them produces a 77.36% detection rate.
This observation holds across both in-sample validation

and out-of-sample test sets, collected from divergent systems
and in different time frames, allowing us to conclude that
this is a general attribute of a hybrid detection heuristic with
meta-model rather than an artifact of a specific dataset. Val-
ues for in-sample validation set given onemisclassification in
105 cases are detection rates of 34.46%, 13.52%, and 97.25% for
filepath, emulation, and combined heuristics, respectively.

This observation allows to conclude that the meta-model
can learn patterns typical to malicious samples out of rep-
resentation combinations produced by different analysis
techniques, like combining a specific API call sequence and

filepath n-gram. Each of these representations separately
does not produce enough evidence to classify the sample as
malicious since it also occurs in benign applications. There-
fore, detection happens only by lifting false-positive require-
ments when both benign and malicious samples are flagged.
However, a combination of representations from both filepaths
and API calls allows for the meta-model to build a decision
boundary in 384-dimensional space to segregate such cases,
thus yielding detection rates of more than 40%.
As a result, we see that composite utilization of static,

dynamic, and contextual data addresses independent method
weaknesses, allowingminimization of FPR and false-negative
rates (FNR).

F1-score, Precision, Recall, Accuracy, and AUC scores on
all sets are reported in Table 4 with meta-model decision
threshold 0.98 that resembled a FPR ≈ 0.25% on validation
set. While reported results on an in-sample validation set
allow concluding that model has little to no overfitting, we
still observe a decrease of an out-of-sample test set F1 and
AUC scores by≈ 4−4.5%. A drop in detection scores happens
despite the same ratio of malware families, and we assume
this phenomenon’s causality arises from the evolving nature
of malevolent logic.

6 Conclusion and Future Work
This work presents a hybrid machine learning architecture
that employs the Windows portable executable’s static, be-
havioral, and contextual properties. We performed behav-
ioral analysis on large corpora of executables collected from
in-the-wild systems and labeled by a professional threat in-
telligence team.
We have shown that ML algorithms benefit from hybrid

analysis, yielding improved performance, especially under
low false-positive requirements. We indeed report excep-
tional performance by the current state-of-the-art malware
modeling scheme based on Ember feature vector [3], which
reports detection rates significantly higher than filepath or
emulation models individually, as seen in Figure 3. How-
ever, combining the Ember model with either filepath or
emulation, or both models notoriously improve detection
capabilities, under some circumstances like low false positive
requirements by almost 30%.

Additionally, we report that a hybrid solution can detect a
malevolent sample even if none of the individual components
express enough confidence to classify input as malicious. For
instance, with FPR of one misclassified case in 105, individual
filepath and emulation models detect only 33.31% and 10.24%
samples. A combination of them produces a 77.36% detection
rate, increasing the detection abilities by more than 40% if
both models were used together but independently.
This observation holds across in-sample validation and

out-of-sample test sets, collected from divergent systems
and in different time frames, allowing us to conclude that
this is a property of a hybrid solution rather than an artifact

Preprint — do not distribute.



Hybrid Machine Learning Meta-Model

of a specific dataset. We conclude that the meta-model can
learn patterns typical to malicious samples out of representa-
tion combinations produced by different analysis techniques.
Furthermore, this conclusion is supported by the dataset
size, significantly larger than in related works on behavioral
malware analysis.

We suggest that the positive traits of dynamic and contex-
tual analysis can be extended further. While we represent
PE behavior on a system with an API call sequence, not
all executable functionality is expressed through API calls.
Additional visibility sources might be crucial to minimize
ambiguity in the model decision heuristic, and we argue that
extending the modularity of composite solutions is a promis-
ing research direction. Most of the emulation telemetry was
omitted from our analysis.
We publicly release emulated reports of 108204 samples

and expect further work in this direction. File system and
registry modifications, network connections, and memory
allocations may provide crucial information for detection.
The architecture of our solution allows us to extend the
modularity of the decision heuristic with minimal effort by
retraining only the parameters of a meta-model.

