
Rope: Bypassing Behavioral Detection of Malware
with Distributed ROP-driven Execution∗

Daniele Cono D’Elia @
Sapienza University of Rome, Italy

Lorenzo Invidia @
Sapienza University of Rome, Italy

Abstract
Rope is a new covert design for distributed malware execution. Rope malware samples are payloads
expressed in return-oriented programming and divided into chunks that pre-existing victim processes
execute on behalf of the attacker. A transacted NTFS file operates as a covert communication
channel for payload distribution and execution orchestration. The design of Rope aims to minimize
the indicators of compromise on a victim machine and to go undetected by behavioral analyses of
AV and EDR solutions. In its implementation Rope uses techniques that comply with or bypass in
original ways the mitigations of Windows 10 that users might enable to harden processes.

1 Introduction

Distributed malware concepts challenge the behavioral detection of Anti-Virus (AV) and
Endpoint Detection and Response (EDR) solutions by diluting the temporal and spatial
features of a malicious execution across multiple processes.

Several notable malware families seen in the wild adopt a modular design with distinct
features delegated to cooperating individual components. Recent research pushed this idea
further by splitting the code of a sample into chunks to be run by emulators injected in
multiple processes. However, the main shortcomings of these approaches are the conspicuous
features and primitives they rely on, which make them an easy prey for state-of-the-art AV
and EDR systems and may also conflict with operating system (OS) mitigations.

In this Black Hat USA 2021 Briefings contribution we present Rope, a new covert
distributed execution technique for malware. Rope builds on transactional NTFS (TxF) as
a non-inspectable covert channel for payload distribution and execution coordination, and
on Return-Oriented Programming (ROP) [22] to encode the desired actions. Our technique
seeks to minimize the indicators of compromise (IoCs) on the machine: for instance, it does
not need any RWX region. Return-oriented programming is central for achieving the desired
properties of our design and brings advantages also against code-based signatures.

For the proof-of-concept implementation of Rope we designed a stealth, usable injection
primitive that temporarily hijacks a thread and ignites the distributed execution even on
hardened processes. Every technique we use in Rope complies with or bypasses in original
ways the mitigations presently available in Windows 10 to reduce the attack surface of
applications against next-generation malware and exploitation attempts [15].

In more detail, we developed three original bypasses for the protections of Windows
Defender Exploit Guard (WDEG): an injection technique that complies with Arbitrary Code
Guard and Code Integrity Guard, and a scanning technique based on code reuse to elude both
Export and Import Address Filtering policies that a victim process may have opted in to.

To evaluate our concept, we wrote several Rope malware samples that successfully eluded
the behavioral analyses of popular state-of-the-art AV and EDR products.

∗ Technical report (White Paper) for the eponymous Black Hat USA 2021 Briefings presentation. A
companion academic paper [8] on Rope will appear in the proceedings of ESORICS 2021.

mailto:delia@diag.uniroma1.it
mailto:lorenzoinvidia@outlook.com

2 Rope

The present White Paper complements the eponymous Black Hat talk by discussing in
more detail the design and several key aspects of the implementation of Rope. Section 2
introduces prior distributed malware execution designs from the literature and discusses
some of their shortcomings. Section 3 presents the design of Rope. Section 4 is the core part
of this report and covers the implementation details behind Rope. Section 5 reports on the
experimental findings and discusses future directions for mitigations and attack variants.

2 Background

A distributed malware execution takes place when the attacker partitions a malicious
payload in parts to be executed individually by different processes. Designs of this kind can
effectively defeat behavioral analyses of AV and EDR solutions, which identify malware by
the execution footprint of the externally observable effects (such as network and filesystem
activities or invoked API calls). Behavioral analyses complement conventional code-based
signature mechanisms that block samples thanks to prior knowledge of their structure.

Distributed designs decouple temporal (i.e., the order in which conspicuous actions are
carried out) and spatial (i.e., the entities being observed) properties of an execution by
spreading them across multiple processes. The attacker can thus carry out a malicious
computation through multiple coordinated processes such that no individual activity of one
process matches any of the behavioral signatures of the AV/EDR security solution in place.

Malware samples can create their own set of processes to this end. An early work of Ramilli
et al. [21] uses dedicated processes spawned in a way so as to avoid ancestor-descendant
relationships among them, otherwise a behavioral analyzer could treat them as a whole.
AutoShadow [13] explores automatic malware partitioning at compilation time. More recently,
De Gaspari et al. [6] propose a mimicry technique so as to have each process resemble benign
ones in the eyes of machine learning-based behavior classifiers for processes.

The main drawback of these approaches is the necessary introduction of a conspicuous
number of processes in the system to avoid detection (as high as 18 in [6]). Also, hardened
machines may have restrictions on what new processes can do (e.g., accessing the network).
Min and Varadharajan [16] propose a dynamic feature distribution approach that alters
existing programs—for instance by poisoning open-source libraries or adding trampolines
to binary code—and selects the most suitable victim for each desired piece of malware
functionality. Static or dynamic code modifications, however, are also conspicuous.

malWASH [11] proposes a radically different design point by partitioning an existing
payload in chunks to be distributed to running victim processes through a code injection
technique, along with an emulator component that coordinates the distributed execution
among such victims. Chunks have much finer-grained granularity (e.g., individual basic
blocks) than previous solutions, and the partitioning happens in a functionality-agnostic way.
In a later attempt to improve the transparency of the design of malWASH, D-TIME [19]
replaces the original injection mechanism with remote APC calls to schedule the execution
of the chunk emulator, and introduces a covert initialization strategy to set up the shared
memory used for coordination without requiring administrator privileges.

