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Abstract—The prevalence of memory corruption bugs in
the past decades resulted in numerous defenses, such as
stack canaries, control flow integrity (CFI), and memory-
safe languages. These defenses can prevent entire classes of
vulnerabilities, and help increase the security posture of a
program. In this paper, we show that memory corruption
defenses can be bypassed using speculative execution attacks.
We study the cases of stack protectors, CFI, and bounds
checks in Go, demonstrating under which conditions they
can be bypassed by a form of speculative control flow
hijack, relying on speculative or architectural overwrites of
control flow data. Information is leaked by redirecting the
speculative control flow of the victim to a gadget accessing
secret data and acting as a side channel send. We also
demonstrate, for the first time, that this can be achieved by
stitching together multiple gadgets, in a speculative return-
oriented programming attack. We discuss and implement
software mitigations, showing moderate performance impact.

Index Terms—Transient Execution, Hardware Security, Side
Channels, Speculative ROP, Memory Safety Mechanisms,
Operating System Security

1. Introduction

Memory corruption vulnerabilities have plagued the
computer security field for more than 30 years. Multiple
ways of exploiting memory bugs have surfaced, requiring
controls to be placed at different levels in the software
stack: mechanisms such as stack canaries and control flow
integrity have been designed and deployed as a mitigation
in existing software, while new languages were designed
with memory safety to close this class of bugs in new
programs [42], [46].

Recently, a new class of attacks, transient execution
attacks [11], and more specifically speculative execution
attacks [23], [21], [29], [25], [40], [10], [32] have been
the subject of intense scrutiny. The ensuing vulnerabilities
appear difficult to mitigate without considerable perfor-
mance trade-offs, leading to the conclusion that specu-
lative execution attacks will remain a problem for the
foreseeable future, and therefore a possibly fruitful area
of research [34].

A natural question to ask is whether the advent of
transient execution attacks has changed the security stance

of modern computing systems against memory corruption
attacks: does the security of memory safety mechanisms,
such as stack smashing protection (SSP), control flow
integrity (CFI), and those embedded in memory safe
languages, hold in the post-Spectre threat model?

In this paper, we show that multiple memory safety
mechanisms that would otherwise successfully prevent ex-
ploitation of vulnerabilities can be speculatively bypassed
to perform arbitrary memory reads. Because these attacks
require a combination of techniques, we show that they do
not apply to all memory safety mechanisms and a careful,
case-by-case analysis is necessary.

At a high level, these attacks work by overwriting,
either architecturally or speculatively, a backwards or for-
ward edge, followed by the use of speculative code reuse
attacks to leak data. In all cases, this overwrite achieves
a speculative control flow hijack, i.e., a redirection of the
speculative control flow to an attacker-chosen arbitrary ad-
dress. One case of such an attack is the speculative buffer
overflow discovered by Kiriansky and Waldspurger [21],
where a return address is speculatively overwritten.

We demonstrate that SSP, GCC’s vtable verification
(VTV), and Go’s runtime memory safety checks are all
vulnerable. In particular, we develop a practical attack
against SSP, where the mitigations against a stack-based
buffer overflow in libpng can be speculatively bypassed
to read arbitrary bytes from the victim program. This
attack additionally leverages a last level cache (LLC) evic-
tion attack to extend the speculative execution window,
and a speculative return-oriented programming (ROP) at-
tack to achieve a Flush+Reload side channel by reusing 5
gadgets from the victim program. Both components of the
attack are not specific to SSP and generalize beyond our
selected use case. Our results demonstrate that, although
such end-to-end attacks are not trivial to mount, they are
realistic. For this reason, we evaluate countermeasures for
each attack scenario, showing that mitigations are both
effective and viable from a performance standpoint.

This paper makes the following contributions:
• Demonstration of a practical attack against SSP-

based buffer overflow mitigations, together with
proof-of-concept attacks against GCC VTable Verifi-
cation (VTV) and against Go’s array bounds checks.

• Demonstration of speculation window lengthening
leveraging LLC eviction of victim data.

• Practical speculative code reuse attack (ROP) to
achieve side-channel send.
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• Custom mitigations derived from lfence-based and
masking-based approaches, withstanding the class of
speculative architectural control flow hijacking at-
tacks, together with a performance evaluation.

2. Speculative execution attacks on memory
safety mechanisms

In this section, we describe end-to-end speculative
execution attacks on abstracted memory safety mecha-
nisms. We begin with a high-level overview of the various
components necessary to perform such an end-to-end at-
tack. We then proceed to analyze the class of speculative
control flow hijacks which is at the heart of the attack;
we refer to this general category of attacks as SPEculative
ARchitectural control flow hijacks, or SPEAR, and detail
them in Section 2.1. Furthermore, we analyze the eviction
mechanism in Section 2.2, and the speculative ROP in
Section 2.3.

Figure 1: Overview of speculative attack against memory safety
mechanisms.

Figure 1 shows an overview of the steps required to
perform an end-to-end attack. The attack has a preparation
phase (Steps 1 and 2), where eviction sets (to ensure
the existence of a suitably long speculation window) are
identified, memory used by the side channel is flushed
and ROP gadgets are primed in the instruction cache. The
attacker then submits an input to the victim in Step 3,
crafted to trigger a violation of a memory safety property.
We assume that traditional exploitation of the violation
is prevented by a suitable memory safety mechanism.
However, the attacker uses a speculative execution attack
to bypass the mechanism by overwriting (architecturally
or speculatively) control-flow data, and obtaining a spec-
ulative control flow hijack (Step 5). As a result, the
victim is tricked into executing a side-channel send of
attacker-chosen memory in Step 6: this is achieved with
the ROP component, which reuses code snippets from
the victim program, appropriately selected and primed in
the initialization phase. The attacker can then execute the
corresponding side-channel receive in Step 7. The success
rate of the attack is increased by concurrently executing
an eviction loop to lengthen the speculation window (Step
4) using the eviction sets found in Step 1.

Threat model: The general threat model for all attacks
in this paper is a local unprivileged attacker, targeting a
process holding a secret in memory. We do not assume that
the attacker is able to inject code in the victim program’s
address space. We assume the attacker has knowledge of
the victim program code, as well as the virtual address
of code at runtime as is the case for Go, or that they can
recover this information if randomized, possibly by using
microarchitectural side channels [41], [16], [13]. Finally,
because we opt to use a speculative ROP payload, we

assume a hyperthread-colocated attacker, thereby sharing
the instruction cache with the victim program, which the
attacker leverages during the ROP chain warm-up phase.
The goal of the attacker is, as in all transient execution
attacks, to leak secrets from the target program. Attacks
based on the architectural overwrite of a backward or
forward edge correspond to the case where an attacker
can provoke a memory safety violation whose traditional
exploitation is prevented by hardening mechanisms in
place. This is demonstrated in the SSP and CFI use cases.
In this case, we assume that the victim program can either
be executed multiple times by the attacker or that the
program automatically restarts, given that each attack run
leaks a limited volume of information and likely leads to
abnormal program termination. This assumption remains
realistic in practice because modern Linux distributions
with systemd automatically restart services after abnor-
mal termination.

Attacks based on the speculative overwrite of a for-
ward edge correspond to a victim program with a memory
safety check that the attacker can exercise and specula-
tively bypass. This is demonstrated in the Go use case.
In this case, given that the overwrite of control flow data
occurs speculatively, the attack does not lead to program
termination, and so the attack does not require the ability
to restart the victim.

2.1. SPEAR attacks

A SPEAR-vulnerable sequence is a code sequence that
results in a speculative control flow hijack. A speculative
control flow hijack allows an attacker to gain control of
the target program’s speculatively-executed code. This is a
powerful primitive: an attacker can follow such an attack
with a speculative ROP sequence to speculatively execute
code gadgets that access a secret and send it to the attacker
via a side channel.

Figure 2: Overview of various Speculative control flow hijack-
ing attacks.

Figure 2 shows a breakdown of the various instances in
the SPEAR attack class in the context of different variants
of speculative control flow hijacks. Classic speculative
control flow hijacking attacks can be performed through
microarchitectural components such as the Branch Target
Buffer (BTB) and Return Stack Buffer (RSB) [23], [29],
[25]. At the same time, the speculative control flow can
also be influenced by instruction sequences that only affect
architectural components, such as registers or memory: we
refer to these as SPEAR attacks. For instance, executing
the call %rbx x86 instruction speculatively when the
value of %rbx is available to the execution unit will
result in speculative execution continuing at the address
in the %rbx register. Therefore, if the %rbx register can



be controlled by the attacker, a speculative control flow
hijack can occur. This control by the attacker can either
be architectural or speculative, as we will see next.

Similarly, a push %rbx; ret instruction sequence
with the register value available would also simply con-
tinue execution at the provided address, with no need
to predict where speculative execution continues via the
RSB. Hence, SPEAR-vulnerable code patterns can con-
cern both forward edges (jmp and call) and backward
edges (ret).

The SPEAR classification offers us a convenient way
to reason on attacks triggered by control flow data over-
write. SPEAR covers all attack scenarios studied in this
paper, namely, speculative bypass of memory safety mech-
anisms; in addition, it covers other known attacks, such
as the speculative overwrite of a backward edge [21], and
the speculative bypass of manually-inserted array bounds
checks [36].

