
DBREACH
Database Reconnaissance and Exfiltration via Adaptive 
Compression Heuristics

#BHUSA  @BlackHatEvents 

Saba Eskandarian

UNC Chapel Hill

Mathew Hogan

Stanford University

Yan Michalevsky

Anjuna Security



Who We Are

● CTO and co-founder 
at Anjuna.io

● PhD in Security and 
Crypto from Stanford

● Assistant Prof. at UNC 
Chapel Hill

● PhD in Crypto and Security 
from Stanford

● MS Candidate in CS at 
Stanford, Security track

● BS in CS from Stanford, 
Systems track

Yan MichalevskyMathew Hogan Saba Eskandarian

https://www.anjuna.io


Outline

1. Background
2. Our Attack
3. Roadblocks & Optimizations
4. Analysis
5. Mitigations
6. Conclusion



Background



Informally, 
a ciphertext reveals nothing about the message being encrypted

Encryption Security



Informally, 
a ciphertext reveals nothing about the message being encrypted, 
except the message’s length.

Encryption Security



Informally, 
a ciphertext reveals nothing about the message being encrypted, 
except the message’s length.

Key idea: use compression to reveal information about the original content

Encryption Security

John Kelsey. “Compression and Information Leakage of Plaintext,” FSE 2002.
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CRIME/BREACH (2012/13)

Secret included in encrypted 
and compressed messages  
between client and server

Secrets

Adversary gets client to include 
its guess in messages to server 
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of 
encrypted messages to see if 
guess compresses with secrets

Secrets + Guess

Attack requirement 1:
Encryption + Compression

Attack requirement 2:
Ability to inject messages

Attack requirement 3:
Access to message size

Where else do all these factors come together?



DBREACH in a Nutshell

Compression side-channel attack against databases

Attacker recovers other users’ encrypted content

Extends techniques from CRIME/BREACH beyond TLS to database context
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InnoDB Page Compression

Handles compression transparently before encrypting and writing to disk

Compresses data within each database page

Uses hole punching to save space, only helps when there is enough compression 
to remove a whole filesystem page

DB Page 
16kb

Filesystem Page 
4kb Compressed page

Filesystem Page 
4kb

Hole punch!

No hole punch
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Supported Compression Algorithms

- zlib (default)
- lz4
- lzo
- lzma
- bzip2
- snappy

Only zlib, lz4, and snappy installed with standard Ubuntu build

All three begin with LZ77-style sliding window compression 

zlib additionally has a Huffman Coding step
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Threat Model

An attacker needs the ability to:

● Insert and update into a database table
○ Can be achieved through a web interface
○ Column-level permissions grant update ability if user has partial SELECT ability.

● Assess the size of the compressed table
○ Can read size of table file by gaining read access to filesystem

If UPDATE permissions can’t be achieved, an attacker with write access can force 
an update by rolling back the table file and inserting.
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4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain 

guess
3. Byte by byte, make filler rows 

compressible
a. The number of bytes until the table 

shrinks determines this guess’s 
“compressibility score”

Table Layout

Target Plaintext

Filler Rows

guess
compressible
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Compressibility Scores

For a guess g, let bg be the number of 
bytes that we made compressible in 
order to shrink the table.

The compressibility score cg is 
calculated as follows:

cg = 1 / bg

Target Plaintext

Filler Rows

guess

compressible

bg  bytes
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Attack Varieties

● K-of-n attack: Given n options, which k are most likely to be in the table?
○ Simply pick the k guesses with the highest compressibility scores!

● Decision attack: Is a guess in the table?
○ More complicated
○ We need a reference point for compressibility scores
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● Determining syes
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● Determining sno
○ Use a random string of the same length 

as the guess
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determine compressibility
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Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be 
in and not in the table, respectively.

If a guess’s score is within some threshold of syes, answer “yes”

● Determining syes
○ Use a substring of the first filler row of 

the same length as the guess
○ Insert substring into the second filler row 

& determine compressibility

● Determining sno
○ Use a random string of the same length 

as the guess
○ Insert string into the second filler row & 

determine compressibility
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● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is: a

Known prefix:

The secret code is: aa

The secret code is: ab

The secret code is: ac

...

The secret code is: aZ

n guesses*:
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Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

“ground”

“ground”

plaintext:

guess:

“ground truth”

“ground truth regarding...”

plaintext:

guess:

👍

👎
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Addressing the Superstring Problem

To avoid the superstring problem, we switch to using the syes / sno reference point 
strategy on all guesses.

● A guess’s score is determined by how close its score is to syes relative to sno

● Since syes is calculated using a string of the same length as the guess, 
superstring guesses will only appear partially compressible relative to an exact 
match.

●

Still vulnerable to false positives if the superstring is not much longer than the 
ground truth (recall that we only have to be close to syes and not precisely match it).
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Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead 
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

● Compression within the guess itself
○ Solution: Penalize internally compressible guesses

● Fragmented tablespace → insertion onto different pages
○ Solution: Detect & retry
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To maximize efficiency of the attack and evade detection, we want to perform as 
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed 
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes



Analysis



Efficiency & Speed

After our binary search optimization, the attack becomes very efficient:

Let R be the maximum size of a row

● Insertion of filler rows
○ We must initially insert at most page_size / R rows to fill up the page
○ In practice, with an empty page and R = 200, this takes about 30 insertions

● Updates per guess
○ log2 R updates per guess

Thus, for n guesses we perform O(R + n log R) database actions.

In practice, with R = 200, a single guess took 0.2-0.4 seconds.
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Vulnerability of Other Systems

Nothing specific about MariaDB/InnoDB’s implementation makes them vulnerable.

The issue is much more fundamental:

The DB compresses attacker and victim data together.

We believe that other RDBMSs and storage engines are vulnerable to the same 
attack. MySQL is especially likely to be vulnerable.
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Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.
○ This attack clearly shows that these are broken and provide attackers with half the necessary 

capabilities.

● Monitor database usage patterns for unusual activity
○ Similar to DOS detection: is a single user performing an unusually high number of 

inserts/updates?

Only foolproof solution: Turn off compression.



Patching the Vulnerability

Recommendations for database developers:



Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.



Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.

● Compress only within rows



Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.

● Compress only within rows
● Or, compress only within rows inserted by the same user / user group



Demo!



DBREACH

● Attack on compression & encryption in databases
● Simple threat model
● Efficient and accurate

Contact

mhogan1@cs.stanford.edu
yanm2@cs.stanford.edu

saba@cs.unc.edu
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