000

TEL AVIV UNIVERSITY

Trust Dies in Darkness: Shedding Light on
Samsung’'s TrustZone Cryptographic Design

Alon Shakevsky, Eyal Ronen, Avishai Wool
W @shakevsky W @eyalr0 8 yash@eng.tau.ac.il

Extended paper: https://eprint.iacr.org/2022/208.pdf Tool + PoC: https://github.com/shakevsky/keybuster

https://eprint.iacr.org/2022/208.pdf
https://github.com/shakevsky/keybuster

WHO WOULD WIN?

The leading Android Vendor | 3 academic researchers

SAMSUNG
@ Common Criteria

What did we find?

2 High severity CVEs that affect over 100 million devices
Recover keys that were encrypted by trusted hardware

Designed using resources from Flaticon.com

Agenda

Introduction

Keymaster
TA Analysis

Implications

Background and motivation

Recovering hardware-protected keys

Breaking higher-level protocols

Main takeaways from our research

The need for Trusted Execution Environments (TEES)

o fido

ALLIANCE

Designed using resources from Flaticon.com

The need for Trusted Execution Environments (TEES)

o fido

ALLIANCE

Designed using resources from Flaticon.com

Proprietary TrustZone Operating Systems (TZOS)

Black Box Designs

TZ0S

QSEE
glle]
TEEGRIS

Designed using resources from Flaticon.com

Research questions

1. Do hardware-protected cryptographic keys remain secure
even when the Normal World (Android) is compromised?

Designed using resources from Flaticon.com

Research questions

1. Do hardware-protected cryptographic keys remain secure
even when the Normal World (Android) is compromised?

2. Do compromised hardware-protected keys break the
security of various protocols that rely on them?

n?o

Designed using resources from Flaticon.col

ARM TrustZone - Attack Model

Normal World
ELO o -
Usermode Application 1 Application 2
EL1 l'l Android Kernel
Kernelmode
EL2 [Hypervisor }
EL3

Secure World

Trusted App 1 Trusted App 2

TZOS kernel

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Normal World
ELO o -
Usermode Application 1 Application 2
EL1 l'l Android Kernel
Kernelmode
EL2 { Hypervisor }
EL3

Secure World

Trusted App 1 Trusted App 2

TZOS kernel

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Normal World
ELO o -
Usermode Application 1 Application 2
EL1 Android Kernel
Kernelmode
EL2 ‘ Hypervisor }
EL3

Secure World

Trusted App 1 Trusted App 2

TZOS kernel

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore Flow

6,

Keymaster TA in
TrustZone

Request key generation

.| Generate key
B = wrap(key)

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore Flow

6,

: Keymaster TA in

Request key generation

B .| Generate key
B = wrap(key)

Request attestation for B

< Generate attestation ce%

cert

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore Flow

6,

Keymaster TA in
TrustZone

Request key generation

Request attestation for B

Generate key
B = wrap(key)

cert

< Generate attestation ce%

(e.g., encrypt/sign)

Request operation for B

key = unwrap(B)
result = operation(key)

result

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore Flow

Request key generation

B

A

Request attestation for B

cert

Request operation for B
(e.g., encrypt/sign)

Plaintext key material

o as/ye should never leave
TrustZone the TZOS

Generate key
B = wrap(key)

<«

Generate attestation ce%

result

key = unwrap(B)

result = operation(key)

Designed using resources from Flaticon.com

What's the context?

We need to protect cryptographic keys of applications

Only the Keymaster should access key material
But is it guaranteed?

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Implications

Recovering hardware-protected keys

Breaking higher-level protocols

Main takeaways from our research

Disclaimer

Where do you start?

Where do you start?

Download the firmware of the specific model

Where do you start?

Download the firmware of the specific model

Read public documentation and security certifications

Where do you start?

Download the firmware of the specific model
Read public documentation and security certifications

Reverse-engineer using Ghidra
Repeat for 26 firmwares

Image: Ryan Kurtz, Apache License 2.0 via Wikimedia Commons

How to interact with the Keymaster?