2.1.1. Architectural overwrite. The case where an at-
tacker controls the control-flow-influencing register archi-
tecturally, i.e., via the Instruction Set Architecture (ISA),
is closely related to traditional memory corruption attacks.
These attacks can nowadays be mitigated by mechanisms
such as stack smashing protection (SSP) and, in general,
CFI implementations that check the validity of control
flow metadata before control flow is transferred, thus
detecting and preventing outcomes induced by attacker-
controlled overwrites. SPEAR architectural overwrite at-
tacks focus on the opportunity that the attacker has to
speculatively bypass the checks introduced by these mit-
igations.

1 ;Copy of RET Value
2 mov rax,[rsp]
3 mov QWORD[stored_ret], rax
4
5 ;Architectural Overwrite
6 ; (Attacker Controlled)
7 mov rax, QWORD[target]
8 mov [rsp], rax
9

10 ;Evict RET Value Copy
11 clflush [stored_ret]
12 lfence
13
14 ;Backward Edge Integrity Check
15 ; (Speculation Trigger)
16 mov rax, [rsp]
17 cmp rax, QWORD[stored_ret]
18 jne my_exit
19
20 ;Backward Edge Hijack
21 ret

Listing 1: Architectural backward edge overwrite.

We provide in Listing 1 the snippet of code that
illustrate the backward edge case for architectural over-
writes. A similar snippet for the forward edge case is
reported in Listing 17, Appendix B. The structure of both
cases is similar: the original value of the edge (line 3) is
preserved in a safe location, after which, we assume that
the architectural overwrite is performed (line 8) with an
attacker-controlled value (e.g., through a buffer overflow).
Afterwards, the program executes an integrity check on
the forward or backward edge (line 17) before performing
the control flow transfer (e.g., SSP or CFI check). To
increase the success rate of the attack, we try to maximize
the speculation window caused by the integrity check, for

instance by evicting its reference value – in the snippet,
this step is captured by a clflush instruction (line 11).
If the CPU mispredicts the outcome of the check, it
might execute either a ret (backward edge) or a call
(forward edge) which transfers the control towards the
attacker-controlled value used in the architectural over-
write (line 21).

2.1.2. Speculative overwrite. Alternatively, the attacker
may control the control-flow-influencing register specula-
tively. This means that in a first phase, speculative exe-
cution is triggered (for example by a conditional branch).
In a second phase, the attacker speculatively influences
the control flow edge, thus hijacking speculative control
flow. The control-flow-influencing value may be the result
of a load from an address that is generated during the
speculative execution phase, or it may be loaded from a
location that is speculatively overwritten by a preceding
store operation, resulting in speculative store-to-load for-
warding.

We provide in Listing 2 the snippet of code that
illustrate the backward edge case for speculative over-
writes. A similar snippet for the forward edge case is
reported in Listing 17, Appendix B. Both cases share the
same structure. First, speculative execution is triggered
by a condition (line 2). Then, the speculative overwrite is
performed through some instruction within the speculated
part of the code. Here, the value used for the overwrite
is under attacker control (line 7). Finally, the overwritten
value is used for control flow transfer allowing the attacker
to hijack the speculative control flow (line 10).

Architectural Speculative
Family Fwd Bwd Fwd Bwd

Intel Broadwell 99.5 94.9 99.5 98.7
Intel Skylake 97.6 98.3 98.2 92.1

Intel Coffee Lake 99.8 98.1 99.7 99.4
Intel Kabylake 99.5 95.9 100 99.5

AMD Ryzen 100 100 100 100

Table 1: Success rate (in percentage) computed over 1000
iterations for architectural or speculative overwrites of backward
and forward edges performed on various architectures families.

2.1.3. SPEAR experimental results. We follow the
methodology of Mambretti et al. [31] and test all four
snippets using the Speculator tool [30], which aids the
detection of speculative control flow transfers by using
performance monitor counters (PMC) and speculation
markers.

The SPEAR experimental results are shown in Ta-
ble 1. Each success rate is computed on 1000 iterations.
In the architectural overwrites case, speculative control
flow hijacks are observed at least 95% of the time for
Listing 1 and 97% of the time for Listing 17 on all
tested architectures. The results prove that control flow
is indeed speculatively transferred to the overwritten lo-
cation, thereby bypassing the checks during speculative
execution. Therefore, we conclude that SPEAR attacks
with architectural overwrites can result in speculative con-
trol flow hijacks. In the speculative overwrites case, for
the backward edge case the success rate is at least 92%
while for the forward edge case it is at least 98% . The
experiment results demonstrate that speculative overwrites



are feasible and lead to speculative control flow hijacks
provided a sufficiently large speculation window exists to
facilitate the edge overwrite followed by the dereference.

1 ;Speculative execution trigger
2 ...
3
4 ;Speculative Overwrite
5 ; (Attacker Controlled)
6 mov rax, QWORD[target]
7 mov [rsp], rax
8
9 ;Backward Edge Hijack

10 ret

Listing 2: Speculative backward edge overwrite.

2.2. Speculation window and eviction

SPEAR attacks require the existence of a speculation
window to permit the execution of the control flow transfer
and the side channel send operation, a common precondi-
tion for all speculative execution attacks. This requires
a speculative execution trigger, i.e., an instruction that
causes a wide-enough window of dependent instructions
that are executed but not retired. This is usually achieved
when the process accesses uncached data: the speculation
window then corresponds to the time for the access to
main memory to complete. In Listing 17 for example,
this is achieved with the clflush instruction. To show
the necessity of a wide speculation window, we re-run
the snippet without clflush in the Speculator tool and
verify that indeed the control flow hijack only takes place
in about one run out of 1000. When it does, the window
is only a couple of instructions wide. We therefore con-
clude that without eviction, or other similar approaches
to lengthen the speculation window, SPEAR attacks are
unlikely to be practical.

In all snippets referenced by this section, the specu-
lation window is artificially lengthened by flushing one
of the memory operands of the compare instruction. This
may not be realistic, as it imposes a strong requirement
on the victim code to include a flush (or comparable)
instruction. Instead, because the last level cache (LLC)
is shared and often inclusive, the same effect can be
accomplished more realistically by an external attacker
thread computing an eviction set and performing a small
number of accesses to addresses in this set. An LLC
eviction set competes for the same LLC slice and cache
set as the target address to be evicted. Existing techniques
for performing such attacks typically assume knowledge
of the targeted physical address, as the LLC is physically
indexed. As a consequence of rowhammer attacks, this is
no longer realistic, as most OSes have removed access
to physical mappings for unprivileged users. In Linux,
privileged-only /proc/PID/pagemap access [1] was in-
troduced in release 4.0.

We demonstrate here that such eviction attacks can still
be performed without knowledge of the physical address.
To this end, we perform the eviction in two steps. The
first step consists of the identification of an eviction set
for a cache line in a page under the attacker’s control,
by following the approach of Maurice et al. [33]. The
second step consists in releasing this page to the OS,
and executing the victim process such that it reuses the
previously-created page. This permits the reuse of the

eviction set constructed and verified to be working in the
first step. To increase the victim data eviction success rate,
we follow the eviction set loading method proposed by Liu
et al. [28]. We show details of such a practical attack in
Section 3.1.2 for SSP.

2.3. Speculative ROP

To perform a complete speculative execution attack,
the speculative control flow hijack must be followed by
a side channel send gadget with a secret input. Un-
fortunately, Spectre v1-type Flush+Reload side channel
send gadgets are known to be difficult to find [23],
[50]. As in classical control flow hijacks [37], however,
a speculative code reuse attack can be performed by
chaining the speculative execution of gadgets to construct
a Flush+Reload side channel send sequence. To chain
the gadget sequences, we proceed in a similar way to
traditional ROP attacks, with sequences ending in ret
instructions, yet with two additional requirements. These
requirements for performing speculative code reuse are the
following: i) execution of all instructions in the gadgets
must fit into the speculation window; ii) all code pages in
which the gadgets reside must be present and mapped in
the victim process.

The first requirement is a consequence of the behavior
of speculative execution. In particular, all return values
used to chain gadgets need either to be in store buffers or
in cache. Indeed, whether the return addresses are spec-
ulatively or architecturally written to the stack, execution
of return instructions will make use of these addresses if
they are available, with the CPU preferring those values
for steering front-end fetches over values provided by the
RSB. If the return address is not in cache (or in store
buffers), loading the return address from memory will
exceed the speculation window in practice and only RSB-
based branch prediction will be in use, which will result in
failure of the attack. A similar approach and analogy exists
with forward edges for code reuse. Using the Speculator
tool, we obtain experimentally that the maximum number
of empty gadgets that fit in the largest speculation window
is 20 on our Kaby Lake i7-8550 test platform.

The second requirement is needed to avoid page
misses during gadgets execution. In the event of a page
miss, speculative execution might halt or nested specula-
tion might be triggered. Despite of the two strict require-
ments, we show in Section 3.1.3 that speculative ROP can
be achieved for a practical use case.

