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What did we find?

2 High severity CVEs that affect over 100 million devices
Recover keys that were encrypted by trusted hardware

Designed using resources from Flaticon.com
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Proprietary TrustZone Operating Systems (TZOS)
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Research questions

1. Do hardware-protected cryptographic keys remain secure 
even when the Normal World (Android) is compromised?

2. Do compromised hardware-protected keys break the 
security of various protocols that rely on them?

Designed using resources from Flaticon.com
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Android Hardware-Backed Keystore Flow

Designed using resources from Flaticon.com

Android Keymaster TA in
TrustZone

Request attestation for B

Generate key 

B = wrap(key) 

Generate attestation cert

key = unwrap(B) 
result = operation(key) 

result

Request operation for B 
(e.g., encrypt/sign)

B

cert

Request key generation

Plaintext key material
should never leave
the TZOS



What’s the context?

We need to protect cryptographic keys of applications

Only the Keymaster should access key material
But is it guaranteed?
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Where do you start?

Download the firmware of the specific model

Read public documentation and security certifications

Reverse-engineer using Ghidra
Repeat for 26 firmwares

Image: Ryan Kurtz, Apache License 2.0 via Wikimedia Commons



How to interact with the Keymaster?
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Keybuster: tool to interact with the Keymaster
Normal World

keybuster

TrustZone device drivers 

Secure World

Keymaster TA 

TEEGRIS kernel
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World
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Kernelmode 
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MDFPP can explain the variations
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● The Android client can control the salt -> key reuse
● The Android client can control the IV   -> IV reuse
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Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)
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Downgrade Attack
● V20-s10 has randomized salt –> no trivial key reuse
● Latent code allows creation of v15 blobs
● A privileged attacker can exploit this to

force all new blobs to version v15

Android Keymaster TA in
TrustZone

Generate key 

B = wrap(key) B, a v15 key blob

Request key generation 
KM_EKEY_BLOB_ENC_VER = 15 
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FIDO2 WebAuthn

Allows passwordless authentication

Authentication keys live inside a “platform authenticator”

Hard to extract the keys from the secure element
Or to clone the platform authenticator



Bypassing FIDO2 WebAuthn
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Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Trusted Server Android Keymaster TA in
TrustZone

BAUTH 

Request attestation for BAUTH  

certcert

Generate (Pub, Priv) 

BAUTH = wrap(Pub, Priv)

Create attestation
certificate chain for blobVerify certificate, 

associate the 
public key with the user 

Request key generation
(attacker downgrades to

v15 blob)

Registration Request

Authentication Request

Generate Challenge
Challenge

Request user consent then 
Ask to sign challenge with B 

Sign Challenge with Priv in
secure hardware 

AA
Verify assertion A, 

if successful 
the user is signed-in

FIDO2 
Registration

FIDO2 
Assertion



Bypassing FIDO2 WebAuthn
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Bypassing FIDO2 WebAuthn Demo #1



Bypassing FIDO2 WebAuthn Demo #2



What did we find?

Attackers could steal cryptographic keys of applications

Attackers could steal your identity
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○ “There is no application created with the key blob version as v15. And any of the 
applications cannot change its key blob version for it to be exploitable.”
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Responsible Disclosure #2
● Jun  ‘21: Samsung rejected the downgrade attack
● Jul   ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”
● Aug ‘21: We sent the paper
● Sep ‘21: Samsung reviewed and re-investigated the impact
● Oct  ‘21: Samsung patched Android P or later, including S10/S20/S21

○ CVE-2021-25490 with High severity
○ Released a patch that completely removes the legacy key blob implementation



No Security By Obscurity



Return of the IV Reuse Attack
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Low-Level Cryptographic Issues
● Allowing client to set IV
● Allowing client to set encryption version
● Latent code in security-critical application
● Encryption version persists across “upgrades”

● Use a unique IV / misuse resistant AEAD (AES-GCM-SIV) / Tink
● Disallow choice of encryption version
● Reduce attack surface in security-critical application
● Always use the latest encryption version 

https://developers.google.com/tink


The Gap in Composability
● Key attestation does not commit to the cryptographic method
● Closed vendor-specific implementation



The Gap in Composability
● Key attestation does not commit to the cryptographic method
● Closed vendor-specific implementation

● Include encryption version in attestation certificate
● Uniform open-standard by Google for the Keymaster HAL and TA



Image from Android Developers Blog

https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html
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Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

No Security By Obscurity
Formal analysis by independent researchers

Decades of IV reuse in AES-GCM
Misuse-resistant AEAD / cryptography library



Any questions?
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