
Return to sender
Detecting kernel exploits with eBPF

Guillaume Fournier
August 2022

About me

● Cloud Workload Security (CWS)
● Leverage eBPF to detect threats
● Embedded in the Datadog Agent

Blackhat 2022

Guillaume Fournier
Senior Security Engineer @Datadog

gui774ume.fournier@gmail.com

2

● Context and threat model

● Why eBPF ?

● KRIe
○ SMEP & SMAP on a budget
○ Kernel security configuration
○ Kernel runtime alterations
○ Control flow integrity
○ Enforcement

● Performance

Agenda

3

Context and threat model

● Critical CVEs are regularly discovered in the Linux Kernel

● Security administrators worry about:
○ Keeping up with security updates
○ Deploying security patches
○ Monitoring & protecting vulnerable hosts

Blackhat 2022 4

Context and threat model

● Hundreds of ways to exploit the Linux kernel

● This talk targets 3 types of vulnerabilities:
○ Execution flow redirections
○ Logic bugs
○ Post compromise kernel runtime alterations

The goal is to detect (and prevent ?) these attacks with eBPF

Blackhat 2022 5

Context and threat model

● Hundreds of ways to exploit the Linux kernel

● This talk targets 3 types of vulnerabilities:
○ Execution flow redirections
○ Logic bugs
○ Post compromise kernel runtime alterations

The goal is to detect (and prevent ?) these attacks with eBPF

Make attackers’ lives a living hell
6Blackhat 2022

What is eBPF ?
● Run sandboxed programs in the Linux kernel

7Blackhat 2022

Why eBPF ?

● Relatively wide kernel support (4.1 +) depending on eBPF
features

● System safety and stability insurances

● Rich feature set with easy to use introspection capabilities

● Some write access and enforcement capabilities

8Blackhat 2022

Why eBPF ?
Why is this a terrible idea ?
● Detecting post compromise activity is fighting a lost battle
● There are dozens of ways to disable an eBPF program
● eBPF can have a significant in kernel performance impact

So what’s the point ?
● Script kiddies and OOTB rootkits
● Make it harder to exploit a flaw
● Detecting & blocking pre-compromise is sometimes possible

9Blackhat 2022

● Open source project

● No ARM support (yet)

● Compatible with at least
kernels 4.15+ to now

● First version released today !

Kernel
Runtime
Integrity
with eBPF
(KRIe) https://github.com/Gui774ume/krie

10

KRIe: SMEP & SMAP on a budget
Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

● Textbook use case for Return Object Programming (ROP)
attacks

● Privilege escalation attacks

11Blackhat 2022

KRIe: SMEP & SMAP on a budget
Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

12Blackhat 2022

KRIe: SMEP & SMAP on a budget

Attacker
jumps to

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot] xchg esp, eax ; ret

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

13Blackhat 2022

KRIe: SMEP & SMAP on a budget

Attacker
jumps to

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot] xchg esp, eax ; ret [@rop_chain]
[@rop_chain+8]
[@rop_chain+16]

@gadget_1
0x42
@kernel_funcStack pivot

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

14Blackhat 2022

KRIe: SMEP & SMAP on a budget

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot]

[@kernel_func]

xchg esp, eax ; ret

push %rbp

[@rop_chain]
[@rop_chain+8]
[@rop_chain+16]

@gadget_1
0x42
@kernel_func

Attacker
jumps to

Stack pivot

Execute a kernel function with
attacker controlled parameters

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

15Blackhat 2022

KRIe: SMEP & SMAP on a budget

Attacker
jumps to

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot]

[@kernel_func]

xchg esp, eax ; ret

push %rbp

[@rop_chain]
[@rop_chain+8]
[@rop_chain+16]

@gadget_1
0x42
@kernel_func

Not possible
with SMAP

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Stack pivot

16Blackhat 2022

KRIe: SMEP & SMAP on a budget

● SMEP would have prevented the CPU from executing code
in user space executable memory

● Our example ROP chain will eventually call:
commit_creds(prepare_kernel_cred(0))

What can we do for machines without SMEP / SMAP ?