3. Case studies

In this section, we analyze different case studies where
memory safety mechanisms can be bypassed with SPEAR
attacks. In particular, in Section 3.1 we use a practical
attack that speculatively bypasses SSP leveraging architec-
tural overwrites of backward edges. Section 3.2 analyzes
architectural overwrites of forward edges, targeting two
prominent CFI frameworks, GCC VTV and LLVM CFI.
In the GCC VTV case, we show how the integrity check
of the forward edge can be used to perform a specula-
tive control flow hijack. For LLVM CFI, we conclude
that the constraints of its implementation does not allow
SPEAR attacks to be mounted in practice, demonstrating



the importance of careful feasibility analysis. Finally, in
Section 3.3, we demonstrate two types of speculative
bounds check bypasses in the Go language using spec-
ulative overwrites of a forward edge. We show how the
attacker may influence the control flow target through both
a load whose address value is attacker controlled and
a load of a value that was speculatively overwritten by
the attacker. We demonstrate practical implementation of
speculative ROP and LLC eviction techniques as part of
the end-to-end practical attack on SSP, i.e., we implement
all the stages in Figure 1. We do not further re-implement
them in the case of CFI and Go, where they would equally
apply and where we focus instead on the central part of
the attack as a proof of their feasibility, i.e., we implement
only Step 5 in Figure 1. Therefore, the success rates
reported below refer either to all the stages together for
the SSP case (7.19%) or just the hijack stage for the Go
(above 80%) and the GCC VTV (85%) use cases, hence
the large difference.

3.1. Attacking stack canaries

Stack canaries are one of the earliest mitigations
against buffer overflows [42], and are widely used to this
day. Among the most broadly adopted implementations
are LLVM’s and GCC’s Stack Smashing Protection (SSP)
and Microsoft’s /GS. At a high level, stack canaries work
by inserting a value (the canary) between stack buffers and
control-flow influencing data on the stack, in particular
the saved return value. The integrity of the canary is
then checked prior to using the saved return value. Local
stack variables are reordered such that buffers, likely to
be overflowed, reside adjacent to the canary while code
pointers remain further away. This way, contiguous over-
flows of local stack buffers can be detected by the integrity
check. The chosen canary value is randomly generated
once during process execution start, and stored in a safe
location.

Each compiler performs the instrumentation differ-
ently but in essence the mechanics are identical with re-
spect to SPEAR attacks; we therefore focus on the exam-
ple of LLVM on Linux x86_64. Implementations consist
of two distinct instrumentation atoms. The instrumentation
atoms on our target system are shown in Listing 3. The
first, the prologue SSP atom, is placed after the function
prologue and local variable allocation, and is responsible
for storing the canary value on the current stack frame.
The second, the epilogue SSP atom, is placed before
local variable deallocation and the function epilogue. It
compares for equality between the global and local ca-
nary values; if the values differ, the __stack_chk_fail
function is called, terminating the program. If the local
canary value was not modified during function execution,
the function returns normally. We show next that this
particular comparison can be the target of a SPEAR attack.

3.1.1. SPEAR attack on LLVM-SSP. The pattern of the
SSP instrumentation closely resembles that of Listing 1.
Under our threat model, an attacker with a buffer overflow
against a function protected by SSP can perform a SPEAR
architectural overwrite attack of the return value of that
function. We describe a practical attack targeting a version

of libpng with a reported buffer overflow (CVE-2004-
0597): the bug is not exploitable in the traditional way
owing to the fact that the function is compiled with SSP.
We show how a speculative adversary can exploit the
SPEAR architectural overwrite to leak arbitrary secrets
from the victim.

The attack proceeds as follows: in the first step, the
attacker overwrites the saved return address of the victim
function. In the second step, the attacker leverages a mis-
prediction in the conditional jump of the canary integrity
check, thus transiently executing a return to the previously
overwritten return address. This PHT-based misprediction
is achieved by the attacker in a way similar to Spectre v1,
by executing the canary integrity check with an intact
local canary sufficiently many times. As discussed in
Section 2.2, another requirement is that a sufficiently long
speculation window exist. We achieve this by evicting the
global canary from the LLC, as we show in Section 3.1.2.
The attacker is then able to perform a side-channel send
operation by constructing a speculative ROP chain to
access a secret as we show in Section 3.1.3.

1 func:
2 prologue
3
4 ; Store canary on the stack
5 mov rbx, QWORD[fs:0x28]
6 mov QWORD[stack_canary], rbx
7 ...
8 body
9 ...

10 ; Check for corrupted canary, if yes fail
11 mov rbx, QWORD[stack_canary]
12 xor rbx, QWORD[fs:0x28]
13 je exit
14 call __stack_chk_fail
15 exit:
16 epilogue
17 ret

Listing 3: Stack canary check instrumentation example.

3.1.2. LLC eviction of the global canary. We apply
the two-step method described in Section 2.2 for the
eviction of the global canary from LLC, and thus from
all cache levels by the property of inclusiveness of caches
on the target platform. The global canary value is always
stored at a fixed offset in a page: we use this property
to find eviction sets for this particular offset by using the
undocumented Intel LLC slice function reverse engineered
by Maurice et al. [33].

The attacker process first identifies a page with a
known eviction set and then unmaps it to be reused by
the victim to store its canary. This is achieved with two
processes under attacker control, as follows. At first, one
of them maps a hugepage and enters a loop in which it
brings an eviction set into cache and waits for feedback
from the second attacker process. The latter in turn probes
its own stack canary and reports back a success as soon
as the canary is no longer cached. Once the eviction
set is identified, the attacker releases the page, which is
now ready to be reused by the victim process to store
its canary. The page release is done via madvise which
instructs the system about the process memory behavior,
in this case indicating that a certain memory range will
not be accessed soon (MADV_DONTNEED). We manually
craft the memory area released by the attacker in order
to shift the target page frame in the right position in



the kernel buddy freelist. We empirically verify that the
reuse of a page frame for the victim canary page occurs
with 100% success rate when attacker controls victim
startup. When the attacker does not control victim startup,
the success rate drops (but remains above 50%), because
synchronization is more difficult and all processes in the
system consume resources from the buddy freelist. Factors
that influence the success rate include the order of the
page in the freelist, the “distance” between the release
operation by the attacker and the request operation by
the victim process. We note that we do not use any
artificial synchronization mechanism between the victim
and attacker, which makes this attack widely applicable.

While data eviction is a common part for speculative
execution attacks, we adapt an LLC eviction technique
only used previously in the context of side channels. Ex-
isting techniques for Spectre attacks evict large quantities
of data from the caches, lowering success rate. For the SSP
attack, this technique ensures the ROP gadgets executed
speculatively remain in cache. Their eviction would result
in the attack failing, because the RSB would be used to
predict return location.

3.1.3. Speculative ROP. We now focus on building and
using a speculative ROP chain that accesses a secret and
leaks it through a side channel. We use the Flush+Reload
cache side channel initially used by Kocher et al. [23],
although other side channels can be used similarly [10],
[40], [32].

In Section 2.3, we have identified two major con-
straints on the attack: i) a limited number of instructions
can fit into the speculation window; and, ii) all code
pages in which the gadgets reside must be present and
mapped with corresponding TLB entries. In addition to
these requirements, we note that gadget code, as well as
any data accessed by gadgets, must be available in cache
during speculative execution. Typically, this is not an issue
in speculative execution attacks because the attacker can
run several attack iterations as warm up phase to bring the
required data in the cache, whereas this attack is single
shot: the process terminates after each attempt and this is
an additional requirement.

1 mov rax, secret
2 shl rax, 8
3 add rax, shared_array
4 mov rax, [rax]

Listing 4: Example of Flush+Reload gadget.

Concerning the first requirement, the Flush+Reload
side-channel send gadget only requires a few instructions:
there are sufficiently short gadgets available, and length is
therefore not an issue in practice. For the second require-
ment instead, we create a tool to search for gadgets in
code that was recently accessed by the victim program, for
which pages are present and mapped in the victim process.
The tool traces the victim process and collects all executed
shared (library) code pages, which are then fed into an
existing ROP gadget search tool, ROPgadget [3]. We run
the tool on the victim program and find 26 mapped code
pages within the 4 different modules used by the victim:
libc, libpng, libz and ld. In total, the tool discovered
2096 gadgets, out of which 406 are candidates for build-
ing the side-channel send gadget. Per-gadget occurrences
are shown in Table 2. Finally, to ensure that all gadget

sequences are in cache, a hyperthread-colocated attacker
performs a ROP chain warm up phase by executing the
chain in close temporal proximity with the SPEAR attack.

Gadget type Occurrence
pop reg ; ret 262

mov reg1, [reg0] ; ret 69
shl reg, 8 ; ret 4

add reg1, reg0 ; ret 71

Table 2: ROP gadgets used for building Spectre v1 chain with
their corresponding occurrences. The search space is a subset of
libc, libpng, libz and ld executable pages, obtained by
filtering out pages unmapped in the victim’s address space and
pages without a valid TLB mapping.