Normal World Secure World
keystore daemon < Binder Application
ELO
Usermode
Keymaster HAL «> TEE Interface > World Keymaster TA

Shared
Memory

EL1 TrustZone device drivers

Kernelmode TEEGRIS kernel
EL3

Designed using resources from Flaticon.com

Keybuster: tool to interact with the Keymaster

Normal World Secure World

ELO
Usermode
keybuster [« Keymaster TA
EL1 TrustZone device drivers TEEGRIS kernel
Kernelmode

EL3

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK, salt) WY

\ /

AES-GCM

Encrypted blob

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK,(sal) IV

\ /

AES-GCM

Encrypted blob

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

HDK = KDF(REK,(salt)

\ /

AES-GCM

Encrypted blob

KDF versions of key blobs

salt = SHA-256(salt_seq)
Where salt_seq is one of the following sequences:

v15 blob v20-s9 blob v20-s10 blob

"MDFPP HW Keymaster HEK v1500"
root_of trust root_of trust

"ID" "ID" "ID"

"\x02\x00\x00\x00" "\x02\x00\x00\x00" "\x02\x00\x00\x00"

"id" "id" "id"

"DATA" "DATA" "DATA"

"\x04\x00\x00\x00" "\x04\x00\x00\x00" "\x04\x00\x00\x00"

"data" "data" "data"

integrity_flags integrity_flags

hek_randomness

KDF versions of key blobs

salt = SHA-256(salt_seq)
Where salt_seq is one of the following sequences:

v15 blob v20-s9 blob v20-s10 blob

"MDFPP HW Keymaster HEK v1500"
root_of trust root_of trust

"ID" "ID" "ID"

"\x02\x00\x00\x00" "\x02\x00\x00\x00" "\x02\x00\x00\x00"

"id" "id" "id"

"DATA" "DATA" "DATA"

"\x04\x00\x00\x00" "\x04\x00\x00\x00" "\x04\x00\x00\x00"

"data" "data" "data"

integrity_flags integrity_flags

hek_randomness

MDFPP can explain the variations

Common Criteria-Certified Devices,
MDFPPv3

Supported on Android 10

SAMSUNG

Common Criteria
and FIPS-validated
devices for the
security conscious.

Samsung Galaxy Note20 5G | Note20 Ultra 5G
Samsung Galaxy Tab S7 | Tab S7+

Samsung Galaxy S20 FE 5G

Samsung Galaxy S20 5G | S20+ 5G| S20 Ultra 5G
Samsung Galaxy S20 Tactical Edition

Samsung Galaxy Z Flip | Z Flip 5G

Samsung Galaxy XCover Pro

Samsung Galaxy XCover FieldPro

Samsung Galaxy A715G

Samsung Galaxy A511A515G

Samsung Galaxy S10e | S10 | S10+ | S10 5G
Samsung Galaxy Note10 | Note10+ | Note10+ 5G
Samsung Galaxy Fold | Fold 5G

Samsung Galaxy Z Fold2

Samsung Galaxy S9 | S9+

Samsung Galaxy Note9

Samsung Galaxy Tab S6 | Tab S6 5G

Samsung Galaxy Tab Active3

Samsung Galaxy Tab S4

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> |V reuse

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> |V reuse
e AES-GCM + key reuse + iv reuse -> decryption

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse

e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

-

”

Unknown key A

Extract IV and salt ﬁ

_

Blob A

J

-> |V reuse
-> decryption

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> |V reuse

e AES-GCM + key reuse + iv reuse -> decryption
4 /)

Known key B

/ Extract IV and salt ﬁ_. importKey Keystore API ﬁ

Unknown key A

Blob A \ /

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV
e AES-GCM + key reuse + iv reuse

Unknown key A

Known key B

l

-> |V reuse
-> decryption

Extract IV and salt ﬁ_,

importKey Keystore API ﬁ

Blob A

Reminder

REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, 1V, key)

[

~

Known key B

Blob B

W,

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> 1V reuse

e AES-GCM + key reuse + iv reuse

Unknown key A

-> decryption

Extract IV and salt ﬁ_.

Blob A

Reminder

REK =
HDK =
B = AES-GCM(HDK, IV, key)

Device-unique hardware key
KDF(REK, salt)

Known key B

Blob B

IV Reuse Attack (v15/v20-s9)

e The Android client can control the salt -> key reuse
e The Android client can control the IV -> |V reuse
e AES-GCM + key reuse + iv reuse -> decryption

Extract IV and salt ﬁ_.