17Blackhat 2022

KRIe: SMEP & SMAP on a budget

➔ Place a BPF_PROG_TYPE_KPROBE on
“prepare_kernel_cred” and check if the Stack pointer /
Frame pointer / Instruction pointer registers point to user
space memory

Demo
(Ubuntu Bionic 18.04 - Kernel 4.15.0-189-generic - SMAP disabled)

18Blackhat 2022

KRIe: SMEP & SMAP on a budget

● On a budget because:

○ Need to hook “all the functions called by exploits”

○ Blocking mode only works on 5.3+ kernels

○ An attacker will try to prevent our kprobe from firing …

19Blackhat 2022

KRIe: SMEP & SMAP on a budget

● So … how can one disable a kprobe ?

○ echo 0 > /sys/kernel/debug/kprobes/enabled

○ sysctl kernel.ftrace_enabled=0

○ By killing the user space process that loaded the kprobe

20Blackhat 2022

KRIe: SMEP & SMAP on a budget

● So … how can one disable a kprobe ?

○ echo 0 > /sys/kernel/debug/kprobes/enabled

○ sysctl kernel.ftrace_enabled=0

○ By killing the user space process that loaded the kprobe

➔ Let’s booby trap everything 🎉

21Blackhat 2022

KRIe: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

● Global switch that disarms all kprobes on a machine

● The ROP chain can be updated to call

write_enabled_file_bool(NULL, “0”, 1, NULL)

22Blackhat 2022

KRIe: Kernel security configuration

● Global switch that disarms all kprobes on a machine

● The ROP chain can be updated to call

write_enabled_file_bool(NULL, “0”, 1, NULL)

➔ Let’s put a kprobe on it 🎉

23Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

● Even when enabled, a kprobe can still be bypassed:

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With a kprobe

0x0: nop dword ptr [...]
0x5: push %rbp
0x6: mov %rsp,%rbp
0x9: push %r14
0xb: push %r13
0xd: push %r12
…

0x0: callq 0xffffffff81a01cf0
0x5: push %rbp
0x6: mov %rsp,%rbp
0x9: push %r14
0xb: push %r13
0xd: push %r12
…

24Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With a kprobe

0x0: nop dword ptr [...]
0x5: push %rbp
0x6: mov %rsp,%rbp
0x9: push %r14
0xb: push %r13
0xd: push %r12
…

0x0: callq 0xffffffff81a01cf0
0x5: push %rbp
0x6: mov %rsp,%rbp
0x9: push %r14
0xb: push %r13
0xd: push %r12
…

Jump here
with the ROP

chain

● Even when enabled, a kprobe can still be bypassed:

25Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

➔ Booby trap the function at random offsets 🎉
@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With kprobe(s)

0x0: nop dword ptr [...]
0x5: push %rbp
0x6: mov %rsp,%rbp
0x9: push %r14
0xb: push %r13
0xd: push %r12
…

0x0: callq 0xffffffff81a01cf0
0x5: push %rbp
0x6: callq 0xffffffff81a01cf0
0xb: push %r13
0xd: callq 0xffffffff81a01cf0
…

26Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

● “write_enabled_file_bool” writes 0 or 1 to a global
variable called “kprobes_all_disarmed”

● An attacker could try to write 1 to it directly

27Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

● “write_enabled_file_bool” writes 0 or 1 to a global
variable called “kprobes_all_disarmed”

● An attacker could try to write 1 to it directly

➔ We can use a BPF_PROG_TYPE_PERF_EVENT program to
periodically check the values of all sensitive kernel
parameters 🎉

28Blackhat 2022

1) echo 0 > /sys/kernel/debug/kprobes/enabled

KRIe: Kernel security configuration

● There is an eBPF program type dedicated to monitoring and
enforcing sysctl commands :

BPF_PROG_TYPE_CGROUP_SYSCTL (kernels 5.2+)