We build a 5-gadget ROP chain using the ROP gadgets
found by our gadget search tool. The chain is functionally
equivalent to the Flush+Reload gadget shown in Listing 4.
The chain accesses a target address computed using a
secret byte value, as in the initial Spectre attacks [23]. Be-
cause Flush+Reload requires shared memory, we choose
the target address to reside in such a shared memory area
between attacker and victim, the first 16 readable and
executable pages of the libpthread library. To leak one
byte we use an array size of 256. To avoid prefetching
effects during side-channel receive, we choose the element
size to be 256, i.e., four cache lines. The total array size
equals 256 x 256 bytes, 16 pages.

By splitting the Flush+Reload gadget in small se-
quences of instructions as shown in Listing 4, we easily
find the required gadgets within the constraints of the
attack. The ROP chain that we find and use in the attack
is shown in Listing 5. This chain pops the addresses
(controlled by the attacker) of the start of the 16 pages
and of the targeted secret from the stack. Next, the secret
value is loaded at line 8. The next speculative gadgets
multiply the secret value by 256 and compute the target
address. The last speculative gadget dereferences the target
address, resulting in a load being issued during speculative
execution. This eventually brings the value into the cache
to be observed by the attacker. The whole chain there-
fore allows the attacker to implement a universal read
primitive over the victim process speculatively, using a
Flush+Reload attack and the attacker’s control over the
stack.

1 libpng.so.3.1.2.5 : 0x7960
2 pop rdx
3 ret
4 libpng.so.3.1.2.5: 0x7f0a
5 pop rsi
6 ret
7 libpng.so.3.1.2.5 : 0x128ec
8 mov eax, dword ptr [rsi]
9 mov byte ptr [rdi + 6a], al

10 ret
11 libpng.so.3.1.2.5 : 0x9f4b
12 shl rax, 8
13 add rax, rdx
14 ret
15 libpng.so.3.1.2.5 : 0x9fde
16 add eax, dword ptr [rax]
17 add byte ptr [rdi], cl
18 xchg eax, ebp
19 ret

Listing 5: Flush+Reload gadget ROP chain.

3.1.4. Attack evaluation and results. The attacker tar-
gets the libpng version 1.2.5 which is vulnerable to



CVE-2004-0597 [4].
CVE-2004-0597 is a stack buffer overflow which

allows the attacker to read length bytes in readbuf.
Due to improper sanitization of length, a read larger than
PNG_MAX_PALETTE_LENGTH is allowed in a stack buffer.
The target victim is a program that receives a .png file and
parses the file using the unpatched libpng-1.2.5. When
building the victim target with stack canaries enabled,
the compiler will instrument png_handle_tRNS with
the corresponding prologue and epilogue SSP atoms. As
expected, SSP protects png_handle_tRNS from exploita-
tion by stopping execution before the function returns.
However, using a SPEAR architectural overwrite attack,
we can perform a speculative control flow hijack. During
the SPEAR attack, the attacker feeds .png files of the
legitimate length to train the pattern history table to by-
pass the stack canary check. Then, the attacker provides
a length larger than PNG_MAX_PALETTE_LENGTH that
overwrites the value of the return address to trigger the
speculative ROP attack.

We confirm the attack works and leaks bytes at arbi-
trary, attacker-chosen addresses from the victim memory,
on Intel Skylake and Coffee Lake with latest microcode
updates, and on Ubuntu 16.04 and 18.04 (both with ker-
nel version 4.15.0) with all default Spectre mitigations
enabled. Namely, both setups include __user pointer
sanitization and usercopy/swapgs barriers mit-
igations against Spectre v1. Moreover, default miti-
gations against Spectre v2 are present (retpoline,
IBPB, IBRS_FW, and RSB filling), excepting STIBP
which is disabled on Ubunutu 16.04. We report the attack
evaluation results on Intel(R) Core(TM) i7-6700K CPU @
4.00GHz (Skylake) running Ubuntu 16.04.6 with kernel
version 4.15.0. As described in Section 2, the attack has
an initialization phase where eviction sets are identified,
memory used by the side channel is flushed and the ROP
sequence is primed. Concurrently with the submission of
the malicious payload, the attacker also runs the eviction
loop to lengthen the speculation window by causing the
eviction of the stack canary in the victim.

1 void /* PRIVATE */
2 png_handle_tRNS(png_structp png_ptr, png_infop

info_ptr, png_uint_32 length)
3 {
4 ...
5 png_byte readbuf[PNG_MAX_PALETTE_LENGTH];
6 ...
7 if (png_ptr->color_type ==

PNG_COLOR_TYPE_PALETTE) {
8 if (!(png_ptr->mode & PNG_HAVE_PLTE))
9 {

10 /* Should be an error, but we can cope with
it */

11 png_warning(png_ptr, "Missing PLTE before
tRNS");

12 }
13 ...
14 png_crc_read(png_ptr, readbuf, (png_size_t)

length);
15 png_ptr->num_trans = (png_uint_16)length;
16 }
17 ...
18 }

Listing 6: libpng vulnerable snippet related to
CVE-2004-0597.

We measure the attack success rate as the number of
times the attacker is able to correctly guess a secret byte
from the victim memory space, per total number of runs.

We report means over 100 runs with 95% confidence level.
The end-to-end attack success rate is 7.19% ± 0.62, for
a single run. In practice the attacker does, as in most
other Spectre attacks, re-run the attack as many times
as necessary to improve its guesses and reach close to
100% success rate. Therefore, we compute the leakage
rate based on the attack time, which is measured as the
full duration of repeating the attack 100 times against the
re-startable victim. The duration includes the restart time
of the victim and the attacker execution time. The end-to-
end leakage rate of victim bytes is 0.3 bytes per second
(with all correct guesses), which we deem sufficiently high
for practical use. Due to different binutils versions in
the two distribution versions, we observe a slight leakage
rate drop in the Ubuntu 18.04 environment.

For improving the success rate, and therefore improv-
ing the leakage rate of the end-to-end SSP attack, one
needs to improve the success of each individual stage of
the attack showed in Figure 1. In addition, the attacker
may run too fast or too slow with respect to the victim
(the attacker simply attempts to synchronize with busy
loops), which can also lead to failure of the attack. We
have verified such synchronization is successful in our
PoC in 78% of cases. We already report in Section 3.1.2
results for the LLC eviction stage: 100%. Because changes
to the victim can affect the success rate, measuring the
success of other individual steps within the end-to-end
PoC is very difficult. However, based on these numbers
and experiments outside the PoC, we infer that the greatest
area for improvement in the leakage rate should come
from improving the ROP gadget phase (e.g., limiting cases
where the gadget code is not in cache) and side channel
receive/send (e.g., limiting cache noise from eviction ac-
tivity and other sources, or using another side channel).

3.2. Attacking CFI

Control Flow Integrity (CFI) of forward edges aims
to protect the integrity of code pointers used in indi-
rect calls and jumps. CFI implementations contain two
main parts: instrumenting all indirect control transfers
to check their validity at runtime, and classifying valid
control flow transfers (typically using static analysis at
build time). We analyze here two prominent cases: the
GCC Virtual Table Verification (VTV) [43] mechanism
to prevent c++ virtual table corruption, as well as LLVM-
CFI [26], a publicly available, low overhead, forward-edge
CFI implementation. In the GCC VTV, we prove that a
SPEAR attack is possible, while in the LLVM-CFI case
we conclude that eviction-related considerations result
in the speculation window being too short for practical
exploitation. In particular, this case study demonstrates
that we cannot conclude that SPEAR attacks apply equally
to all implementations of memory safety-related defenses,
and case-by-case analysis is necessary.

3.2.1. GCC VTV. In the GCC VTV implementation,
for every call to a virtual function in the program, the
compiler inserts a check to make sure that the pointer
used for the indirect call belongs to the virtual table of
the object. Such check is represented by a call to the
function __VLTVerifyVtablePointer implemented in
libvtv.so library. Within this function, the pointer is



looked up from the table; if found, the function simply
returns to the program which will perform the call, oth-
erwise, it gracefully fails. If an attacker can successfully
evict the cache line related to the variable the pointer is
tested against, speculative execution is triggered during
the evaluation of the check. In that case, the indirect call
to the virtual function is speculatively executed and the
code at the corrupted pointer is executed. At this point,
the attacker has performed speculative control flow hijack
and can mount a data exfiltration attack as described in
Section 3.1.

In our proof-of-concept implementation of this attack,
we artificially evict from all cache levels the variable
related to the vtable of the object within the libvtv.so
code. Then, we create a c++ program that defines two
different classes each containing one virtual method. The
first class is our target for the forward edge overwrite. To
verify whether speculative control flow hijack takes place,
we instrument the program to read performance monitor
counters and set the speculative control flow hijack target
to contain a speculation marker. We use the second class
to instantiate the object that is later corrupted.

After object initialization, we perform a vtable pointer
overwrite in our victim object making it point to the vtable
of the first class. Finally, we perform the virtual call for the
control flow transfer which is instrumented by GCC VTV
with a call to the integrity check inside the libvtv.so li-
brary. During normal execution, this overwrite is detected
by the library which reports the corruption and prevents
the control flow transfer by terminating the application.
With a SPEAR attack as described here, we verify that
control flow hijacking occurs in 85% (n=1000), demon-
strating that a SPEAR architectural forward-edge attack is
viable against GCC VTV. We note also that the redirection
is performed to a vtable of a completely unrelated class,
a case which should be prevented by VTV. A real-world
attack would additionally require evicting the compare
variable, for example by using the same method as in
Section 3.1.2, as well as a way of achieving a side-channel
send for the attacker, as in Section 3.1.3.