Unknown key A

Blob A

Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key) Known key B
Blob B

Bypassing Authentication and Confirmation

We can bypass any key usage restriction without user presence/consent

Images from Android Developers Blog

https://android-developers.googleblog.com/

Bypassing Authentication and Confirmation

We can bypass any key usage restriction without user presence/consent

uble-press power to confirm [Bd v
Cancel >

Images from Android Developers Blog

https://android-developers.googleblog.com/

Downgrade Attack

v20-s10 blob

e V20-s10 has randomized salt —> no trivial key reuse

"D
"\x02\x00\x00\x00"
nig"

"DATA"
"\x04\x00\x00\x00"
"data"

integrity_flags
hek_randomness

Downgrade Attack

v20-s10 blob
e V20-s10 has randomized salt —> no trivial key reuse
e Latent code allows creation of v15 blobs B
e
"\x04\x00\x00\x00"
"data"

integrity_flags
hek_randomness

Downgrade Attack

e V20-s10 has randomized salt —> no trivial key reuse
e Latent code allows creation of v15 blobs
e A privileged attacker can exploit this to

force all new blobs to version v15

0,

. Keymaster TA in

Request key generation
KM_EKEY _BLOB_ENC VER =15

v20-s10 blob

"MDFPP HW Keymaster HEK v20\x00"

root_of_trust

"D
"\x02\x00\x00\x00"
nig"

"DATA"
"\x04\x00\x00\x00"
"data"

integrity_flags
hek_randomness

Generate key
) B, a v15 key blob B = wrap(key)

}

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications

Breaking higher-level protocols

Main takeaways from our research

FIDO2 WebAuthn

Allows passwordless authentication

fco

ALLIANCE

FIDO2 WebAuthn

Allows passwordless authentication

Authentication keys live inside a “platform authenticator”

fco

ALLIANCE

FIDO2 WebAuthn

Allows passwordless authentication
Authentication keys live inside a “platform authenticator”

Hard to extract the keys from the secure element

fco

ALLIANCE

Bypassing FIDO2 WebAuthn

& ER
TrustZone
Registration Request Request key generation
— (attacker downgrades to
v15 blob) | Generate (Pub, Priv)
Bauth Bauth = wrap(Pub, Priv)

Request attestation for Bautn

Verify certificate, cert cert certificate chain for bl

associate the
\ public key with the user| /

k— Create attestation
ob

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Trusted Server

Registration Request Request key generation|
(attacker downgrades to
v15 blob) .« Generate (Pub, Priv)

a Keymaster TA in

BautH Bauth = wrap(Pub, PfiV)

Request attestation for Bautn

Verify certificate,
associate the
public key with the user|

cert cert certificate chain for bl

| Create attestation
ob)|

(Authentication Request Request user consent then \
Generate Challengﬁe Ask to sign challenge with B | Sign Challenge with Priv in
FIDO2 Challenge secure hardware
Assertion A A

Verify assertion A,
if successful
the user is signed-in

, , J

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn

Trusted Server Android Keymaster TA in
TrustZone

Registration Request Request key generation
—— (attacker downgrades to
v15 blob) | Generate (Pub, Priv)
BautH Bauth = wrap(Pub, Priv)

Request attestation for Bauth

k| Create attestation
ob

Verify certificate, cert cert certificate chain for bl

associate the
public key with the use

Authentication Request Request user consent then

Generate Challenge] | Ask to sign challenge with B | Sign Challenge with Priv in
FIDO2 Challenge secure hardware
Assertion) i A A
Verify assertion A,
if successful
the user is signed-in
(Authentication Request
Challenge

er registration,
Attacker forges assertions by signing
C using Priv (recovered from the IV
- reuse attack on Bauth) and successfully
logs in (from Android or another device)

Assertion
Bypass

Designed uging resources from Flaticon.com

Bypassing FIDO2 WebAuthn Demo #1

beyondl: /data/local/tmp # ./gdbserver --attach :1337 $(pidof android.hardware.keymaster@u.0-service)
Attached; pid = 5196

Listening on port 1337

(a) Attaching a GDB debugger to the Keymaster HAL process
Breakpoint 2, in nwd_generate_key () from
intercepted request to nwd_generate_key
old key parameters to new buffer
Ox7759c24060
0x7759c24060
add new parameter (KM_EKEY_BLOB_ENC_VER, 15)

switch to new parameters - this forces the generation of a v15 blob

Breakpoint 4, in I_generate_key () from
dump the key blob that the keymaster returned

start Ox7759c3b2860, end Ox7759c3bud2, len 252

dumped to result.bin

(b) During registration, the GDB script performs the downgrade attack

Bypassing FIDO2 WebAuthn Demo #2

OB ([- 2 [~ K- A

22:40 G % [c 22:40 G %

Registered FIDO Key

FIDO Authentication i €& Checkout i € Checkout

User Information

did: 1

sid: 1

uid: 187

username: fido

email: demo@test
userMobileNumber: 123454321

FIDO Registration Information

did: 1

uid: 187

displayName: Demo Demo

rpid: strongkey.com

credentialld
D6A6808656EF7118-46C1436FCB4BB050-939FB
0C7FB4F23B4-68627EB3E7DBACCA
createDate: Mon Aug 16 22:39:42 GMT+03:00
2021

counter: 1

seModule: true
[TRUSTED_EXECUTION_ENVIRONMENT]

PUBLIC KEY DETAILS...

