
Bridging Security Infrastructure Between the
Data Center and AWS Lambda

Michael Weissbacher
Square, Inc.
@mweissbacher

Black Hat USA 2021
August 4th

https://mweissbacher.com/
https://twitter.com/mweissbacher

Overview

2

● Background & Context
● Goals
● Solution Pt 1 Enabling Lambda to call microservices in the DC  AWS EKS
● Solution Pt 2 Syncing application secrets
● Key Learnings

Bio

3

● Michael Weissbacher, PhD
● Infrastructure Security Team @ Square in NYC
● Subteam focusing on Cryptographic Identity and Secrets
● Previously: Security Research @ Northeastern University

Background & Context

Why do developers choose Lambda?

5

Benefits of serverless or Lambda specifically:

● Focus: business logic, rather than infrastructure
● Speed: it’s fast!
● Scalability: both up and down. No need to maintain idle servers
● Compatibility: can be triggered through close integration with AWS

APIs

How does it work?

6

● Lambdas are code without permanent infrastructure
● Small VMs on Amazon Linux
● Firecracker MicroVM, Lambda Sandbox
● On demand, infrastructure is allocated: cold start
● Subsequent invocations: reuse state
● Demand fades: infrastructure is deallocated

The problem with serverless

7

Serverless architecture is not compatible with
security infrastructure in the DC

● Reasons Lambda is not compatible:
○ Geared towards short lived workloads
○ Deploy process different
○ Immediate response core feature
○ Serverless scalability cannot be held back

Goal

Goal at Square

9

Square has been migrating to the cloud to
achieve higher flexibility and scalability

We need Lambdas to be treated the same as
other workloads
● DC Kubernetes-like platform
● AWS Kubernetes on EKS
● Connections: Envoy service mesh

What do we need for Lambda?
● Communicate securely
● Access application secrets

Lambda can’t be an island!

System Goals

10

● Communication: Connect to DC/AWS EKS mesh

● Application secrets: Access to protected data
Equal footing
with DC security
infrastructure ...

...while still
maintaining
Lambda benefits

● Speed: Must support fast response times

● Scalability: Must scale with Lambda demand

● Compatibility: Must plug into DC infrastructure

● Availability: Must be high

Solution Pt 1
Enabling Lambda to call

microservices in DC/EKS

Workload identity at Square

14

● Everything is a micoservice
● mTLS at Square since 2012 a.k.a. “Zero trust

networking” or “Identity is the new perimeter”
● Traffic via Envoy service mesh, sidecar handles

connection
● Workloads in DC  AWS EKS
● Identity is tuple (service name, environment)
● E.g.: (service1, staging), or (service2, production)

SPIFFE

15

● Workload identity standard
● Influenced by industry usage of workload and

service identity at Google, Square, ...
● SPIRE is reference implementation for SPIFFE

● Square started migrating to SPIRE 3 years ago
● Deprecate homemade identity issuance...
● … onboard open source solution
● We use SPIFFE identity in all environments

Shape of identity for Lambda

16

● Multi-account architecture
● Mapping

○ (service1, staging) ⇔  AWS Account 12345 
○ (service1, production) ⇔  AWS Account 23456 

● Multiple Lambdas in one account: one service
● We use accounts as a security boundary per service and

environment
● We have different roles within an account (read only, execution

role, ...)

Identity issuance: what options were available?