Acknowledgments
Weexpress a deep gratitude forMarlon Tobaben, Antti Honkela
and Maria Regaki for contributing towards final version of
this publication.

References
[1] Abien Fred Agarap. 2019. Deep Learning using Rectified Linear Units

(ReLU). arXiv:1803.08375 [cs.NE]
[2] Rakshit Agrawal, Jack W. Stokes, Mady Marinescu, and Karthik Sel-

varaj. 2018. Robust Neural Malware Detection Models for Emulation
Sequence Learning. arXiv:1806.10741 [cs.AI]

[3] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open
Dataset for Training Static PE Malware Machine Learning Models.
arXiv:1804.04637 [cs.CR]

[4] Ben Athiwaratkun and Jack W. Stokes. 2017. Malware classification
with LSTM and GRU language models and a character-level CNN.
In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). ICASSP, NewOrleans, LA, USA, 2482–2486. https:
//doi.org/10.1109/ICASSP.2017.7952603

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer
Normalization. https://doi.org/10.48550/ARXIV.1607.06450

[6] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In ATEC ’05: Proceedings of the annual conference on USENIX Annual
Technical Conference (Anaheim, CA) (ATEC ’05). USENIX Association,
USA, 41.

[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco,
California, USA) (KDD ’16). ACM, New York, NY, USA, 785–794. https:
//doi.org/10.1145/2939672.2939785

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. https://doi.org/10.48550/ARXIV.1412.3555

[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015.
Fast and Accurate Deep Network Learning by Exponential Linear
Units (ELUs). https://doi.org/10.48550/ARXIV.1511.07289

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-term
Memory. Neural computation 9 (12 1997), 1735–80. https://doi.org/10.
1162/neco.1997.9.8.1735

[11] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate Shift.
arXiv:1502.03167 [cs.LG]

[12] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In Advances in Neural Infor-
mation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran
Associates, Inc., Long Beach, CA. https://proceedings.neurips.cc/
paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[13] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Sto-
chastic Optimization. arXiv:1412.6980 [cs.LG]

[14] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eck-
ert. 2016. Deep Learning for Classification of Malware System Call
Sequences. In AI 2016: Advances in Artificial Intelligence, Vol. 9992.
29th Australasian Joint Conference, Hobart, TAS, Australia, 137–149.
https://doi.org/10.1007/978-3-319-50127-7_11

[15] Adarsh Kyadige, EthanM. Rudd, and Konstantin Berlin. 2020. Learning
from Context: A Multi-View Deep Learning Architecture for Malware
Detection. In 2020 IEEE Security and Privacy Workshops (SPW). IEEE,
San Francisco, CA, USA, 1–7. https://doi.org/10.1109/SPW50608.2020.
00018

[16] Xigao Li, David Krisiloff, and Scott Coull. 2021. Lightweight,
Emulation-Assisted Malware Classification.

[17] Xinjian Ma, Qi Biao, Wu Yang, and Jianguo Jiang. 2016. Using multi-
features to reduce false positive in malware classification. In 2016 IEEE
Information Technology, Networking, Electronic and Automation Control
Conference. IEEE Information Technology, San Francisco, CA, USA,
361–365. https://doi.org/10.1109/ITNEC.2016.7560382

[18] Mandiant. 2021. Speakeasy: portable, modular, binary emulator de-
signed to emulate Windows kernel and user mode malware. https:
//github.com/mandiant/speakeasy.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.). Curran Associates, Inc., pytorch.org, 8024–8035.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[21] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catan-
zaro, and Charles Nicholas. 2017. Malware Detection by Eating a
Whole EXE. arXiv:1710.09435 [stat.ML]

[22] Edward Raff, Bobby Filar, and James Holt. 2020. Getting Passive Ag-
gressive About False Positives: Patching Deployed Malware Detectors.
https://doi.org/10.48550/ARXIV.2010.12080

[23] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2020.
Query-Efficient Black-Box Attack Against Sequence-Based Malware
Classifiers. In Annual Computer Security Applications Conference
(Austin, USA) (ACSAC ’20). Association for Computing Machin-
ery, New York, NY, USA, 611–626. https://doi.org/10.1145/3427228.
3427230

[24] Ethan M. Rudd, Felipe N. Ducau, Cody Wild, Konstantin Berlin, and
Richard Harang. 2019. ALOHA: Auxiliary Loss Optimization for
Hypothesis Augmentation. arXiv:1903.05700 [cs.CR]

Preprint — do not distribute.