CLIENT DATA JSON DETAILS...
AUTHENTICATOR DATA DETAILS...
CBOR ATTESTATION DETAILS...
JSON ATTESTATION DETAILS...

AUTHENTICATE

] (@] <

(c) Registration success

User Information

did: 1

sid: 1

uid: 187

username: fido

email: demo@test
userMobileNumber: 123454321

FIDO Authentication Information

did: 1

uid: 187

rpid: strongkey.com

credentialld
D6A6808656EF7118-46C1436FCB4BB050-939FB
0C7FB4F23B4-68627EB3E7DB4CCA

createDate: Mon Aug 16 22:39:52 GMT+03:00
2021

DIGITAL SIGNATURE DETAILS...
AUTHENTICATOR DATA DETAILS...
CLIENT DATA JSON DETAILS...

SEND SECURITY KEY REGISTRATION
E-MAIL...

] (@] <

(d) Authentication success

o

STRONGKEY

l Tellaro T100 9,995

) Tellaro E1000 19,995
L]

995/year

c FIDO Cloud
Q Quantity: 1

n Tellaro Cloud 11,940/year

Total Price: $995

Submit Transaction

] (@] <

(e) Checkout example

User Information

did: 1

uid: 187

username: fido

givenName familyName: Demo Demo

Transaction Information

txid: SFAECO-40

txdate: Mon Aug 16 22:40:31 GMT+03:00 2021
nonce: eJOvaQ4EjJvuAzaqk92BMw

challenge: 9tqIvVUURYv_NGIYvFNa7djH1bpclONrx
4snMXSRKdjl

SEE TXPAYLOAD DETAIL...
FIDO Authenticator References

FIDO Protocol: FIDO2_0

RPID: strongkey.com

Authorization Time: Mon Aug 16 22:40:43
MT+03:00 2021

User Present: true

User Verified: true

Used for this transaction: true

ID DETAIL..

RAW ID DETAIL..

USER HANDLE DETAIL..
AUTHENTICATOR DATA DETAILS..
CLIENT DATA JSON DETAILS..

AACIIN RETAN

] (@] <

(f) Re-authentication success

What did we find?

Attackers could steal cryptographic keys of applications

Attackers could steal your identity

Responsible Disclosure #1

e May ‘21: We reported the IV reuse attack on S9 to Samsung

Responsible Disclosure #1

e May ‘21: We reported the IV reuse attack on S9 to Samsung

e Aug 21: Samsung patched Android O/P/Q devices
o 89, J3 Top, J7 Top, J7 Duo, TabS4, Tab-A-S-Lite, A6 Plus, A9S
o CVE-2021-25444 with High severity
o Removed the option to add a custom |V from the API

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High

Affected versions: 0(8.1), P(9.0), Q(10.0)

Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.
The patch prevents reusing IV by blocking addition of custom IV.

Responsible Disclosure #1

e May 21: We reported the IV reuse attack on S9 to Samsung

e Aug 21: Samsung patched Android O/P/Q devices
o 89,J3 Top, J7 Top, J7 Duo, TabS4, Tab-A-S-Lite, A6 Plus, A9S
o CVE-2021-25444 with High severity
o Removed the option to add a custom IV from the API

°0
\—/

SVE-2021-21948 (CVE-2021-25444): IV reuse in Keymaster TA

Severity: High
Affected versions: 0(8.1), P(9.0), Q(10.0) |
Reported on: May 25, 2021

Disclosure status: Privately disclosed.

An IV reuse vulnerability in keymaster prior to SMR AUG-2021 Release 1 allows decryption of custom keyblob with privileged process.
The patch prevents reusing IV by blocking addition of custom IV.

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
o “There is no application created with the key blob version as v15. And any of the
applications cannot change its key blob version for it to be exploitable.”

