
Zero - The Funniest Number in
Cryptography

Nguyen Thoi Minh Quan

Agenda

❏ Terminology
❏ High level attack idea: 0 signature and “splitting zero” attack
❏ BLS signature
❏ BLS Aggregate Signature
❏ Bypass Ethereum py_ecc’s 0 check.
❏ “Splitting zero” attacks against crypto libraries & standard draft.

 This is my personal research, and hence it does not represent the views of my employer.

0-related bugs

❏ BLS draft v4 in IETF (aka Standard draft)
❏ 4 crypto libraries: Ethereum/py_ecc,

Herumi/bls, Sigp/milagro_bls,
Supranational/blst

Signature verification

❏ Private key: x, public key: X, message: m
❏ Signature σ= Sign(x, m)
❏ Signature verification: Check f(σ, X, m) ?= 0

What’s up with 0?

Check f(σ, X, m) ?= 0

 0 * a = 0, ∀a

Aggregate Signature

��
σ1= Sign(x1, m1)

σ2= Sign(x2, m2)��

Aggregator

 🖥
Check
f((X1,X2),(m1, m2), σ) ?=
0

Verifier

🖥
σ = σ1 + σ2

Aggregate Signature

��σ1

 Aggregator

 🖥
Check
f((X1,X2),(m1, m2), σ) ?= 0

Verifier

🖥
σ = σ1 + σ2

Check σ1 ?=0

��σ2
Check σ2 ?=0

“Splitting zero” attack: What if σ1 = 1, σ2 = -1?

Elliptic Curve

P + Q = R

P

Q

R

R’

Elliptic Curve Group Structure

❏ Addition: P + Q
❏ Zero point: P + 0 = 0 + P = P
❏ nG = G + G + … + G = 0, n is the order of the point.
❏ Group (0, G, 2G, …, (n - 1)G)

Pairing

1 2-1 30-2

P

Q

e(P, Q)

Pairing: maps 2 points to a number

Pairing

❏ e(P + Q, R) = e(P, R) * (Q, R)
❏ e(aP, bQ)= e(P, Q)ab

❏ e(aP, bQ) = e(P, Q)ab = e(abP, Q)= e(bP, aQ)
❏ e(0, X) = 1 = e(Y, 0), ∀X, Y

BLS signature

H(m)

m

H

σ = x*H(m)

*x

G

X=x*G
*x

BLS signature

❏ Signature σ = xH(m)
❏ Verify signature: e(σ, G) ?= e(H(m), X)
❏ Why? e(σ, G) = e(xH(m), G) = e(H(m), G)x = e(H(m), xG) = e(H(m), X)

0 signature & public key

❏ When X = 0, σ = 0:

 e(σ, G) = e(0, G) = 1 = e(H(m), 0) = e(H(m), X), ∀m

❏ The signature is valid for all messages.

Standard draft requests checking for 0.
Can we bypass the check?

Bypass Ethereum py_cc check for 0

1 2 3 4 5 2 5 4 1 0

P

3 4 2 3 1

 Check ?= 0 Doesn’t check Doesn’t check

Ethereum py_ecc: 0 signature & public key (Demo)

BLS Aggregate Signature

��
σ1= x1H(m1)

σn= xnH(mn)��

Aggregator

🖥
σ = σ1 +...+ σn

 🖥
e(σ, G) ?=
e(H(m1),X1) *...* e(Xn, H(mn))

Verifier

σ2= x2H(m2)��

BLS Aggregate Signature Verification

❏ e(σ, G) ?= e(H(m1), X1) * e(H(m2), X2)

❏ Why?

e(σ, G) = e(x1H(m1) + x2H(m2), G)

 = e(x1H(m1), G) * e(x2H(m2), G)

 = e(H(m1), x1G) * e(H(m2), x2G)

 = e(H(m1), X1) * e(H(m2), X2)

BLS FastAggregateVerify: Special
Case m1 = m2 = m
❏ e(H(m1), X1) * e(H(m2), X2) = e(H(m), X1) * e(H(m), X2) = e(H(m), X1+ X2)
❏ e(G, σ) ?= e(H(m), X1 + X2)

“Splitting Zero” Attack against Milagro &
Herumi’s BLS FastAggregateVerify

❏ e(σ, G) ?= e(H(m), X1 + X2)

❏ X1 + X2 = 0 & σ = 0:

e(σ, G) = e(0, G) = 1 = e(H(m), 0) = e(H(m), X1 + X2), ∀m

❏ The aggregate signature is valid for all messages.

Milagro bls’s Splitting Zero Attack (Demo)

“Splitting Zero” Attack against
AggregateVerify in Standard Draft

❏ e(σ1+ … + σn, G) ?= e(H(m1), X1) * …* e(H(mn),Xn)

❏ The “standard draft” is vulnerable to X1 + X2 = 0 attack

→ All libraries ethereum/py_ecc, milagro/bls,

supranational/blst, herumi/bls are vulnerable.

“Splitting Zero” attack against
Standard Draft and Libraries

If σ1 = x1H(m1) is a valid signature of
message m1 then when X2 + X3 = 0, σ1
is a valid aggregate signature for (m1,
m, m) for all m.

If σ is a valid signature for (m1, m2, m2)
then when X2 + X3 = 0, σ is also a valid
signature for all (m1, m3, m3) for all m3.

“Splitting Zero” Attack against Supranational blst’s
And Standard Draft (Demo)

Standard Draft’s Consensus Bug

❏ FastAggregateVerify((X1, X2), m, 0) = False, X1 + X2 = 0
❏ AggregateVerify((X1, X2), (m, m), 0) = True

Supranational blst and Standard Draft’s Consensus Bug (Demo)

“Splitting
Zero” Attack.
Why is it
dangerous?

For the aggregate
signature case,
the attackers’
private keys x1, x2
are randomized,
so the attackers
protect the
secrecy of their
private keys and
the attack cost is
free.

Detecting
colluded keys are
difficult because
it’s equivalent to
finding solution
a1X1 + a2X2 + … +
anXn = 0 where ai
= 0, 1.

The verifier only
verifies the
aggregate
signature, but it
never sees or
verifies single
signatures, so it
never be sure
what happened.

Thanks for your attention!

Appendix (miscellaneous 0-related bug)

❏ 0-length signature or 0-length message (go and
rust binding supranational/blst): crashed

❏ inverse(0) mod p = 0, but inverse(p) mod p = 1 in
Ethereum py_cc

