
Exploiting Windows COM/WinRT Services.

XueFeng Li of Sangfor

Dr. Zhiniang Peng of Sangfor

C:\> whoarewe

- Xuefeng Li

Xuefeng Li (@lxf02942370) is an intern at Sangfor and a student at South China
University of Technology. He has been engaged in Windows vulnerability hunting and
exploitation for almost one year and ranked #10 on the MSRC Most Valuable Security
Researcher list in 2020.

- Zhiniang Peng

Dr. Zhiniang Peng (@edwardzpeng) is the Principal Security Researcher at Sangfor. His
current research areas include applied cryptography, software security and threat
hunting. He has more than 10 years of experience in both offensive and defensive
security and published many research in both academia and industry.

https://twitter.com/lxf02942370
https://twitter.com/edwardzpeng

1. Basic of COM

2. Race Condition bugs in COM/WinRT

2.2 Win Race Condition to get Use-After-Free

2.3 Win Race Condition to get Out-Of-Bound Writing

3. From Type Confusion bugs to code execution

4. From Out-Of-Bound Writing to Arbitrary Reading/Writing

4.1 From Arbitrary Writing to code execution

4.2 From Arbitrary Reading to code execution

Agenda

2.1 The inner working of COM Thread Model

5. Conclusion

01

Basic Of COM

Invoker
Provider

Native Code
C/C++ …

.NET Managed
Code

C# , VB , .NET
…

ProviderProvider

Native Code
C/C++ …

.NET Managed
Code

C# , VB , .NET
…

Runtime Callable
Wrapper

Runtime
Callable
Wrapper

COM Callable
Wrapper

COM
Binary

Protocol

COM Object Framework

What is COM(Component Object Model)?

• Having Fun with COM – James Forshaw

• The Inner Workings of the Windows Runtime - James Forshaw

Related Research of COM/WinRT

02

Race Condition bugs in COM

✓ The Inner working of COM Thread model

✓ Win Race Condition to get Use-After-Free

✓ Win Race Condition to get Out-Of-Bound Writing

The inner working of COM Thread Model

Thread safety is a computer programming concept applicable in the context of

multi-threaded programs. Different threads can access the same resources

without exposing erroneous behavior or producing unpredictable results

➢ Thread Safety

➢ Thread Safety of Client/Server

• Whether a COM server is thread safety is unknowable.

• Any COM client can access any COM server in anytime anywhere.

• Client is not responsible for thread safety.

For Client

For Server

• COM Assumption: All COM Server must be thread safety

• Invoker Thread is used to complete the Client-Server callable task, created in
sever process during the Client-Server call.

• Apartment is a Property of a COM thread stored in Thread-Local Storage(TLS).

Single-threaded Apartment Model (STA)

0-N apartments in a process, 1 thread in each apartment

Multi-threaded Apartment Model (MTA)

0-1 apartments in a process, N threads in each apartment

Neutral Apartment Model (NA)

0-1 apartments in a process, 0 thread in each apartment

Apartment Models with Invoker Thread

Apartment Models with Invoker Thread

STA: Single Room
MTA: Dormitory
NA: Activity Room

MTA

STA0

Process

NAShare this Apartment

STA1 STA2 STAN

Reference from: “Understanding and Using COM Threading Model”

…

…

Windows Message
Pumping

Thread

Thread Models of COM Object

➢ What is COM Thread Model?

• Single Thread Model (Single, only support STA0 apartments)

• Apartment Thread Model (Apartment, support all the STA
apartments)

• Free Thread Model (Free, support the MTA apartment)

• Both Thread Model (Both, support the STA,MTA,NA apartments)

• Neutral Thread Model (Neutral, support the NA apartment)

No thread safety issues

There may be thread safety issues

▪ Thread Model is a Property of COM Object.

▪ Thread models are related to the COM object, while apartment models are related to the invoker

thread.

➢ Thread Model classification

https://docs.microsoft.com/en-us/windows/win32/cossdk/threading-model-attribute

Thread Models and Apartment Models

• Method calls to COM objects in the same apartment are made directly.
• Method calls made across apartments are achieved via marshalling.

process

MTA NA

COM ObjectCOM Object

COM Runtime

STA0
Queue

Dispatch messageCOM Object

STA 0~N

…

Create

…

Create

Worker Threads

Worker Threads

…
Worker Threads

Listen Thread

For Single, Apartment threading model
com object, there could be only one
invoker threads accessing the object
at the same time.

STA0 Single

invoke

✓ Thread Safety

✗ Thread Safety

MTA Free,
Both

invoke

For Free, Both threading model com
object, there could be multiple
invoker threads accessing the same
object at the same time.