3.2.2. LLVM CFI. The CFI solution implemented in
LLVM uses function types as equivalence classes: an
indirect call to a function of a different type than the
one specified by the programmer is forbidden by the CFI
instrumentation. This is achieved by placing functions of
an equivalence class in a jump table, thereby having as
many jump tables (whose addresses are carefully chosen)
as equivalence classes. The instrumentation for indirect
calls then consist in simply checking that the address of
the target fall within the range of the jump table, and at
the right alignment.

This range check can be seen as a check against
a compile-provided constant value, using the address of
the provided target. Both of these components are by
design available and cached while performing this check:
evicting the code that contains the range check would
result in speculative execution stopping, and evicting the
address of the target would result in the iBTB being
used for speculative execution. In either case, a SPEAR
attack would fail. The attack may be triggered without
any attempt to artificially extend the speculation window,
but, as demonstrated experimentally in Section 2.2, the

resulting speculation window is rare and short, making
such attacks unlikely to be practical. We conclude that
LLVM CFI is in practice not vulnerable to SPEAR attacks.

3.3. Attacking memory safe languages

Most modern languages are designed to ensure mem-
ory safety. Instrumental to achieving this property are
bounds checks for load and store operations into arrays.
In this section, we show how bounds checks may be
speculatively bypassed, allowing the transient execution of
out-of-bounds load and store operations. We show under
which conditions this leads to a SPEAR attack.

We focus in this case study on the popular Go pro-
gramming language, runtime and compiler. We present
two variants, one where data that influences a forward
control flow edge is architecturally overwritten and one
where a forward edge is speculatively overwritten. In
either case, the attacker is able to achieve a speculative
control flow hijack. We prototype both variants and show
the conditions under which the attack succeeds at a rate
exceeding 80%.

1 type slice struct {
2 array unsafe.Pointer
3 len int
4 cap int
5 }

Listing 7: Arrays in Go.

Before detailing the two attacks, we give a brief intro-
duction to the way the Go compiler manages arrays and
bounds checks. Arrays in Go are represented in memory
as the struct shown in Listing 7. The address of the
contiguous chunk of virtual memory backing the array
is stored in array. The number of elements that array
can hold (and implicitly the size of the memory chunk
since Go is statically typed and the size of the elements
is always known) is stored in cap. The current number
of elements that have been stored in the array is stored in
len.

Whenever an array access is performed in Go, the
compiler will add appropriate bounds checks. This is
achieved in the course of the compiler pass to translate
the abstract syntax tree (AST) into the static single as-
signment (SSA) intermediate representation by adding an
IsInBounds meta-operation before every array load or
store. IsInBounds takes two arguments, the index of the
current access and the length of the array, and drives a
conditional jump either to the basic block that performs
the array access if the index is between zero and length
minus one, or a jump to a function that raises a panic
otherwise.

1 mov rcx, [array]
2 cmp [array+0x8], rax
3 jbe runtime.panicindex
4 mov rax, [rcx+rax*8]

Listing 8: Bounds check in Go.

IsInBounds is translated by later passes into a se-
quence of instructions similar to the one shown in List-
ing 8. The snippet shows a load from an array of integers:
at first rcx is loaded with the address of the memory array,
a compare instruction is issued between the index of the
array access in rax and the array length at array+0x8.



If the index is negative or not strictly less than the length,
the code jumps to a call to the runtime.panicindex
function. Otherwise the array access is performed.

The conditional jump generated by the IsInBounds
meta-operation may speculatively execute the wrong jump
target and perform a transient load or store operation out
of bounds. We show two distinct code patterns, one lever-
aging a load and one a store, that may lead to speculative
control flow hijack.

array[index].function()

Listing 9: Load-based speculative control flow hijack code
pattern.

3.3.1. Load-based SPEAR speculative attack. The first
pattern is shown in Listing 9. It represents an instance of
a SPEAR-speculative attack and consists of an interface
function call, where the interface is stored into an array of
interfaces array, dereferenced at position index. Note
that the array must be an array of interfaces so that
calling the function is achieved by an indirect call. For
the attack to be successful, we need index to be attacker-
controlled and the attacker must be able to store the
value of two pointers in the memory space of the target
process at a known location. The first condition is met
whenever a process accesses an array using an index that is
received as an external input. The second condition is very
commonly met since programs store user-provided input
for processing. Knowledge of the location of the stored
pointers depends on the memory area being used, and is
aided by the deterministic nature of the Go allocator.

1 type iface struct {
2 tab *itab
3 data unsafe.Pointer
4 }
5
6 type itab struct {
7 inter *interfacetype
8 _type *_type
9 hash uint32

10 _ [4]byte
11 fun [1]uintptr
12 }

Listing 10: Structs used by interface calls.

Without loss of generality, we describe the case where
function is the first function defined by the interface.
Exploitation proceeds as follows: first, the attacker pre-
pares the memory structures that are used when an in-
terface call is performed. The structures are shown in
Listing 10, and are used by dereferencing the tab pointer
from the iface struct and then calling into the fun array.

fake iface:
0x0000: <fake itab>
0x0008: 0x0000000000000000

...
fake itab:
0x1000: 0x0000000000000000
0x1008: 0x0000000000000000
0x1010: 0x0000000000000000
0x1018: <CFH target>

...
CFH target:
0x2000: <attacker code>

Listing 11: Memory layout in preparation for the
exploitation of load-based speculative control flow hijack.
The attacker fake iface starts at offset 0x0. The fake
itab prepared by the attacker starts at offset 0x1000. The
control flow hijack target is located at offset 0x2000.

In preparation for exploitation, the attacker ensures
that the memory layout of the target program contains
a pattern similar to that shown in Listing 11. Assuming
that the attacker wants to speculatively redirect the control
flow to address 0x2000, the attacker creates a fake itab
structure (in the example at 0x1000) such that the first
entry in the fun pointer array points to the desired target.
Then the attacker creates a fake iface structure (in the
example at offset 0x0) such that the tab pointer points
to the aforementioned itab structure. With the memory
thus prepared, the attacker supplies the index into the array
such that the resulting address (the base address plus index
multiplied by the size of an iface structure) equals the
fake iface structure (0x0 in our example). With the index
thus set the program will call the runtime.panicindex
function; however if the conditional jump of the bounds
check is mispredicted, the dereference and subsequent
indirect call will take place transiently. Note that, contrary
to the case studies in Section 3.1 and Section 3.2, the
attack is not necessarily “single shot”: if the program
calls recover, the attacker might be able to execute the
vulnerable sequence multiple times.

We prototype the attack to evaluate its effectiveness
in a proof of concept. The proof of concept only aims
to establish the feasibility of the attack: in particular we
do not integrate into an end-to-end attack and refer to
Section 3.1.4 for cache eviction and speculative ROP. The
PoC contains the pattern of Listing 9 called in a loop to
train the pattern history table and ensure that the bounds
check conditional jump as strongly non-taken. The index
used to access the array in the loop is in bounds during the
training phase and is then set to the target index computed
as described above in the last iteration.

To verify whether speculative control flow hijack takes
place, we instrument the program to read PMCs during
the execution of the loop, and set the speculative control
flow hijack target to contain a speculation marker. The
runtime.panicindex function is modified to read and
persist PMC values for each execution.

This instrumentation permits us to verify that specu-
lative control flow hijack indeed takes place. The success
rate is influenced by several factors that we review here.
The most relevant factor is the size of the speculation
window, which is influenced by how quickly the correct
jump target is determined. The speculation window is
maximized if the variables used in the compare instruction
that drives the jump – especially the array length – are
not present in any of the levels of the cache. In order
to get empirical evidence of this fact, we instrument the
program with a clflush instruction right before the array
dereference to ensure that the array length is not cached.
In practice, an attacker may achieve the same result
by performing cache eviction code sequences. However
flushing the cache alone does not ensure a high success
rate: this is because the array length is stored right after
the base address of the array, whose address is loaded
into memory as the first instruction of the dereference
sequence. We verify that if the two memory locations
belong to different cache lines, the speculation window is
maximized. Another factor that influences the success rate
is whether the target of the speculative control flow hijack
is already in the instruction cache. We make sure that this
be the case by insert a call to the marker function in the



warm up phase before the loop. We report success rates
exceeding 80% (n=1000) when the array length is flushed
and is in a separate cache line as the base address on
multiple platforms (Xeon CPU E5-2640, Core i7-8650U,
Core i7-6700K) and different versions of the Go runtime
(1.13.4, 1.12, 1.10.4).

3.3.2. Store-based SPEAR speculative attack. The sec-
ond pattern is shown in Listing 12.

array[index] = value
...
interface.function()

Listing 12: Store-based speculative control flow hijack
code pattern.