17

SPIRE
Bootstrap from Account

Credentials

+
● DC identity is solved problem
● Works well for long-lived services

● Externally signal account ownership
● Construct via KMS building bearer

token
● Signed request

-
● No support for serverless
● Requires agent
● No sidecar support in Lambda

● Could carry cloud implementation
details into DC

● Doesn’t fit into architecture picture

Identity issuance decision

18

BUILD
Existing options didn’t meet our goals

Architecture for identity issuance

19

Pull vs. Push

Identity
Issuance

● Identity would be
generated as a Lambda is
invoked

● Create agent that
operates similar to a
sidecar

● Issue identity and make sure
it is readily available

● Anti-pattern compared to
SPIRE using pull

Security ● Security model equivalent
to DC

● No security downsides
● Identity controlled by IAM

and SCP

Availability ● For Lambda, agent
creates blocking
dependency for
invocation

● Flexible

Architecture Decision

20

PUSH

○ No security downsides
○ Enables us to be more flexible with SLA
○ Lambda never has to wait for identity

issuance

PULL

System components

21

● Identity Governance and Administration (IGA
○ Square internal service
○ Provides (service, environment, account ID with enabled Lambda identity

● Issuance
○ Generate Certificate with SPIFFE URI per-service
○ Short lived, 24h
○ Implemented as Lambda

● AWS Private CA PCA
○ Used by issuance
○ HSM backed CA service
○ Audit capabilities

● AWS Secrets Manager
○ Centralized resource
○ Access via IAM and SCP

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
"AWS", and “AWS Lambda” are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Amazon Web Services, the “Powered by AWS” logo,
“AWS Lambda”, and "AWS" are trademarks of
Amazon.com, Inc. or its affiliates in the United States
and/or other countries

Hello! Lambda calling

29

● Lambda layer
○ Pulls identity from Secrets Manager
○ Golang process listening on localhost
○ Overloads VerifyPeerCertificate in TLS to perform SPIFFE

URI validation
○ Entire process transparent to developers

● Meshproxy
○ Modified version of envoy
○ Pass-through TLS
○ Routes by SNI between DC and EKS

● DC/EKS services
○ ACL check against SPIFFE URI

System Goals

30

● Communication: Connect to DC/AWS EKS mesh ✅
● Application secrets: Access to protected data

Equal footing
with DC security
infrastructure ...

...while still
maintaining
Lambda benefits

● Speed: Must support fast response times ✅
● Scalability: Must scale with Lambda demand ✅
● Compatibility: Must plug into DC infrastructure ✅
● Availability: Must be high ✅

Risk Mitigation

31

Stealing the root
● Attacker would be able to issue certs offline
● Root contained in AWS Private CA
● No intermediates used, leaf issuance off of root

Attacking issuance
● Account locked down
● Audit trail

Stealing identity from a Lambda
● Blast radius limited to 24h, ACL system limits damage
● IAM and SCP

Influenced SPIRE serverless architecture

32

RFC posted after we published our system description

RFC initially pull-style issuance, but has adopted
push-style based on our implementation

● Implementation of serverless issuance in progress, target release:
SPIRE v1.1 September/October 2021

● Square looking to migrate to open source implementation

Solution Pt 2
Syncing application

secrets

Application Secrets: Keywhiz

36

● What are secrets? API keys, GPG keys, …
● Open source: github.com/square/keywhiz
● Secret ownership mapped to microservices
● DC

○ Parallel PKI
○ Syncer daemonset on each server node
○ Syncer has access to all applications’ secrets deployed on node

● Integrated web tooling in “Square Console”
○ Self-serve adding secrets
○ Tracking of expiration

http://github.com/square/keywhiz

Full decentralization?
Evaluating using Secrets Manager directly
● We decided against it - Why?

○ Security teams have expertise in handling centralized secrets
○ Conflicting versions of secrets, e.g.: in multi-cloud + DC scenario
○ No centralized expiration tracking
○ Centralized tooling, such as GPG integration

● Bottom line: too risky, and wanted to do better

Full centralization?
Evaluating DC equivalent
● No deploy moment
● Can’t block on invoke
● Bottom line: not compatible

37

Application secrets decision

38

BUILD
DC benefits + cloud native features

Security Boundaries

39

● DC Node syncers with wide ranging access

● Lambda
○ An opportunity to reduce blast radius
○ No concept of "node"

An Idea
● SPIFFE identity work unlocked infrastructure capabilities (!
● Added SPIFFE support to Keywhiz
● Client-side syncer uses service identity