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
e Jul 21: We reported the downgrade attack on S10, S20 and S21

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
e Jul 21: We reported the downgrade attack on S10, S20 and S21

e Aug 21: Samsung rated the downgrade attack as “very Low severity”
o “we think that there is no practical security impact on this”

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
e Jul ‘21: We reported the downgrade attack on S10, S20 and S21

e Aug 21: Samsung rated the downgrade attack as “very Low severity”
o “we think that there is no practical security impact on this”

N
o)
®)

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
e Jul 21: We reported the downgrade attack on S10, S20 and S21

e Aug 21: Samsung rated the downgrade attack as “very Low severity”
e Aug 21: We sent the paper

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack
e Jul 21: We reported the downgrade attack on S10, S20 and S21

e Aug 21: Samsung rated the downgrade attack as “very Low severity”

e Aug 21: We sent the paper

e Sep 21: Samsung reviewed and re-investigated the impact
o “After further review of your paper, we concluded that "Downgrade Attack" also
has practical impact with our devices”

Responsible Disclosure #2

e Jun ‘21: Samsung rejected the downgrade attack

e Jul ‘21: We reported the downgrade attack on S10, S20 and S21

e Aug 21: Samsung rated the downgrade attack as “very Low severity
e Aug 21: We sent the paper

e Sep ‘21: Samsung reviewed and re-investigated the impact

o “After further review of your paper, we concluded that "Downgrade Attack" also
has practical impact with our devices”

z o0

LB A

7

Responsible Disclosure #2

e Jun 21:
o Jul 21:
e Aug ‘21:
e Aug ‘21:
e Sep 21:
e Oct 21:

Samsung rejected the downgrade attack
We reported the downgrade attack on S10, S20 and S21

Samsung rated the downgrade attack as “very Low severity”

We sent the paper
Samsung reviewed and re-investigated the impact
Samsung patched Android P or later, including S10/S20/S521

o CVE-2021-25490 with High severity
o Released a patch that completely removes the legacy key blob implementation
SVE-2021-22658 (CVE-2021-25490): Downgrade attack in Keymaster TA

Severity: High

Affected versions: P(9.0), Q(10.0), R(11.0)
Reported on: July 16, 2021

Disclosure status: Privately disclosed.
Akeyblob downgrade attack in keymaster prior to SMR Oct-2021 Release 1 allows attacker to trigger IV reuse vulnerability with privileged process.

The patch removes the legacy implementation for minor keyblob.

No Security By Obscurity

- BleepingComputer &

Samsung confirms hackers stole Galaxy devices
source code -

Samsung confirms hackers stole Galaxy devices source code

Return of the IV Reuse Attack
@ Graham Steel

We found the exact same attack on the original
Yubikey HSM - in 2012.

Maybe
chosen-IV key-wrap attacks are on a decade cycle.

Matthew Green &

I think people just don’t understand IVs.

Agenda

Introduction

Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications

Breaking higher-level protocols

Main takeaways from our research

Low-Level Cryptographic Issues

X Allowing client to set IV

X Allowing client to set encryption version

X Latent code in security-critical application

X Encryption version persists across “upgrades”

Low-Level Cryptographic Issues

X Allowing client to set IV

X Allowing client to set encryption version

X Latent code in security-critical application

X Encryption version persists across “upgrades”

Use a unique IV / misuse resistant AEAD (AES-GCM-SIV) / Tink
Disallow choice of encryption version

Reduce attack surface in security-critical application

Always use the latest encryption version

https://developers.google.com/tink

he Gap in Composability

X Key attestation does not commit to the cryptographic method
X Closed vendor-specific implementation

he Gap in Composability

X Key attestation does not commit to the cryptographic method
X Closed vendor-specific implementation

Include encryption version in attestation certificate
Uniform open-standard by Google for the Keymaster HAL and TA

Upgrading Android Attestation: Remote Provisioning

25 March 2022

Posted by Max Bires, Software Engineer

Why Change?

The two primary motivating factors for changing the way we provision attestation
certificates to devices are to allow devices to be recovered post-compromise and to
tighten up the attestation supply chain. In today’s attestation scheme, if a device model
is found to be compromised in a way that affects the trust signal of an attestation, or if
a key is leaked through some mechanism, the key must be revoked. Due to the
increasing number of services that rely on the attestation key signal, this can have a
large impact on the consumer whose device is affected.

This change allows us to stop provisioning to devices that are on known-compromised
software, and remove the potential for unintentional key leakage. This will go a long
way in reducing the potential for service disruption to the user.

Image from Android Developers Blog

https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

No Security By Obscurity
Formal analysis by independent researchers

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

No Security By Obscurity
Formal analysis by independent researchers

Decades of IV reuse in AES-GCM
Misuse-resistant AEAD / cryptography library

Any questions?

e Extended paper: https://eprint.iacr.org/2022/208.pdf
e Tool + PoC: https://github.com/shakevsky/keybuster

Y @shakevsky
¥ @eyalr0
&) yash@eng.tau.ac.il

Designed using resources from Flaticon.com

https://eprint.iacr.org/2022/208.pdf
https://github.com/shakevsky/keybuster

