
DBREACH
Database Reconnaissance and Exfiltration via Adaptive
Compression Heuristics

#BHUSA @BlackHatEvents

Saba Eskandarian

UNC Chapel Hill

Mathew Hogan

Stanford University

Yan Michalevsky

Anjuna Security

Who We Are

● CTO and co-founder
at Anjuna.io

● PhD in Security and
Crypto from Stanford

● Assistant Prof. at UNC
Chapel Hill

● PhD in Crypto and Security
from Stanford

● MS Candidate in CS at
Stanford, Security track

● BS in CS from Stanford,
Systems track

Yan MichalevskyMathew Hogan Saba Eskandarian

https://www.anjuna.io

Outline

1. Background
2. Our Attack
3. Roadblocks & Optimizations
4. Analysis
5. Mitigations
6. Conclusion

Background

Informally,
a ciphertext reveals nothing about the message being encrypted

Encryption Security

Informally,
a ciphertext reveals nothing about the message being encrypted,
except the message’s length.

Encryption Security

Informally,
a ciphertext reveals nothing about the message being encrypted,
except the message’s length.

Key idea: use compression to reveal information about the original content

Encryption Security

John Kelsey. “Compression and Information Leakage of Plaintext,” FSE 2002.

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of
encrypted messages to see if
guess compresses with secrets

Secrets + Guess

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of
encrypted messages to see if
guess compresses with secrets

Secrets + Guess

Attack requirement 1:
Encryption + Compression

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of
encrypted messages to see if
guess compresses with secrets

Secrets + Guess

Attack requirement 1:
Encryption + Compression

Attack requirement 2:
Ability to inject messages

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of
encrypted messages to see if
guess compresses with secrets

Secrets + Guess

Attack requirement 1:
Encryption + Compression

Attack requirement 2:
Ability to inject messages

Attack requirement 3:
Access to message size

CRIME/BREACH (2012/13)

Secret included in encrypted
and compressed messages
between client and server

Secrets

Adversary gets client to include
its guess in messages to server
(e.g., via malicious Javascript)

Secrets + Guess

Guess

Adversary observes size of
encrypted messages to see if
guess compresses with secrets

Secrets + Guess

Attack requirement 1:
Encryption + Compression

Attack requirement 2:
Ability to inject messages

Attack requirement 3:
Access to message size

Where else do all these factors come together?

DBREACH in a Nutshell

Compression side-channel attack against databases

Attacker recovers other users’ encrypted content

Extends techniques from CRIME/BREACH beyond TLS to database context

MariaDB/InnoDB Encryption and Compression

Data-at-Rest Encryption - transparently encrypt data before writing to disk

MariaDB/InnoDB Encryption and Compression

Data-at-Rest Encryption - transparently encrypt data before writing to disk

Compression - many options, compression before encryption

MariaDB/InnoDB Encryption and Compression

Data-at-Rest Encryption - transparently encrypt data before writing to disk

Compression - many options, compression before encryption

Storage engine independent compression

InnoDB table compression

InnoDB transparent page compression

MariaDB/InnoDB Encryption and Compression

Data-at-Rest Encryption - transparently encrypt data before writing to disk

Compression - many options, compression before encryption

Storage engine independent compression

InnoDB table compression

InnoDB transparent page compression

InnoDB Page Compression

Handles compression transparently before encrypting and writing to disk

InnoDB Page Compression

Handles compression transparently before encrypting and writing to disk

Compresses data within each database page

DB Page
16kb

Compressed page

InnoDB Page Compression

Handles compression transparently before encrypting and writing to disk

Compresses data within each database page

Uses hole punching to save space

DB Page
16kb

Filesystem Page
4kb Compressed page

Filesystem Page
4kb

Hole punch!

No hole punch

InnoDB Page Compression

Handles compression transparently before encrypting and writing to disk

Compresses data within each database page

Uses hole punching to save space, only helps when there is enough compression
to remove a whole filesystem page

DB Page
16kb

Filesystem Page
4kb Compressed page

Filesystem Page
4kb

Hole punch!

