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● Background & Context
● Goals
● Solution Pt 1 Enabling Lambda to call microservices in the DC  AWS EKS
● Solution Pt 2 Syncing application secrets
● Key Learnings
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Background & Context



Why do developers choose Lambda?
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Benefits of serverless or Lambda specifically:

● Focus: business logic, rather than infrastructure
● Speed: it’s fast! 
● Scalability: both up and down. No need to maintain idle servers
● Compatibility: can be triggered through close integration with AWS 

APIs



How does it work?
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● Lambdas are code without permanent infrastructure
● Small VMs on Amazon Linux
● Firecracker MicroVM, Lambda Sandbox
● On demand, infrastructure is allocated: cold start
● Subsequent invocations: reuse state
● Demand fades: infrastructure is deallocated



The problem with serverless
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Serverless architecture is not compatible with 
security infrastructure in the DC

● Reasons Lambda is not compatible:
○ Geared towards short lived workloads
○ Deploy process different
○ Immediate response core feature
○ Serverless scalability cannot be held back



Goal



Goal at Square
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Square has been migrating to the cloud to 
achieve higher flexibility and scalability 

We need Lambdas to be treated the same as 
other workloads
● DC Kubernetes-like platform
● AWS Kubernetes on EKS
● Connections: Envoy service mesh

What do we need for Lambda?
● Communicate securely
● Access application secrets

Lambda can’t be an island!



System Goals
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● Communication: Connect to DC/AWS EKS mesh 

● Application secrets: Access to protected data 
Equal footing 
with DC security 
infrastructure ...

...while still 
maintaining 
Lambda benefits

● Speed: Must support fast response times 

● Scalability: Must scale with Lambda demand 

● Compatibility: Must plug into DC infrastructure 

● Availability: Must be high 



Solution Pt 1 
Enabling Lambda to call 

microservices in DC/EKS







Workload identity at Square
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● Everything is a micoservice
● mTLS at Square since 2012 a.k.a. “Zero trust 

networking” or “Identity is the new perimeter”
● Traffic via Envoy service mesh, sidecar handles 

connection
● Workloads in DC  AWS EKS
● Identity is tuple (service name, environment)
● E.g.: (service1, staging), or (service2, production)



SPIFFE
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● Workload identity standard
● Influenced by industry usage of workload and 

service identity at Google, Square, ...
● SPIRE is reference implementation for SPIFFE

● Square started migrating to SPIRE 3 years ago
● Deprecate homemade identity issuance...
● … onboard open source solution
● We use SPIFFE identity in all environments



Shape of identity for Lambda

16

● Multi-account architecture
● Mapping

○ ( service1, staging ) ⇔  AWS Account 12345 
○ ( service1, production ) ⇔  AWS Account 23456 

● Multiple Lambdas in one account: one service
● We use accounts as a security boundary per service and 

environment
● We have different roles within an account (read only, execution 

role, ...)



Identity issuance: what options were available?
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SPIRE
Bootstrap from Account 

Credentials

+
● DC identity is solved problem
● Works well for long-lived services

● Externally signal account ownership
● Construct via KMS building bearer 

token
● Signed request

-
● No support for serverless
● Requires agent
● No sidecar support in Lambda

● Could carry cloud implementation 
details into DC

● Doesn’t fit into architecture picture



Identity issuance decision
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BUILD
Existing options didn’t meet our goals



Architecture for identity issuance
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Pull vs. Push

Identity 
Issuance

● Identity would be 
generated as a Lambda is 
invoked

● Create agent that 
operates similar to a 
sidecar

● Issue identity and make sure 
it is readily available

● Anti-pattern compared to 
SPIRE using pull

Security ● Security model equivalent 
to DC

● No security downsides
● Identity controlled by IAM 

and SCP

Availability ● For Lambda, agent 
creates blocking 
dependency for 
invocation

● Flexible



Architecture Decision
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PUSH 

○ No security downsides
○ Enables us to be more flexible with SLA
○ Lambda never has to wait for identity 

issuance

PULL



System components
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● Identity Governance and Administration (IGA
○ Square internal service
○ Provides (service, environment, account ID with enabled Lambda identity

● Issuance
○ Generate Certificate with SPIFFE URI per-service 
○ Short lived, 24h
○ Implemented as Lambda

● AWS Private CA PCA
○ Used by issuance
○ HSM backed CA service
○ Audit capabilities

● AWS Secrets Manager
○ Centralized resource
○ Access via IAM and SCP
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Hello! Lambda calling
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● Lambda layer
○ Pulls identity from Secrets Manager
○ Golang process listening on localhost
○ Overloads VerifyPeerCertificate in TLS to perform SPIFFE 

URI validation
○ Entire process transparent to developers

● Meshproxy
○ Modified version of envoy
○ Pass-through TLS
○ Routes by SNI between DC and EKS

● DC/EKS services
○ ACL check against SPIFFE URI



System Goals
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● Communication: Connect to DC/AWS EKS mesh  ✅
● Application secrets: Access to protected data

Equal footing 
with DC security 
infrastructure ...