Reduce exposure
● Opt-in to secrets vs. opt-out
● Action required via Square Console

Secrets Availability

40

● Observation: Secrets are updated rarely
● Majority of syncing operations: no-op
● Reliable cache > blocking on updates
● Unscheduled update: Trigger syncer

Storage
● Fast reads: Secrets Manager
● No DC dependencies
● Default encryption key enforces account boundaries

Motivation

41

Amazon Web Services, the “Powered by AWS” logo,
and "AWS" are trademarks of Amazon.com, Inc. or its
affiliates in the United States and/or other countries

How to onboard

42

● Terraform module
● To apply: 24 lines
● Secrets Manager: direct access

● Implemented as Lambda
● Uses Lambda workload identity
● Client operates in each enabled account

1
2

3

4

44

System Goals

46

● Communication: Connect to DC/AWS EKS mesh ✅
● Application secrets: Access to protected data ✅

Equal footing
with DC security
infrastructure ...

...while still
maintaining
Lambda benefits

● Speed: Must support fast response times ✅
● Scalability: Must scale with Lambda demand ✅
● Compatibility: Must plug into DC infrastructure ✅
● Availability: Must be high ✅

Risk Mitigation

47

Access all secrets
● Attack Keywhiz
● ACL system blocks access

Compromise syncer
● CI/CD pipeline
● S3 object version

Access individual secrets
● Secrets tied to identity
● Lambda secret access ⊆ service’s secrets

Present and Future

48

● Secrets in sync between DC and Lambda in production
● SPIFFE support in Keywhiz offers interoperability with new

environments

Key Learnings

How we knew it worked

50

● Identity issuance and secrets used in production
● SPIRE is implementing serverless support following our

model

Summary

51

● Developers want Lambdas, whether you're ready or not
● Support your developers with infrastructure they already know

○ mTLS Envoy service mesh
○ Keep secrets in sync between multiple environments

● Hybrid environments are hard
○ “Moving” to the cloud means operating in two environments
○ This challenging interim state can last years
○ Services in the cloud will rely on DC
○ Use best of both: environments should support each other, do not block

Thank you

Michael Weissbacher
@mweissbacher

https://mweissbacher.com/
https://twitter.com/mweissbacher

References

53

Square blog posts covering this presentation
● Providing mTLS Identities to Lambdas
● Expanding Secrets Infrastructure to AWS Lambda

Related Square blog posts
● Enabling Serverless Applications at Square
● Using AWS Lambda Extensions to Accelerate AWS Secrets Manager

Access
● Adopting AWS VPC Endpoints at Square

https://developer.squareup.com/blog/providing-mtls-identities-to-lambdas/
https://developer.squareup.com/blog/expanding-secrets-infrastructure-to-aws-lambda
https://developer.squareup.com/blog/enabling-serverless-applications-at-square/
https://developer.squareup.com/blog/using-aws-lambda-extensions-to-accelerate-aws-secrets-manager-access/
https://developer.squareup.com/blog/using-aws-lambda-extensions-to-accelerate-aws-secrets-manager-access/
https://developer.squareup.com/blog/adopting-aws-vpc-endpoints-at-square/

References

54

Service identity
● Envoy
● SPIFFE
● SPIRE RFC for serverless architecture
● AWS Certificate Manager Private Certificate Authority
● What is mutual TLS?

Application secrets
● What is AWS Secrets Manager?
● Keywhiz

https://www.envoyproxy.io/
https://spiffe.io/
https://github.com/spiffe/spire/issues/1843
https://aws.amazon.com/certificate-manager/private-certificate-authority/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://square.github.io/keywhiz/

References

55

Lambda
● Understanding Container Reuse in AWS Lambda
● Behind the scenes, AWS Lambda
● Firecracker - AWS Blog

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://www.bschaatsbergen.com/behind-the-scenes-lambda
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/