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1806.10741
https://arxiv.org/abs/1804.04637
https://doi.org/10.1109/ICASSP.2017.7952603
https://doi.org/10.1109/ICASSP.2017.7952603
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/ARXIV.1412.3555
https://doi.org/10.48550/ARXIV.1511.07289
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1502.03167
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1109/SPW50608.2020.00018
https://doi.org/10.1109/SPW50608.2020.00018
https://doi.org/10.1109/ITNEC.2016.7560382
https://github.com/mandiant/speakeasy
https://github.com/mandiant/speakeasy
https://arxiv.org/abs/1710.09435
https://doi.org/10.48550/ARXIV.2010.12080
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.1145/3427228.3427230
https://arxiv.org/abs/1903.05700


Trizna

[25] Joshua Saxe and Konstantin Berlin. 2017. eXpose: A Character-Level
Convolutional Neural Network with Embeddings For Detecting Mali-
cious URLs, File Paths and Registry Keys. arXiv:1702.08568 [cs.CR]

[26] Matthew Schultz, Eleazar Eskin, F. Zadok, and Salvatore Stolfo. 2001.
Data Mining Methods for Detection of New Malicious Executables, In
Proceedings 2001 IEEE Symposium on Security and Privacy. Proceed-
ings of the IEEE Computer Society Symposium on Research in Security
and Privacy 1, 1, 38–49. https://doi.org/10.1109/SECPRI.2001.924286

[27] P.V. Shijo and A. Salim. 2015. Integrated Static and Dynamic Analysis
for Malware Detection. Procedia Computer Science 46 (2015), 804–811.
https://doi.org/10.1016/j.procs.2015.02.149 Proceedings of the Interna-
tional Conference on Information and Communication Technologies,
ICICT 2014, 3-5 December 2014 at Bolgatty Palace & Island Resort,
Kochi, India.

[28] Rami Sihwail, Khairuddin Omar, and KA Zainol Ariffin. 2018. A survey
on malware analysis techniques: Static, dynamic, hybrid and memory
analysis. Int. J. Adv. Sci. Eng. Inf. Technol 8, 4-2 (2018), 1662–1671.

[29] Anuj Soni and Lenny Zeltser. 2021. FOR610: Reverse-Engineering
Malware: Malware Analysis Tools and Techniques.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research 15, 56 (2014), 1929–1958. http://jmlr.org/papers/v15/
srivastava14a.html

[31] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2019. Survey
of machine learning techniques for malware analysis. Computers &
Security 81 (2019), 123–147.

[32] Ming Chuan Yang and Meng Chang Chen. 2019. Theoretical Investi-
gation of Composite Neural Network. arXiv:1910.09351 [cs.LG]

[33] Yao Saint Yen, Zhe Wei Chen, Ying Ren Guo, and Meng Chang
Chen. 2019. Integration of Static and Dynamic Analysis for
Malware Family Classification with Composite Neural Network.
arXiv:1912.11249 [cs.CR]

[34] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. 2017.
Comparative Study of CNN and RNN for Natural Language Processing.
https://doi.org/10.48550/ARXIV.1702.01923

Preprint — do not distribute.

https://arxiv.org/abs/1702.08568
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1016/j.procs.2015.02.149
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1910.09351
https://arxiv.org/abs/1912.11249
https://doi.org/10.48550/ARXIV.1702.01923

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Dataset structure
	3.2 Sample emulation

	4 System Architecture
	4.1 API Call Preprocessing
	4.2 Path Preprocessing
	4.3 Early Fusion Model Architectures
	4.4 Meta-Model

	5 Experiments and Results
	6 Conclusion and Future Work
	Acknowledgments
	References