No hole punch

Supported Compression Algorithms

- zlib (default)
- lz4
- lzo
- lzma
- bzip2
- snappy

Supported Compression Algorithms

- zlib (default)
- lz4
- lzo
- lzma
- bzip2
- snappy

Only zlib, lz4, and snappy installed with standard Ubuntu build

Supported Compression Algorithms

- zlib (default)
- lz4
- lzo
- lzma
- bzip2
- snappy

Only zlib, lz4, and snappy installed with standard Ubuntu build

All three begin with LZ77-style sliding window compression

Supported Compression Algorithms

- zlib (default)
- lz4
- lzo
- lzma
- bzip2
- snappy

Only zlib, lz4, and snappy installed with standard Ubuntu build

All three begin with LZ77-style sliding window compression

zlib additionally has a Huffman Coding step

Our Attack

Threat Model

An attacker needs the ability to:

● Insert and update into a database table
● Assess the size of the compressed table

Threat Model

An attacker needs the ability to:

● Insert and update into a database table
○ Can be achieved through a web interface
○ Column-level permissions grant update ability if user has partial SELECT ability

● Assess the size of the compressed table

Threat Model

An attacker needs the ability to:

● Insert and update into a database table
○ Can be achieved through a web interface
○ Column-level permissions grant update ability if user has partial SELECT ability

● Assess the size of the compressed table
○ Can read size of table file by gaining read access to the filesystem

Threat Model

An attacker needs the ability to:

● Insert and update into a database table
○ Can be achieved through a web interface
○ Column-level permissions grant update ability if user has partial SELECT ability.

● Assess the size of the compressed table
○ Can read size of table file by gaining read access to filesystem

If UPDATE permissions can’t be achieved, an attacker with write access can force
an update by rolling back the table file and inserting.

Attack Algorithm

Attack Algorithm Table Layout

Target Plaintext

4 kB

4 kB
Attack Algorithm

1. Add “filler rows” until table grows

Table Layout

Target Plaintext

Filler Rows

Attack Algorithm

1. Add “filler rows” until table grows

Table Layout

Target Plaintext

Filler Rows

4 kB

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess

Table Layout

Target Plaintext

Filler Rows

guess

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess
3. Byte by byte, make filler rows

compressible

Table Layout

Target Plaintext

Filler Rows

guess
compressible

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess
3. Byte by byte, make filler rows

compressible

Table Layout

Target Plaintext

Filler Rows

guess
compressible

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess
3. Byte by byte, make filler rows

compressible

Table Layout

Target Plaintext

Filler Rows

guess
compressible

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess
3. Byte by byte, make filler rows

compressible

Table Layout

Target Plaintext

Filler Rows

guess
compressible

Hole punch!

4 kB
Attack Algorithm

1. Add “filler rows” until table grows
2. Update first filler row to contain

guess
3. Byte by byte, make filler rows

compressible
a. The number of bytes until the table

shrinks determines this guess’s
“compressibility score”

Table Layout

Target Plaintext

Filler Rows

guess
compressible

Compressibility Scores

Compressibility Scores

For a guess g, let bg be the number of
bytes that we made compressible in
order to shrink the table.

Target Plaintext

Filler Rows

guess

compressible

bg bytes

Compressibility Scores

For a guess g, let bg be the number of
bytes that we made compressible in
order to shrink the table.

The compressibility score cg is
calculated as follows:

cg = 1 / bg

Target Plaintext

Filler Rows

guess

compressible

bg bytes

Attack Varieties

● K-of-n attack: Given n options, which k are most likely to be in the table?

Attack Varieties

● K-of-n attack: Given n options, which k are most likely to be in the table?
○ Simply pick the k guesses with the highest compressibility scores!

Attack Varieties

● K-of-n attack: Given n options, which k are most likely to be in the table?
○ Simply pick the k guesses with the highest compressibility scores!

● Decision attack: Is a guess in the table?

Attack Varieties

● K-of-n attack: Given n options, which k are most likely to be in the table?
○ Simply pick the k guesses with the highest compressibility scores!

● Decision attack: Is a guess in the table?
○ More complicated
○ We need a reference point for compressibility scores

Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be
in and not in the table, respectively.

Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be
in and not in the table, respectively.

● Determining syes ● Determining sno

Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be
in and not in the table, respectively.