✗ Thread Safety
NA

Neutral

invoke

For Neutral thread modeling
com object there could be only
multiple invoker threads
accessing the object at the
same time.

UWP Application

AppContainer Sandbox

RPCSS

DCOM Activator

Runtime Broker

Medium User Level

Partial Trust
Class

Escape AppContainer Sandbox

Win Race Condition to get Use-After-Free

Reference from: “The Inner Workings of the Windows Runtime”

CVE-2020-1404 - Root cause Analysis

UWP Application in AppContainer Sandbox

Runtime Broker

SecondaryTile object can be created
in Multi-threaded Apartment

Thread 1 and 2 arrive here
together

Thread 1 and 2 arrive here
together

CVE-2020-1404 - Root cause Analysis

Trigger a UAF issue!

CVE-2020-1404 - Proof of concept

Crash

CVE-2020-1404 - Exploitation

HSTRING 1 HSTRING 2 HSTRING 3 HSTRING 4

HSTRING 1 Freed HSTRING 3 HSTRING 4

HSTRING 1 Freed Freed HSTRING 4

Thread 1 enters: free HSTRING 3

Windows Heap Manager merges freed chunk

HSTRING 1 Freed HSTRING 4

Thread 2 enters: allocate a new HSTRING

HSTRING 1 NEW HSTRING HSTRING 4

Thread 3 enters: use freed HSTRING 3 (Where UAF happens)

Free HSTRING 2

HSTRING 1 NEW HSTRING HSTRING 4

HSTRING 3

All the HSTRING need to be large enough to avoid LFH

Filled with user-controllable data

Real Buffer

Calling ISecondaryTile->get_PhoneticName with fake HSTRING 3 to get Read-What-Where

☹ Hard to Exploit such Race Condition UAF bugs stably, it’s easy to cause the crash, but you can keep

trying until you succeed

Flag Length

GAP

Buffer Pointer

Ref Count

HSTRING
Flag Arbitrary Length

GAP

Arbitrary Address

Ref Count

Evil HSTRING

rewrite

ISearchRoot->put_Schedule copies
user-controlled buffer into ISearchRoot
Object.

ISearchRoot->get_Schedule reads the
data of ISearchRoot object into
output buffer.

Win Race Condition to get Out-Of-Bound Writing

Public Example : CVE-2020-0625 (Found by shefang Zhong)

Vulnerable COM Interface：ISearchRoot (Exposed by Local COM Server WSearch)

Second fetch, taking a large
size as copy size.

First fetch, taking a small
size as allocation size.

Trigger a heap OOB Write issue!

Win Race Condition to get Out-Of-Bound Writing

Reference from : https://blog.diffense.co.kr/2020/03/26/SearchIndexer.html

Call ISearchRoot->put_Schedule in
the time window between the upper
and lower codes to rewrite buffer
Pointer size

https://blog.diffense.co.kr/2020/03/26/SearchIndexer.html

03

From Type Confusion Bugs to Code Execution

Vulnerable WinRT Interface ：

IXmlNode (Get from runtime class: Windows.UI.Notifications.ToastNotificationManager)

Vulnerable function

From Type Confusion bug to code execution

CVE-2020-1011 - Root Cause Analysis

Getting from Client, user can forge
a fake IUnknown object and pass it
to server

Taking user controllable
data as a valid object
address

Custom implementation

CVE-2020-1011 - Root Cause Analysis

Vulnerable Code Snippet：msxml6.dll!Object::getObjectFromIUnk

Construct fake COM object for exploitation(x86 system)

Primitive: A object pointer we can control
What we need: A address we can fully control

Fake Object0x019ac000

Fake Object0x019ac040

[…][…]

[…][…]

Fake Object0x10000000

Heap Spray in x86 system

How to heap spray?

Find a COM interface which
allows us to put many user-
controllable HSTRING on the
server heap

The address we need!

Fake vftable

Fake object contents

For example:
IXmlNode->put_NodeValue

Require a Info leak for exploitation(x64 system)

✗ Heap spray

✓ Info leak

⚫ Require huge memory consumption

⚫ Require a Info leak bug to leak where our fake objects locates

04

From Out-Of-Bound Writing to Arbitrary Reading/Writing

✓ From Arbitrary Writing to code execution

✓ From Arbitrary Reading to code execution

CVE-2020-1361 - Root Cause Analysis

From Out-Of-Bound Writing to Arbitrary Reading/Writing

Vulnerable COM Interface：IWalletCustomPropery (Exposed by Local COM Server: WalletService)

CVE-2020-1361 - Root Cause Analysis

Trigger a heap OOB Write issue!