The pattern consists of a store operation of an attacker-
controlled value at an attacker-controlled location into
an array. The elements stored in the array must permit
storage of a pointer. Smaller sizes would permit partial
control over the speculative control flow hijack target.
The pattern requires that the array store be followed by
an interface call. The interface call does not need to be
related to the array. It only needs to be in close proximity
of the store operation so that it may still be speculatively
executed. This pattern does not require any ability to
perform preparatory store operations in the memory space
of the target program. The pattern makes use of store-
to-load forwarding, since the store in the array is used
to (speculatively) overwrite a function pointer which is
later (speculatively) loaded and called. This corresponds
to the “speculative overwrite of forward edge” variant of
a SPEAR attack.

The store part of the pattern consists of a speculative
version of a “write-what-where” condition. It may be
exploited in several ways to hijack the interface call: the
most basic one would be to overwrite the tab pointer in
the iface struct (see Listing 10). However this would
either require the attacker to perform a set of preparatory
stores identical to those discussed in Section 3.3.1, or
it would restrict the freedom of the attacker to choose
a target out of the existing interface pointers. Another
strategy would be for the attacker to overwrite the fun
pointer in the itab structure directly. These structures are
stored in a non-writable virtual memory region. However,
given that the store takes place speculatively, the attacker
is able to bypass the write restrictions and overwrite the
pointer. Therefore, we choose to prototype this simpler
and more effective variant.

Exploitation proceeds as follows: at first the attacker
speculatively overwrites the fun pointer in the itab of
the interface that is later dereferenced. This is achieved,
as the attacker controls value and index. The former is
set to the address of the desired speculative control flow
hijack target; the latter is set such that base array and
index multiplied by the size of the array elements add up
to the address of the fun pointer to be overwritten. As in
the previous section, with the index thus set the program
will panic; however if the bounds check is mispredicted,
the store-to-load forwarding and subsequent indirect call
will take place, achieving speculative control flow hijack.

We prototype the attack to evaluate its effectiveness
employing a similar instrumentation as the previous sec-
tion, with PMCs and speculation markers employed to

identify successful runs, and a loop to set the predictor
state. The success rate is similarly influenced by ensuring
that the variables driving the conditional branch are not
cached, and that the speculative control flow hijack target
is in cache. Under these conditions, we report success rates
exceeding 80% (n=1000) on the same platforms listed
in Section 3.3.1.

4. Mitigations

In this section, we implement and analyze serializing-
based (lfence) and masking-based mitigations for SPEAR-
architectural attacks (SSP) in Section 4.1 and SPEAR-
speculative ones (Go) in Section 4.2. We show that in
both cases the masking-based solution results in a low
overhead. Finally, we discuss possible mitigations for
GCC VTV case in Section 4.3.

4.1. Mitigations for SSP

We investigate two possible mitigations for the
SPEAR-architectural attack against SSP. A serializing in-
struction such as lfence can be inserted after loading the
canary in the epilogue instrumentation, thereby ensuring
that the comparison can only lead to a short enough
speculation window. Alternatively, the return value can
be masked architecturally with a generated value that is
set to 0 when the check fails (the canary is corrupted),
and all ones when it passes, as shown in Listing 13.

1 mov rax, QWORD[fs:0x28]
2 mov rcx, QWORD[stack_canary]
3 xor rdx, rdx
4 cmp rax, rcx
5 setne dl
6 add rdx, 0xffffffffffffffff
7 and QWORD[rsp + 8], rdx

Listing 13: Masking mitigation sequence; rax contains
global canary value and rcx contains the stack canary;
rsp + 8 points to the return address.

We implement both mitigations as compiler passes
in clang+llvm. The masking-based mitigation imple-
mentation is an extension of Speculative Load Harden-
ing [12]. SSP is architecture specific, therefore our so-
lution is built for x86_64 Linux systems. We run the
SSP mitigations benchmarking on Intel(R) Core(TM) i7-
6700K CPU @ 4.00GHz. We measure the normalized
runtime of both return address masking and lfence on
SPECint CPU 2006. The normalized runtime is computed
as runtime over the baseline runtime constituted by exe-
cution with SSP Disabled. For reference, we additionally
plot the normalized runtime for all existing SSP imple-
mentations, SSP Loose (-fstack-protector flag), SSP
Strong (-fstack-protector-strong flag), and SSP
All (-fstack-protector-all flag).

The results are shown in Figure 3a. The lfence
mitigation shows a high overhead in 9 out of 12 bench-
marks, the highest being 100%, in the SSP All case with
xalancbmk. Return address masking incurs a significantly
lower, albeit still not negligible performance penalty,
reaching a maximum of 13% for the same benchmark.

Based on this evaluation, we find the return address
masking mitigation to be viable and superior to the
lfence mitigation: the overhead of vanilla SSP (shown



(a) SSP with speculative bypass mitigations. (b) Vanilla SSP.

Figure 3: Overhead computed as normalized runtime over SSP Disabled baseline.

in Figure 3b on SPECint CPU 2006 is at most 9%, in
the case of SSP All on xalancbmk). In addition, we note
that most Linux distributions either use the SSP Loose or
SSP Strong options, both of which incur a low overhead
on all SSP benchmarks: we record a maximum of 2.1%
overhead over the SSP Disabled baseline. With return
address masking, the maximum overhead becomes 2.7%
over the SSP Disabled baseline. We conclude that return
address masking does not impose a significant overhead
with the most commonly used SSP compiler options.

4.2. Mitigations for the Go compiler

We investigate possible mitigations for the SPEAR-
speculative attack on Go. The mitigations consist of two
different compiler passes that ensure that the vulnerability
is no longer exploitable. The first is based on lfence,
whereas the second is based on branchless index masking
sequences. As part of responsible disclosure we have
notified the Go team, who have implemented 2 fami-
lies of compiler-based mitigations for Spectre, namely,
index masking (through the -spectre=index compiler
switch) and retpoline (through the -spectre=ret com-
piler switch).

The first mitigation consists of adding an lfence
instruction after the cmp instruction in the sequence that
implements the IsInBounds meta-operation. With ref-
erence to Listing 8, the lfence instruction is inserted
after the cmp on line 2. The insertion ensures that all
prior instructions have completed, which means that there
will be no misprediction of the branch target and any out-
of-bound access will result in a panic with no transient
execution. The instruction is added explicitly in the pass
that translates the AST into SSA form by defining a
new Lfence meta-operation and adding it after each
IsInBounds operation. We ensure that the operation is
neither reordered nor eliminated.

The second mitigation we investigate entails the ad-
dition of an appropriate masking sequence that ensures
that the index is set to a “safe” value in case of out-of-
bounds accesses. The masking sequence amounts to a no-
op in case the access is in bounds by performing an and
operation on the index with a sign extended −1 mask.
If the access is not in bounds, in our implementation,
the masking operation forces an access of the element
at index 0 in the array by performing an and operation
on the index with a 0 mask. We can see the masking
sequence in Listing 14: after the usual cmp and jmp

instructions, length and index are subtracted in order to
set the carry flag. Then, the sbb instruction is used to
set a register to −1 in case of an in-bounds access or
0 otherwise. The array is subsequently accessed after
performing an and operation on the index with the mask
thus obtained. The pattern might be further optimized
by using the cmp instruction of the bounds check to
set the carry flag. This, however, is not always possible
since the compiler will use a compare instruction with an
immediate whenever possible. The immediate can only
be the second source operand, forcing the direction of
the comparison instruction. For the sake of simplicity
we therefore rely on an extra subtraction operation. The
masking instruction sequence is added by defining three
new meta-operations – OpMaskStep1, OpMaskStep2 and
OpMaskStep3 – which are later lowered into a sub, sbb
and and instruction, respectively.

We measure the overhead of both mitigations by build-
ing the Go runtime version 1.12.0 and running the full
benchmark suite. We run the experiments on a 40-core
Xeon E5-2640 machine with 64 GiB of RAM. Figure 4
displays the empirical cumulative distribution function of
the overhead of each of the two mitigation strategies.
We can see how the lfence-based approach incurs a
high overhead (143% mean and 84% median) due to the
fact that lfence will terminate any speculative execution
and thus severely curtail the instruction throughput. On
the other hand, the masking approach shows a much
lighter overhead (12% mean and 6% median) since the
instructions involved are simple and do not cause any
memory-related operation.

1 cmp rcx, rdx
2 jae <raise-panic>
3 mov rbx, rdx
4 sub rdx, rcx
5 sbb rcx, rcx
6 and rcx, rbx
7 shl rcx, 0x4
8 mov rax, [rax+rcx*1]

Listing 14: Masking mitigation sequence; rdx contains
the index and rcx contains the length of the array and
rax contains the base address of the array.

4.3. Mitigations for GCC VTV

The same mitigations considered in Section 4.1
and Section 4.2 work in the GCC VTV use case. Seri-
alizing mechanisms (e.g., lfence) are a viable solution,
albeit likely with high overhead. A branchless masking
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Figure 4: Empirical CDF of the logarithm of the overhead
percentage for the considered mitigations. Overhead data is
gathered by running the full set of benchmarks of the Go runtime
version 1.12.0.

solution or retpoline could also be used in this context for
what we expect to have better performance, however we
did not implement these.

We believe a better approach, from a performance
point of view, for GCC VTV would be a re-design with
the principles observed for LLVM CFI described in Sec-
tion 3.2.2 where the metadata and the pointer that have
to be verified co-exist within the same cache line. This
condition prevents the attacker to achieve the correct data
eviction and, consequently, the speculation window to
perform the attack is too small.