● Determining syes
○ Use a substring of the first filler row of

the same length as the guess
○ Insert substring into the second filler row

& determine compressibility

● Determining sno

Target
Plaintext

Filler Rows

1st filler row

compressible
1st filler row

Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be
in and not in the table, respectively.

● Determining syes
○ Use a substring of the first filler row of

the same length as the guess
○ Insert substring into the second filler row

& determine compressibility

● Determining sno
○ Use a random string of the same length

as the guess
○ Insert string into the second filler row &

determine compressibility

Target
Plaintext

Filler Rows

1st filler row

compressible
random

Target
Plaintext

Filler Rows

1st filler row

compressible
1st filler row

Decision Attack: Is a guess in the table?

To gain reference points, we calculate scores syes and sno for strings we know to be
in and not in the table, respectively.

If a guess’s score is within some threshold of syes, answer “yes”

● Determining syes
○ Use a substring of the first filler row of

the same length as the guess
○ Insert substring into the second filler row

& determine compressibility

● Determining sno
○ Use a random string of the same length

as the guess
○ Insert string into the second filler row &

determine compressibility

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is:

Known prefix:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is:

Known prefix:

The secret code is: a

The secret code is: b

The secret code is: c

...

The secret code is: Z

n guesses:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is:

Known prefix:

The secret code is: a

The secret code is: b

The secret code is: c

...

The secret code is: Z

n guesses*:

*n = |Σ|, where Σ is the alphabet of all possible characters

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is:

Known prefix:

The secret code is: a

The secret code is: b

The secret code is: c

...

The secret code is: Z

n guesses*:

*n = |Σ|, where Σ is the alphabet of all possible characters

k-of-n Attack
(k = 1)

k-of-n submodule:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is: a

Known prefix:

The secret code is: a

The secret code is: b

The secret code is: c

...

The secret code is: Z

n guesses*:

*n = |Σ|, where Σ is the alphabet of all possible characters

k-of-n Attack
(k = 1)

k-of-n submodule:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is: a

Known prefix:

The secret code is: aa

The secret code is: ab

The secret code is: ac

...

The secret code is: aZ

n guesses*:

*n = |Σ|, where Σ is the alphabet of all possible characters

k-of-n Attack
(k = 1)

k-of-n submodule:

Character-by-Character Extraction

● We can use 1-of-n attack as a subroutine to extract plaintext, char by char:

The secret code is: a

Known prefix:

The secret code is: aa

The secret code is: ab

The secret code is: ac

...

The secret code is: aZ

n guesses*:

*n = |Σ|, where Σ is the alphabet of all possible characters

k-of-n Attack
(k = 1)

k-of-n submodule:

Roadblocks & Optimizations

Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

“ground truth”

“ground”

plaintext:

guess:

Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

“ground truth”

“ground”

plaintext:

guess:

“ground truth”

“ground truth regarding...”

plaintext:

guess:

Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

“ground”

“ground”

plaintext:

guess:

“ground truth”

“ground truth regarding...”

plaintext:

guess:

👍

Substring/Superstring Problem

Might get false positives if guess is a:

● Substring: A guess is a substring of what is in the table

● Superstring: What is in the table is a substring of the guess

“ground”

“ground”

plaintext:

guess:

“ground truth”

“ground truth regarding...”

plaintext:

guess:

👍

👎

Addressing the Superstring Problem

To avoid the superstring problem, we switch to using the syes / sno reference point
strategy on all guesses.

Addressing the Superstring Problem

To avoid the superstring problem, we switch to using the syes / sno reference point
strategy on all guesses.

● A guess’s score is determined by how close its score is to syes relative to sno

Addressing the Superstring Problem

To avoid the superstring problem, we switch to using the syes / sno reference point
strategy on all guesses.

● A guess’s score is determined by how close its score is to syes relative to sno

● Since syes is calculated using a string of the same length as the guess,
superstring guesses will only appear partially compressible relative to an exact
match.

Addressing the Superstring Problem

To avoid the superstring problem, we switch to using the syes / sno reference point
strategy on all guesses.

● A guess’s score is determined by how close its score is to syes relative to sno

● Since syes is calculated using a string of the same length as the guess,
superstring guesses will only appear partially compressible relative to an exact
match.