Vulnerable Code Snippet: WalletService.dll!Wallet::WalletCustomProperty::SetGroup

Overwrite Object Pointer Member to get Write-What-Where

Control cstring object to get Write-What-WhereWallet::WalletCustomProperty::SetLabel

Control BSTR object to get Read-What-Where

Overwrite Object Pointer Member to get Read-What-Where

Wallet::WalletCustomProperty::GetLabel

IWalletCustomProperty vftable

[…]

[…]

IWalletCustomProperty vftable

[…]

[…]

IWalletCustomProperty vftable

[…]

[…]

IWalletCustomProperty vftable

[…]

[…]

Fake vftable

Fake Contents

Fake Contents

IWalletCustomProperty vftable

[…]

[…]

OOB Write

object1

object2

object3

From Write-What-Where to code execution

Overwrite Next Object’s Contents

IWalletCustomProperty vftable

[…]

[…]

Fake vftable

Fake Contents

Fake Contents

IWalletCustomProperty vftable

[…]

[…]

QueryInterface

Addref

Release

dxgi.dll！
ATL::CComObject<CDXGIAdapter>

::`vector deleting
destructor'

[…]

dxgi.dll！ATL::CComObject<CDXGIAdapter>::`vector deleting destructor’
will call LoadLibraryEx and take a global pointer as the Dll path
which could allow us to load arbitrary dll.

The full exploitation can be found at GitHub.

Using Write-What-Where
to forge a fake vftable

Forge Fake vftable to Get Code Execution

https://github.com/Q4n/CVE-2020-1362#from-www-to-arbitrary-code-execution

From Read-What-Where to code execution

The way to the heaven – IRundown->DoCallback

The purpose of DoCallback: cross-apartment call(used by internals)

https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html

https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html

Abusing CRemoteUnknown::DoCallback to get RIP control

Server Secret

Abusing CRemoteUnknown::DoCallback to get RIP control

➢ What we have:

✓ CProcessSecret::s_guidOle32Secret: Read from Combase.dll
✓ g_pMTAEmptyCtx: Read from Combase.dll
✓ pCallbackData->pfnCallback: Pick LoadLibraryW for our target

➢ What we need:

? Proxy of IRundown object from local server
? pCallbackData->pParam: Require to be a pointer point to user-controllable string

Critical Corpus for exploitation:

OBJREF Type“MEOW”

IID (lower 8 Bytes)

IID (upper 8 Bytes)

Flags Reference

Object Exporter ID (OXID)

Object ID (OID)

Interface Pointer ID (IPID)

IPID (upper 8 Bytes)

Binding information

Require IUnknown object proxy

Get IUnknown object
proxy

CoCreateInstance

Getting a IRundown object proxy from local server

Client Side Sever Side

Return OBJREF buffer

Parsing OBJREF buffer

IID_IUnknown

IPID_IUnknown

OBJREF Type“MEOW”

IID (lower 8 Bytes)

IID (upper 8 Bytes)

Flags Reference

Object Exporter ID (OXID)

Object ID (OID)

Interface Pointer ID (IPID)

IPID (upper 8 Bytes)

Binding information

OBJREF Type“MEOW”

IID_IRundown (lower 8 Bytes)

IID_IRundown (upper 8 Bytes)

Flags Reference

Object Exporter ID (OXID)

Object ID (OID)

IPID_IRundown (lower 8 Bytes)

IPID_IRundown (upper 8 Bytes)

Binding information

Get IUnknown Object
Proxy

CoMarshalInterface

CoUnmarshalInterface

IRundown Object Proxy

CoCreateInstance

Getting a IRundown object proxy from local server

Object address

Object IPID

Object IID

Get the IPID of IRundown object

Point pCallbackData->pParam to user-controllable string

Step 1 – Input DLL Path into local service

IWalletCustomProperty_object in client

CoMarshalInterface

Get IPID from OBJREF
buffer

Compare IPID

pv is the address of the
IWalletCustomProperty Object in
the server

Step 2 – Find the address of IWalletCustomProperty Object in server

*(Object address + 48) == &”C:\1\exp.dll”

Step 3 – Find DLL Path string location

Point pCallbackData->pParam to user-controllable string

Demo Time

Conclusion

⚫ The thread safety of COM/WinRT is still an attack surface that deserves
attention.
✓ 50+ memory corruption bugs we found associated with Race Condition.
✓ Hard to exploit Race Condition bugs stably.

⚫ COM/WinRT still has a large attack surface for LPE bugs hunting.

Q & A

Thanks for listening!

Any Questions?