● (Almost) all sysctl parameters are checked by KRIe’s
periodical check

2) sysctl kernel.ftrace_enabled=0

29Blackhat 2022

KRIe: Kernel runtime alterations

● Insert a rogue kernel module
● Hook syscalls to hide their tracks

○ Using kprobes
○ By hooking the syscall table directly

● BPF filters are used to silently capture network traffic

● eBPF programs can also be used to implement rootkits

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

30Blackhat 2022

https://github.com/Gui774ume/ebpfkit

KRIe: Kernel runtime alterations

➔ KRIe monitors:
◆ All bpf() operations and insertion of BPF filters

◆ Kernel module load / deletion events

◆ K(ret)probe registration / deletion / enable / disable / disarm events

◆ Ptrace events

◆ Sysctl commands

◆ Execution of hooked syscalls … and more to come !

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

31Blackhat 2022

KRIe: Kernel runtime alterations

➔ All syscall tables are checked periodically with the
BPF_PROG_TYPE_PERF_EVENT program trick

➔ KRIe is also able to detect and report when a process
executes a hooked syscall

Demo
(Ubuntu Jammy 22.04 - Kernel 5.15.0-43-generic)

32Blackhat 2022

KRIe: Control flow Integrity (CFI)

● Locks down the execution flows in the kernel by controlling
call sites at runtime

● Usually added at compile time or implemented in hardware

● CFI is a great way to prevent ROP attacks

● These features aren’t always available; specifically the
hardware ones

33Blackhat 2022

KRIe: Control flow Integrity (CFI)

➔ KRIe locks down jumps between control points
➔ Both hook points and parameters are checked

34Blackhat 2022

KRIe: Control flow Integrity (CFI)

The goal:

● Catch malicious calls to sensitive functions (via ROP)
● Detect logic bugs, specifically for access rights

But:

● Tedious process
● Hook points limitations

35Blackhat 2022

KRIe: Enforcement
● KRIe enables blocking features when available:

○ bpf_override_return helper (4.16+)
○ BPF_PROG_TYPE_CGROUP_SYSCTL programs (5.2+)
○ bpf_send_signal helper (5.3+)
○ LSM programs (5.7+)

● Every detection is configurable:
○ Log
○ Block
○ Kill
○ Paranoid

36Blackhat 2022

Performance

User space CPU time Kernel space CPU time Total elapsed time

Without KRIe 4,320s 88% 568s 12% 5:53.14

With KRIe
(all features)

4,517s 68% 2,097s 32% 8:15.76

+4.5% +270% +40%

With KRIe
(syscall hook
check disabled on
syscall entry)

4,380s 88% 585s 12% 5:58.36

+1% +3% +1%

● Linux kernel compilation time

37Blackhat 2022 (Benchmark run on a 5.15.0 kernel, 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60GHz, 32GB of RAM, average on 10 iterations)

Thanks
● Powerful defensive tools can be implemented with eBPF
● eBPF is not really the ideal technology to detect kernel

exploits
● KRIe is realistically a last resort, not a bulletproof strategy

https://github.com/Gui774ume/krie

38

KRIe: Control flow Integrity (CFI)

Graph generated with utrace:
https://github.com/Gui774ume/utraceKernel stack traces to commit_creds

KRIe: real world rootkits
● Syscall hooking method:

○ croemheld/lkm-rootkit
○ QuokkaLight/rkduck
○ m0nad/Diamorphine
○ Eterna1/puszek-rootkit
○ reveng007/reveng_rtkit

● Kprobe / Ftrace hooking method:
○ h3xduck/Umbra

● eBPF / BPF filters methods:
○ Gui774ume/ebpfkit
○ pathtofile/bad-bpf
○ h3xduck/TripleCross … and many others !

https://github.com/croemheld/lkm-rootkit
https://github.com/QuokkaLight/rkduck
https://github.com/m0nad/Diamorphine
https://github.com/Eterna1/puszek-rootkit
https://github.com/reveng007/reveng_rtkit
https://github.com/h3xduck/Umbra
https://github.com/Gui774ume/ebpfkit
https://github.com/pathtofile/bad-bpf
https://github.com/h3xduck/TripleCross