5. Related work

5.1. Speculative execution attacks

Transient execution attacks can be subdivided into
two main categories: fault-based and speculation-based
attacks [11]. The speculation-based, or Spectre-family,
attacks comprise those leveraging microarchitectural com-
ponents such as the Pattern History Table (PHT) for
Spectre v1 [23], the Branch Target Buffer for Spectre
v2, the Return Stack Buffer (RSB) for Ret2Spec [29] and
Spectre returns [25]. Both BTB and RSB attacks are cases
of speculative control flow hijacks, i.e., they provide the
ability for an attacker to steer speculative execution to an
arbitrary location. Varied and powerful attacks leveraging
the BTB for speculative control flow hijacks have been
demonstrated, in combination with port contention-based,
instruction cache-based, or BTB-based side channels [32],
[10]. In contrast, this paper focuses on SPEAR attacks,
where the speculative control flow hijack step is based
on architecturally visible control-flow influencing instruc-
tions. In Spectre v1.1 [21], Kiriansky and Waldspurger
point out that speculative overwrites of backward edges
lead to speculative control flow hijacks. The SPEAR class
includes their finding and complements it with three new
types, including the architectural overwrite case. Also, we
demonstrate practical use cases on Go memory safety and
GCC VTV, and a full working attack on SSP.

In practice, BTB gadgets are hard to find, thus attacks
have only been shown to be practical if the gadget is in-
jected (e.g., by loading attacker-controlled eBPF bytecode
into the kernel). In the SPEAR attacks, we reuse gadgets
existing within the victim program. The idea of chaining
speculative gadgets in a way similar to ROP was suggested
shortly after the first publication of Spectre attacks. Some
publications have referred to the same idea [21], [32], the
former only briefly mentioning speculative ROP attacks
but practical aspects are neither discussed nor experi-
mented on. In contrast, this paper presents a practical case
of chaining multiple speculative gadgets to form a cache
side-channel send gadget.

Netspectre [40] introduces a victim data evic-
tion technique based on coarse-grained cache eviction.
The method, Thrash+Reload, is a remote variant of
Evict+Reload [15]. The attacker starts a large file down-
load from the victim via a network interface. On the vic-
tim’s side, this action results in victim data eviction with a
probability which depends on the file size. Thrash+Reload
applicability is limited to scenarios where cache thrashing
does not compromise the attack: it would for instance
be detrimental in our SSP end-to-end exploit where the
availability of ROP gadget sequences in the icache is a
necessary precondition.

5.2. Speculative execution terminology

Canella et al. present a thorough taxonomy and eval-
uation of speculative execution variants [11]. In this ter-
minology, the SSP attack falls in the Spectre-PHT, same
address-space, in-place category, given that the attacker
triggers the to-be mispredicted victim path (successful ca-
nary check) prior to the attack, to force the target program
to self-train. This terminology, however, does not help dis-
tinguish the different types of speculative control flow hi-
jacking attacks, provided in our categorization in Figure 2.
In the general sense, a Spectre-PHT type misprediction is
not required for SPEAR attacks: other types of mispredic-
tion leading to the overwrite of a control-flow influencing
data (SPEAR-speculative) or other types of misprediction
following the overwrite of control-flow influencing data
(SPEAR-architectural) are also concerned, which justifies
the need for our categorization. For instance, SPEAR-
speculative attack instances, such as the Go attacks here,
can be classified under the existing Spectre-PHT writing
out-of-bounds category. However, the SSP attack cannot
be covered in that category, given that no misprediction
of a bounds check occurs and the write is not speculative.

Most Spectre attacks including SPEAR rely on a
covert channel and/or gadget to achieve information leak.
Intel terminology [2] refers to it as disclosure gadget.
According to their taxonomy based on disclosure gadget
location, SPEAR falls under the cross-domain transient
execution attack category. While useful, this categoriza-
tion also does not help distinguish between different spec-
ulative control flow hijacks.

5.3. Concurrent work

Three recent papers are concurrent to this work and
partially relate to it. Goktas et al. [14] demonstrate that



speculative execution attacks can be used to bypass ran-
domization based defenses including ASLR. Their main
assumption is the presence of a powerful memory cor-
ruption vulnerability, allowing the attacker to overwrite
(architecturally) function pointers. In contrast, SPEAR
does neither aim to bypass randomization-based defenses,
nor does it assume that the attacker has access to such
a powerful vulnerability. For instance, in Section 3.1 we
assume a vulnerability which cannot be traditionally ex-
ploited due to the presence of SSP. Bhattacharyya et al. [9]
demonstrate that speculative ROP chains can be mounted
in speculative execution attacks by carefully training the
BTB (or RSB) to chain multiple speculative ROP gadgets.
In contrast, we do not make use of BTB or RSB training
to chain gadgets but simply use store-to-load forwarding
of the return value on the stack. Finally, Van Bulck et
al. [45] demonstrate chaining pop-ret instructions in a
transient ROP attack triggered by a LVI attack. This is
complementary to SPEAR, which explores ROP in the
context of speculative execution attacks.

5.4. Mitigations

Since the first speculative execution attacks have been
disclosed in early 2018, different mitigations have been
proposed to prevent each variant. Some mitigations are in-
troduced at hardware level meanwhile others are software-
based. Many of these mitigations target Spectre v2 type
of attacks, meanwhile no software-transparent mitigation
has been introduced for Spectre v1.

The available software-based Spectre v1 mitigations
consist in either deploying a serializing instruction (e.g
lfence) around each sensitive bounds check or, alterna-
tively, masking the index used for accessing arrays [22],
[12], [21], [47].

While lfence is an effective mitigation, it incurs huge
performance penalties if widely applied. Static analysis
tools have been proposed to search for sensitive code
patterns. One example is the Linux kernel where vulner-
able code is instrumented on a case by case basis either
through manual audit or automatic tools (e.g., smatch [5])
detection [6]. The drawback of current available tools is
that they target Spectre v1 code patterns such as array-
out-of-bounds cases only and therefore are not useful in
the general memory corruption case (where an overwrite
of a control-flow influencing value can occur for any other
mispeculation).

At the hardware level, SpecShield [8] changes mi-
croarchitectural handling of loads and prevents forward-
ing of sensitive data to probable covert channels during
transient execution. It proposes three strategies to delay
load broadcast to dependent instruction until sensitive load
instructions are at the top of the re-order buffer. They
demonstrate these techniques can improve performance
compared to software barriers.

For Spectre v2 instead, there are software and hard-
ware mitigations. The software mitigation currently avail-
able is Retpoline [44]. This mitigation targets indirect
calls and indirect jumps and prevents them from being
speculatively executed by trapping speculation within a
loop. As in the barrier cases for Spectre v1, Retpoline
requires code modification and therefore each program has
to be recompiled to enforce such mechanism.

On the hardware side, Intel published three major pro-
tections: i) IBRS [18], which prevents speculation of in-
direct branches using target values computed using lower
privileged predictor modes, ii) STIBP [19], which prevents
BTB poisoning from sibling threads, and iii) IBPB [17],
which ensures that code before a barrier does not influence
the behavior of the code after. IBRS and IBPB are meant
to protect higher privileged code from lower privileged
code. The only mitigation that provides protection within
the same privilege level is STIBP, which is not enabled
by default for performance reasons. None of these Spectre
v2 prevention mechanisms apply to SPEAR attacks, given
that SPEAR does not use branch target injection.

Finally, Intel announced as part of its Control Flow
Enforcement (CET) extension, the future introduction of
a new mitigation that will constrain the target of near
indirect jumps and calls to only ENDBRANCH instruc-
tions. Based on the release specifications, these constraints
should also apply during speculative execution. Therefore,
this mitigation reduces the number of possible gadgets
where speculative execution can be redirected to during
branch target injection attacks. For SPEAR attacks, this
mitigation applies for the forward edge overwrite case,
where it should restrict possible speculative control flow
hijack targets. For the backward edge case, Intel has im-
plemented a shadow stack which, if adequately enforced
during speculative execution, should stop all SPEAR back-
ward edge overwrites.

5.5. Safe speculation designs

In addition to mitigations that aim to protect already
existing systems, several new design proposals have been
presented for future architectures to prevent speculative
execution attacks.

A line of research concentrates on analyzing the data
flow within the CPU pipeline and preventing unsafe op-
erations from leaving observable effects upon mispredic-
tion. NDA [24] restricts speculative data propagation that
follows an unresolved branch (potential control flow mis-
prediction) or unresolved store address (potential mem-
ory dependence misprediction). STT [49] selectively for-
ward secrets based on a speculative taint tracking system.
Dolma [7] presents a lightweight speculative information
flow scheme with secure performance optimizations. All
these designs should prevent SPEAR attacks.

