
Trust Dies in Darkness: Shedding Light on
Samsung’s TrustZone Cryptographic Design

Alon Shakevsky, Eyal Ronen, Avishai Wool

Extended paper: https://eprint.iacr.org/2022/208.pdf Tool + PoC: https://github.com/shakevsky/keybuster

@shakevsky @eyalr0 yash@eng.tau.ac.il

https://eprint.iacr.org/2022/208.pdf
https://github.com/shakevsky/keybuster

3 academic researchers The leading Android Vendor

What did we find?

2 High severity CVEs that affect over 100 million devices
Recover keys that were encrypted by trusted hardware

Designed using resources from Flaticon.com

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

The need for Trusted Execution Environments (TEEs)

Designed using resources from Flaticon.com

The need for Trusted Execution Environments (TEEs)

Designed using resources from Flaticon.com

Proprietary TrustZone Operating Systems (TZOS)

QSEE
Kinibi

TEEGRIS

TZOS Vendors

Black Box Designs

Designed using resources from Flaticon.com

Research questions

1. Do hardware-protected cryptographic keys remain secure
even when the Normal World (Android) is compromised?

Designed using resources from Flaticon.com

Research questions

1. Do hardware-protected cryptographic keys remain secure
even when the Normal World (Android) is compromised?

2. Do compromised hardware-protected keys break the
security of various protocols that rely on them?

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Designed using resources from Flaticon.com

ARM TrustZone - Attack Model

Designed using resources from Flaticon.com

Android Hardware-Backed Keystore Flow

Designed using resources from Flaticon.com

Android Keymaster TA in
TrustZone

Generate key

B = wrap(key)

B

Request key generation

Android Hardware-Backed Keystore Flow

Designed using resources from Flaticon.com

Android Keymaster TA in
TrustZone

Request attestation for B

Generate key

B = wrap(key)

Generate attestation cert

B

cert

Request key generation

Android Hardware-Backed Keystore Flow

Designed using resources from Flaticon.com

Android Keymaster TA in
TrustZone

Request attestation for B

Generate key

B = wrap(key)

Generate attestation cert

key = unwrap(B)
result = operation(key)

result

Request operation for B
(e.g., encrypt/sign)

B

cert

Request key generation

Android Hardware-Backed Keystore Flow

Designed using resources from Flaticon.com

Android Keymaster TA in
TrustZone

Request attestation for B

Generate key

B = wrap(key)

Generate attestation cert

key = unwrap(B)
result = operation(key)

result

Request operation for B
(e.g., encrypt/sign)

B

cert

Request key generation

Plaintext key material
should never leave
the TZOS

What’s the context?

We need to protect cryptographic keys of applications

Only the Keymaster should access key material
But is it guaranteed?

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

Disclaimer

Where do you start?

Where do you start?

Download the firmware of the specific model

Where do you start?

Download the firmware of the specific model

Read public documentation and security certifications

Where do you start?

Download the firmware of the specific model

Read public documentation and security certifications

Reverse-engineer using Ghidra
Repeat for 26 firmwares

Image: Ryan Kurtz, Apache License 2.0 via Wikimedia Commons

How to interact with the Keymaster?

Designed using resources from Flaticon.com

Keybuster: tool to interact with the Keymaster
Normal World

keybuster

TrustZone device drivers

Secure World

Keymaster TA

TEEGRIS kernel

Secure Monitor

SMC

World
Shared
Memory

EL0
Usermode

EL1
Kernelmode

EL3

SMC

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

Key Blob Encryption

The Keymaster TA encrypts key material inside blobs.

KDF versions of key blobs

salt = SHA-256(salt_seq)
Where salt_seq is one of the following sequences:

KDF versions of key blobs

salt = SHA-256(salt_seq)
Where salt_seq is one of the following sequences:

MDFPP can explain the variations

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

Blob A
Unknown key A

Extract IV and salt

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

Blob A
Unknown key A

Known key B

Extract IV and salt importKey Keystore API

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

Blob B

Blob A
Unknown key A

Known key B

Extract IV and salt importKey Keystore API

Known key B

Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

Blob B

Blob A
Unknown key A

Known key B

Extract IV and salt importKey Keystore API

KB

E(HDK, IV) XOR KA

E(HDK, IV
) XOR KB

Known key B

Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

IV Reuse Attack (v15/v20-s9)
● The Android client can control the salt -> key reuse
● The Android client can control the IV -> IV reuse
● AES-GCM + key reuse + iv reuse -> decryption

Blob B

Blob A
Unknown key A

Known key B

Extract IV and salt importKey Keystore API

KB

E(HDK, IV) XOR KA

E(HDK, IV
) XOR KB

Key A

KA

Known key B

Reminder
REK = Device-unique hardware key
HDK = KDF(REK, salt)
B = AES-GCM(HDK, IV, key)

Bypassing Authentication and Confirmation
We can bypass any key usage restriction without user presence/consent

Images from Android Developers Blog

https://android-developers.googleblog.com/

Bypassing Authentication and Confirmation
We can bypass any key usage restriction without user presence/consent

Images from Android Developers Blog

https://android-developers.googleblog.com/

Downgrade Attack
● V20-s10 has randomized salt –> no trivial key reuse

Downgrade Attack
● V20-s10 has randomized salt –> no trivial key reuse
● Latent code allows creation of v15 blobs

Downgrade Attack
● V20-s10 has randomized salt –> no trivial key reuse
● Latent code allows creation of v15 blobs
● A privileged attacker can exploit this to

force all new blobs to version v15

Android Keymaster TA in
TrustZone

Generate key

B = wrap(key) B, a v15 key blob

Request key generation
KM_EKEY_BLOB_ENC_VER = 15

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

FIDO2 WebAuthn

Allows passwordless authentication

FIDO2 WebAuthn

Allows passwordless authentication

Authentication keys live inside a “platform authenticator”