...while still 
maintaining 
Lambda benefits

● Speed: Must support fast response times ✅
● Scalability: Must scale with Lambda demand ✅
● Compatibility: Must plug into DC infrastructure ✅
● Availability: Must be high ✅



Risk Mitigation
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Stealing the root
● Attacker would be able to issue certs offline
● Root contained in AWS Private CA
● No intermediates used, leaf issuance off of root

Attacking issuance
● Account locked down
● Audit trail

Stealing identity from a Lambda
● Blast radius limited to 24h, ACL system limits damage
● IAM and SCP



Influenced SPIRE serverless architecture
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RFC posted after we published our system description

RFC initially pull-style issuance, but has adopted 
push-style based on our implementation

● Implementation of serverless issuance in progress, target release: 
SPIRE v1.1 September/October 2021

● Square looking to migrate to open source implementation



Solution Pt 2 
Syncing application 

secrets







Application Secrets: Keywhiz
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● What are secrets? API keys, GPG keys, …
● Open source: github.com/square/keywhiz
● Secret ownership mapped to microservices
● DC

○ Parallel PKI
○ Syncer daemonset on each server node
○ Syncer has access to all applications’ secrets deployed on node

● Integrated web tooling in “Square Console”
○ Self-serve adding secrets
○ Tracking of expiration

http://github.com/square/keywhiz


Full decentralization?
Evaluating using Secrets Manager directly
● We decided against it - Why?

○ Security teams have expertise in handling centralized secrets
○ Conflicting versions of secrets, e.g.: in multi-cloud + DC scenario
○ No centralized expiration tracking
○ Centralized tooling, such as GPG integration

● Bottom line: too risky, and wanted to do better

Full centralization?
Evaluating DC equivalent
● No deploy moment
● Can’t block on invoke
● Bottom line: not compatible

37



Application secrets decision
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BUILD
DC benefits + cloud native features



Security Boundaries
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● DC Node syncers with wide ranging access

● Lambda
○ An opportunity to reduce blast radius
○ No concept of "node"

An Idea
● SPIFFE identity work unlocked infrastructure capabilities (!
● Added SPIFFE support to Keywhiz
● Client-side syncer uses service identity

Reduce exposure
● Opt-in to secrets vs. opt-out
● Action required via Square Console



Secrets Availability
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● Observation: Secrets are updated rarely
● Majority of syncing operations: no-op
● Reliable cache > blocking on updates
● Unscheduled update: Trigger syncer

Storage
● Fast reads: Secrets Manager
● No DC dependencies
● Default encryption key enforces account boundaries



Motivation
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Amazon Web Services, the “Powered by AWS” logo, 
and "AWS" are trademarks of Amazon.com, Inc. or its 
affiliates in the United States and/or other countries



How to onboard
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● Terraform module
● To apply: 24 lines
● Secrets Manager: direct access

● Implemented as Lambda
● Uses Lambda workload identity
● Client operates in each enabled account



1
2

3

4
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System Goals
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● Communication: Connect to DC/AWS EKS mesh  ✅
● Application secrets: Access to protected data ✅

Equal footing 
with DC security 
infrastructure ...

...while still 
maintaining 
Lambda benefits

● Speed: Must support fast response times ✅
● Scalability: Must scale with Lambda demand ✅
● Compatibility: Must plug into DC infrastructure ✅
● Availability: Must be high ✅



Risk Mitigation
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Access all secrets
● Attack Keywhiz
● ACL system blocks access

Compromise syncer
● CI/CD pipeline
● S3 object version

Access individual secrets
● Secrets tied to identity
● Lambda secret access ⊆ service’s secrets



Present and Future
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● Secrets in sync between DC and Lambda in production
● SPIFFE support in Keywhiz offers interoperability with new 

environments



Key Learnings



How we knew it worked
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● Identity issuance and secrets used in production
● SPIRE is implementing serverless support following our 

model



Summary
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● Developers want Lambdas, whether you're ready or not
● Support your developers with infrastructure they already know

○ mTLS Envoy service mesh
○ Keep secrets in sync between multiple environments

● Hybrid environments are hard
○ “Moving” to the cloud means operating in two environments
○ This challenging interim state can last years
○ Services in the cloud will rely on DC
○ Use best of both: environments should support each other, do not block



Thank you

Michael Weissbacher
@mweissbacher

https://mweissbacher.com/
https://twitter.com/mweissbacher
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