●

Still vulnerable to false positives if the superstring is not much longer than the
ground truth (recall that we only have to be close to syes and not precisely match it).

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

● Compression within the guess itself

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

● Compression within the guess itself
○ Solution: Penalize internally compressible guesses

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

● Compression within the guess itself
○ Solution: Penalize internally compressible guesses

● Fragmented tablespace → insertion onto different pages

Overcoming Noise in the Side Channel

There are multiple sources of noise in the compression side-channel that can lead
to false positives or negatives:

● Huffman encoding
○ Typically does not overwhelm signal in k-of-n or decision attacks
○ Poses problem for char-by-char extraction attack

● Compression with irrelevant parts of the tablespace file
○ Solution: Randomly choose filler data from disjoint alphabet

● Compression within the guess itself
○ Solution: Penalize internally compressible guesses

● Fragmented tablespace → insertion onto different pages
○ Solution: Detect & retry

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Row

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowc

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowco

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcom

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcomp

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompr

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompre

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompres

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompress

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompressi

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompressib

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompressibl

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

Before:

Filler Rowcompressible

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Row

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes

Maximizing Efficiency

To maximize efficiency of the attack and evade detection, we want to perform as
few updates and inserts as possible.

● Perform a binary search to find the cutoff point of compressible bytes needed
to shrink the table, instead of going byte-by-byte

○ If R is the max row size, never takes more than R compressible bytes to compress a table
○ Takes only log2 R updates per guess

After:

Filler Rowcompressible bytes

Analysis

Efficiency & Speed

After our binary search optimization, the attack becomes very efficient:

Let R be the maximum size of a row

● Insertion of filler rows
○ We must initially insert at most page_size / R rows to fill up the page
○ In practice, with an empty page and R = 200, this takes about 30 insertions

● Updates per guess
○ log2 R updates per guess

Thus, for n guesses we perform O(R + n log R) database actions.

In practice, with R = 200, a single guess took 0.2-0.4 seconds.

Accuracy

Vulnerability of Other Systems

Nothing specific about MariaDB/InnoDB’s implementation makes them vulnerable.

Vulnerability of Other Systems

Nothing specific about MariaDB/InnoDB’s implementation makes them vulnerable.

The issue is much more fundamental:

The DB compresses attacker and victim data together.

Vulnerability of Other Systems

Nothing specific about MariaDB/InnoDB’s implementation makes them vulnerable.

The issue is much more fundamental:

The DB compresses attacker and victim data together.

We believe that other RDBMSs and storage engines are vulnerable to the same
attack. MySQL is especially likely to be vulnerable.

Mitigations

Prevention

Recommendations for database administrators & developers using databases:

Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.

Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.
○ This attack clearly shows that these are broken and provide attackers with half the necessary

capabilities.

Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.
○ This attack clearly shows that these are broken and provide attackers with half the necessary

capabilities.

● Monitor database usage patterns for unusual activity

Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.
○ This attack clearly shows that these are broken and provide attackers with half the necessary

capabilities.

● Monitor database usage patterns for unusual activity
○ Similar to DOS detection: is a single user performing an unusually high number of

inserts/updates?

Prevention

Recommendations for database administrators & developers using databases:

● DO NOT use column-level permissions for SELECT capabilities.
○ This attack clearly shows that these are broken and provide attackers with half the necessary

capabilities.

● Monitor database usage patterns for unusual activity
○ Similar to DOS detection: is a single user performing an unusually high number of

inserts/updates?

Only foolproof solution: Turn off compression.

Patching the Vulnerability

Recommendations for database developers:

Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.

Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.

● Compress only within rows

Patching the Vulnerability

Recommendations for database developers:

● Deprecate column-level permissions for SELECT.
○ At least until a more comprehensive solution is found.
○ Alternatively, require SELECT permissions on all columns in order to UPDATE.

● Compress only within rows
● Or, compress only within rows inserted by the same user / user group

Demo!

DBREACH

● Attack on compression & encryption in databases
● Simple threat model
● Efficient and accurate

Contact

mhogan1@cs.stanford.edu
yanm2@cs.stanford.edu

saba@cs.unc.edu

mailto:mhogan1@cs.stanford.edu
mailto:yanm2@cs.stanford.edu