FIDO2 WebAuthn

Allows passwordless authentication

Authentication keys live inside a “platform authenticator”

Hard to extract the keys from the secure element
Or to clone the platform authenticator

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Trusted Server Android Keymaster TA in
TrustZone

BAUTH

Request attestation for BAUTH

certcert

Generate (Pub, Priv)

BAUTH = wrap(Pub, Priv)

Create attestation
certificate chain for blobVerify certificate,

associate the
public key with the user

Request key generation
(attacker downgrades to

v15 blob)

Registration Request

FIDO2
Registration

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Trusted Server Android Keymaster TA in
TrustZone

BAUTH

Request attestation for BAUTH

certcert

Generate (Pub, Priv)

BAUTH = wrap(Pub, Priv)

Create attestation
certificate chain for blobVerify certificate,

associate the
public key with the user

Request key generation
(attacker downgrades to

v15 blob)

Registration Request

Authentication Request

Generate Challenge
Challenge

Request user consent then
Ask to sign challenge with B

Sign Challenge with Priv in
secure hardware

AA
Verify assertion A,

if successful
the user is signed-in

FIDO2
Registration

FIDO2
Assertion

Bypassing FIDO2 WebAuthn

Designed using resources from Flaticon.com

Bypassing FIDO2 WebAuthn Demo #1

Bypassing FIDO2 WebAuthn Demo #2

What did we find?

Attackers could steal cryptographic keys of applications

Attackers could steal your identity

Responsible Disclosure #1
● May ‘21: We reported the IV reuse attack on S9 to Samsung

Responsible Disclosure #1
● May ‘21: We reported the IV reuse attack on S9 to Samsung
● Aug ‘21: Samsung patched Android O/P/Q devices

○ S9, J3 Top, J7 Top, J7 Duo, TabS4, Tab-A-S-Lite, A6 Plus, A9S
○ CVE-2021-25444 with High severity
○ Removed the option to add a custom IV from the API

Responsible Disclosure #1
● May ‘21: We reported the IV reuse attack on S9 to Samsung
● Aug ‘21: Samsung patched Android O/P/Q devices

○ S9, J3 Top, J7 Top, J7 Duo, TabS4, Tab-A-S-Lite, A6 Plus, A9S
○ CVE-2021-25444 with High severity
○ Removed the option to add a custom IV from the API

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack

○ “There is no application created with the key blob version as v15. And any of the
applications cannot change its key blob version for it to be exploitable.”

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”

○ “we think that there is no practical security impact on this”

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”

○ “we think that there is no practical security impact on this”

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”
● Aug ‘21: We sent the paper

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”
● Aug ‘21: We sent the paper
● Sep ‘21: Samsung reviewed and re-investigated the impact

○ “After further review of your paper, we concluded that "Downgrade Attack" also
has practical impact with our devices”

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”
● Aug ‘21: We sent the paper
● Sep ‘21: Samsung reviewed and re-investigated the impact

○ “After further review of your paper, we concluded that "Downgrade Attack" also
has practical impact with our devices”

Responsible Disclosure #2
● Jun ‘21: Samsung rejected the downgrade attack
● Jul ‘21: We reported the downgrade attack on S10, S20 and S21
● Aug ‘21: Samsung rated the downgrade attack as “very Low severity”
● Aug ‘21: We sent the paper
● Sep ‘21: Samsung reviewed and re-investigated the impact
● Oct ‘21: Samsung patched Android P or later, including S10/S20/S21

○ CVE-2021-25490 with High severity
○ Released a patch that completely removes the legacy key blob implementation

No Security By Obscurity

Return of the IV Reuse Attack

Agenda

Introduction
Background and motivation

Keymaster
TA Analysis

Recovering hardware-protected keys

Implications
Breaking higher-level protocols

Discussion
Main takeaways from our research

Low-Level Cryptographic Issues
● Allowing client to set IV
● Allowing client to set encryption version
● Latent code in security-critical application
● Encryption version persists across “upgrades”

Low-Level Cryptographic Issues
● Allowing client to set IV
● Allowing client to set encryption version
● Latent code in security-critical application
● Encryption version persists across “upgrades”

● Use a unique IV / misuse resistant AEAD (AES-GCM-SIV) / Tink
● Disallow choice of encryption version
● Reduce attack surface in security-critical application
● Always use the latest encryption version

https://developers.google.com/tink

The Gap in Composability
● Key attestation does not commit to the cryptographic method
● Closed vendor-specific implementation

The Gap in Composability
● Key attestation does not commit to the cryptographic method
● Closed vendor-specific implementation

● Include encryption version in attestation certificate
● Uniform open-standard by Google for the Keymaster HAL and TA

Image from Android Developers Blog

https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

No Security By Obscurity
Formal analysis by independent researchers

Conclusions

Fragmented blackbox designs -> dangerous pitfalls
Open standard design

No Security By Obscurity
Formal analysis by independent researchers

Decades of IV reuse in AES-GCM
Misuse-resistant AEAD / cryptography library

Any questions?

Designed using resources from Flaticon.com

● Extended paper: https://eprint.iacr.org/2022/208.pdf
● Tool + PoC: https://github.com/shakevsky/keybuster

@shakevsky

@eyalr0

yash@eng.tau.ac.il

https://eprint.iacr.org/2022/208.pdf
https://github.com/shakevsky/keybuster