Another set of work, instead, proposes new cache
designs. InvisiSpec [48] removes cache covert and side
channels by confining Unsafe Speculative Loads (USL)
into a speculative buffer until the USL is considered safe
and the changes can be exposed to the cache hierarchy.
In a similar fashion, CleanupSpec [38] prevents the cache
side-effects, however, its strategy differs from InvisiSpec
because it allows the USL to modify the cache. Cleanup-
Spec applies an Undo operation only when mispredic-
tion is detected, therefore limiting performance overhead.
Conditional Speculation [27] and Sakalis et al. [39] block
during speculation memory accesses that do not hit the L1
cache, as the L1 accesses are safe. Finally, DAWG [20]
proposes a mechanism to partition the caches into domains
to provide isolation. These cache based defenses stop
SPEAR attacks as described in this paper but they do
not cover cases of SPEAR where non-cache side channels



are used, such as BTB-based [32] or port contention-
based [10].

6. Discussion

Applicability to other use cases. Beyond the high-
lighted use-cases, SPEAR attacks may be employed
against other targets. For example, other memory-safe
languages may be targeted with SPEAR attacks to spec-
ulatively bypass bounds checks as we show for the Go
programming language. Preliminary investigation suggests
that this is likely to be possible, since instruction se-
quences for bounds checks similar to those detailed in
Section 3.3 are also present in Rust and Java (for JITted
blocks). We analyze in more detail the Rust use case and
report our findings in Appendix A.

Theoretically, any security check that directly or indi-
rectly gates a control flow transfer may be turned into
a SPEAR attack. For instance, all the heap hardening
mechanisms that verify the integrity of the heap metadata
and pointers within libc can potentially lead to one of the
SPEAR variant through the speculative use of a corrupted
data to decide the application control flow. However,
as demonstrated in the LLVM CFI case, a case-by-case
analysis is necessary to establish whether SPEAR attacks
are applicable.

Data leaked in SPEAR-architectural attacks.
SPEAR attacks allow an adversary to leak sensitive in-
formation from the victim address space. In the case of
SSP, we demonstrate that arbitrary memory can be leaked,
one byte per iteration. While we can target any memory
location, we cannot target data that is not deterministic
across runs. In particular, we cannot target to leak the
stack canary, given that its value is re-randomized at every
program start. We note that SPEAR-speculative attacks do
not have this constraint, given that they do not require a
program restart.

General applicability of speculative ROP. The spec-
ulative ROP and LLC eviction techniques are demon-
strated as part of the SSP, SPEAR-architectural over-
write of a backward edge, use case. Nevertheless these
techniques are generally applicable for the exploitation
of other SPEAR use cases, with exploitability always
depending on the scenario at hand. For the general for-
ward edge cases, we note that this requires, as in clas-
sical ROP attacks, a technique known as a stack pivot,
which consists in the attacker setting up a fake return
stack somewhere under its control in memory, and hav-
ing the first control flow hijack point to an instruction
setting the stack pointer to that address (for instance, the
push rax; pop rsp; ret stack pivot gadget). Using
the Speculator tool, we verify that such stack pivots
do work for SPEAR-architectural as well as SPEAR-
speculative attacks.

General applicability of LLC eviction. In our end-to-
end attack over SSP, we employ a new more precise LLC
eviction technique which is described in details in 3.1.2.
The necessity for developing our own, more precise, LLC
eviction technique stems from the fact that our attack
poses two additional requirements. The first is the fact that
we require the eviction process to be very selective, since
we cannot allow elements such as the addresses injected
on the stack or the gadgets code to be evicted because that

will stall speculative execution and prevent the completion
of the attack. The second is that the eviction process
needs to complete within a short amount of time to avoid
the scenario where the line containing the canary is first
evicted and then re-cached by the natural execution of
the victim while the eviction process completes. With our
technique, we can keep the number of possible cache-sets
as small as possible and therefore minimize the length
of the eviction process. We explore an existing LLC flush
method discovered by Oren et al. [35] which could poten-
tially fit the second requirement. However, we conclude
that this method is too intrusive in a setting where the
attacker relies on cached data and code (victim secret,
ROP gadgets) available in the speculation window.

7. Conclusion

In this paper, we investigate variants of speculative
control flow hijacking attacks, called SPEAR, that exploit
and bypass current mitigations against classic memory
corruption vulnerabilities to leak information from local
processes. With SPEAR, we show that Spectre-like vul-
nerabilities drastically increase attack vectors for local
attackers. Therefore, they force not only the creation
of new mitigations but also the re-design of previously
deployed protections. In this work, we present attacks
against stack canaries, CFI and memory-safe languages.
We demonstrate a practical attack against SSP buffer
overflow mitigations and proof-of-concept implementa-
tions against GCC VTV and Go’s runtime. We show the
use of multiple ROP gadgets and details on how to use
LLC eviction without knowledge of physical addresses
in the context of SPEAR attacks. Finally, we discuss
how SPEAR attacks can be mitigated and report our
performance results.
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We submitted the PoC exploits and our findings to the
Go security team on November 22nd, 2019. As a result
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hardening measures (index masking and retpoline) which
were released in Go 1.15.
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Appendix A.
SPEAR attack against Rust bounds checking

The implementation of Rust panicking mechanism is
abundant of SPEAR speculative control flow hijacking
patterns similar to those discussed in the Go case study
(Section 3.3). Here, we examine the safety features em-
ployed by Rust for index expressions and demonstrate a
proof of concept SPEAR attack against out of range access
hardening.

In Rust, memory safety for index expressions is es-
tablished during Mid-level Intermediate Representation
(MIR) building, with static and dynamic arrays, slices and
strings being subject to sanitization. At compiler level,
index expressions are instrumented with bounds checks
which prevent out of range access. However, similarly
to the case of Go, CPU misprediction of bounds check
outcome leads to speculative out of bounds access.

1 const PADDING_SIZE: usize = 7;
2 pub type Fptr = fn(u64) -> u64;
3
4 pub struct Data {
5 _padding: [u64; PADDING_SIZE],
6 buf: Box<[Fptr]>,
7 }
8 let data: Data = Box::new(Data { ... });
9 data.buf[index]();

Listing 15: SPEAR speculative control flow hijacking
target in Rust. The index value is attacker controlled. We
assume that the attacker writes the CFH target in memory
prior to the attack.

1 mov rsi, [index]
2 mov rax, [buf len]
3 cmp rsi, rax
4 jle ok
5 call <core::panicking::panic_bounds_check>
6 ok:
7 mov rcx, [buf]
8 mov rdx, [index]
9 ; Calls function pointer when index is in bounds

10 call QWORD[rcx+rdx*8]

Listing 16: Disassembly of Rust index expression bounds
check instrumentation.

The attack targets the array index access followed by
an indirect call in Listing 15 at line 9. To trigger the
panicking system, the array is accessed with an attacker
controlled index which is out of bounds. Rust MIR in-
struments the array index access with a bounds check. We
analyze the index expression bounds check instrumenta-
tion at Assembly level in Listing 16. The instrumentation
starts with array length loading and comparison against
the attacker provided index, at line 3. Depending on the
comparison outcome, the execution proceeds with access-
ing the array element requested or aborting in case of
in-bounds requirement violation.

When the comparison between index and length is
slow (due to uncached operands), the CPU may mispredict
the result and continue execution speculatively, on the
wrong path.

In the PoC, the victim data structure is chosen such
that the array length can be evicted prior to the attack.

The array length is stored together with the array data
pointer in buf. At line 8 the Data object is initialized
using Box, therefore the object is placed on heap. This
avoids Rust default stack allocation which lowers the array
length eviction success. Furthermore, the eviction may
affect attack critical data, like the buf data pointer. In
the PoC, Data uses a large enough padding so that the
array length and the data pointer land on different cache
lines.

The buf length eviction triggers mispeculation of the
jump direction taken (Listing 16, line 4). Inside the spec-
ulation window, an out of bounds array access with the at-
tacker controlled index leads to reading a function pointer
from an attacker-owned memory area. Subsequently, the
attacker controlled function pointer is the call instruction
destination (line 10), therefore facilitating speculative exe-
cution of attacker chosen code (in this case, a speculation
marker). Despite of the CPU rolling back the speculative
execution effects on registers and memory, we use Intel
Performance Monitoring Counters for counting specula-
tion marker hits. We carry out the experiments on an
Intel Skylake machine running Ubuntu 18.04. We measure
an overall success rate of 90% (n=1000) for the SPEAR
attack against Rust bounds checking mechanism. As for
Go and GCC VTV, this success rate refers to the hijack
phase only.

Appendix B.
Further Code Snippets

1 ;Copy of Target Value
2 mov rax, [orig_target]
3 mov QWORD[stored_target], rax
4
5 ;Architectural Overwrite
6 ; (Attacker Controlled)
7 mov rax, QWORD[hijacked_target]
8 mov QWORD[target], rax
9

10 ;Evict Target Value Copy
11 clflush [stored_target]
12 lfence
13
14 ;Forward Edge Integrity Check
15 ; (Speculation Trigger)
16 mov rax, QWORD[target]
17 cmp rax, QWORD[stored_target]
18 jne my_exit
19
20 ;Forward Edge Hijack
21 call QWORD[target]

Listing 17: Architectural forward edge overwrite.

1 ;Speculative execution trigger
2 ...
3
4 ;Speculative Overwrite
5 ; (Attacker Controlled)
6 mov rax, QWORD[hijacked_target]
7 mov QWORD[target], rax
8
9 ;Forward Edge Hijack

10 call QWORD[target]

Listing 18: Speculative forward edge overwrite.
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