Unfortunately, in these schemes the need for RWX memory regions to support the
distribution and execution of the chunks, along with the conspicuous injection techniques1 and
the many shared regions they use, limit the applicability of the approach to systems with state-
of-the art security products and/or hardening mitigations (we discuss them next) in place.

1 Even more complex APC variants, like the one seen in DoublePulsar that uses kernel code to schedule
APC calls, are now routinely detected by state-of-the-art AVs and EDRs.

Rope 3

3 Design

We propose Rope as a novel distributed malware execution paradigm. In our design, a
malicious payload is arranged as a sequence of chunks, each encoded as a fragment of a
return-oriented programming chain and generated in a semi-automatic manner.

Figure 1 presents the architecture and building blocks of Rope. Chunks are placed on
a shared covert medium and multiple pre-existing victim processes execute them. We
use the Transactional NTFS abstraction of Windows to set up a covert channel for hosting
and distributing the payload and for state coordination between the victims. To ignite the
execution from the initial loader, we designed an advanced technique to stealthily inject a
bootstrap component while complying with the protections of WDEG [14].

Defenses in place

Our victim machine runs a state-of-the-art AV/EDR solution with behavioral detection. We
also assume that the targets we abuse for injection are hardened processes, i.e., processes
for which, in addition to standard system mitigations (DEP, Mandatory ASLR, Bottom-up
ASLR, etc.), the user enabled application-specific opt-in mitigations of the likes of:

Arbitrary Code Guard (ACG), which protects from executing dynamically generated code
by preventing memory from being marked as executable2;
Code Integrity Guard (CIG), which requires that dynamically loaded modules be digitally
signed by Microsoft;
Export Address Filtering (EAF), which prevents code not backed by an image on disk
(e.g., injected) from looking up the export address table (EAT) of loaded modules to
locate API functions;
Import Address Filtering (IAF), which prevents code not backed by an image on disk
from looking up the import address table (IAT) of the program, e.g., to hijack API calls
or more simply to locate common API functions;
CallerCheck, StackPivot, and (32-bit-only) SimExec, which are ROP-specific mitigations
that validate call and return sites for uses of sensitive APIs, i.e., those being monitored [14]
by WDEG as they involve memory allocation, memory-mapped files, processes, etc.

Properties

In the design of Rope we seek to minimize the IoCs and conspicuous features of the distributed
execution. The choice of ROP allows us to avoid allocating or modifying executable memories,
and also defeats standard signature-based code analyses as explored in previous research [20],
and even dynamic code analyses without ROP-specific provisions [10, 7].

We use a transacted file ROP-TxF as covert communication channel to distribute the ROP
chain to victim processes and for state coordination purposes. The use of TxF implies that
only processes that have a handle to the NTFS transaction can inspect the contents of the
file, hence AV/EDRs would not be able to access it directly. Unlike malWASH and D-TIME,
we use a single transacted file that can be mapped or copied back and forth from memory
instead of multiple shared memories each having different R/W/X permissions in order to
support chunk execution as in the address space of the original standalone sample.

2 ACG presently may not prevent remote processes from allocating RWX memory (but will stop local
allocations from injected code) nor can coexist with ROP mitigations, yet in Rope we anticipate further
enhancements by considering a stronger ACG form capable of doing so to be in place on the victim.

BHUSA 2021

4 Rope

Victim1

Signed
DLL

Victim2

Main
Sample

= GG1
..
GGn

GG1
..
GGn

GG1
..
GGn

Chunk1 Chunk2 Chunk3

Shared
Stack

DLL-TxF

ROP-TxF

Chunk1

Chunk2

Chunk3

Loader

Bootstrap

Figure 1 Architecture of Rope. The payload is arranged in chunks that we place on a shared
stack, the ROP-TxF, accessed by victim processes. We use another transacted file, the DLL-TxF, to
deliver the bootstrap component. The loader component carries out the injection on each victim.

We envision two execution modes: one with explicit coordination of the chunks provided
by the Rope runtime, and a simpler one where chunks execute independently (similarly to
feature-distributed malware and early multi-process malware designs, and possibly leveraging
characteristics of the victim processes) and coordinate on their own if needed.

A key aspect to make our approach practical is a new usable and stealth injection primitive
to bootstrap the Rope execution in the context of victim processes. We detail this and other
implementation aspects throughout the next section.

4 Implementation

This section covers key aspects of our implementation, including original bypasses for WDEG
mitigations. We responsibly disclosed our findings to the Microsoft Security Response
Center in February 2021 along with actionable suggestions for countermeasures. The vendor
concluded that none of the three techniques that we reported met their bar for servicing.

We start with the description of the injection primitive and the bootstrap component
that we place in victim processes. We then cover the generation of ROP code and how we
use the ROP-TxF covert communication channel to distribute the chain. Next, we move to the
problems of API resolution in the context of the victim and of hook evasion to further hamper
AV/EDR detections; in the process, we also detail how to make API calls in a “friendly”
manner for the ROP mitigations of WDEG. We conclude the section by presenting to our
readers further practical considerations for the implementation of Rope malware instances.

4.1 Bootstrap Component and Injection Primitive
The execution of the ROP chunks, together with any explicit synchronization actions, is
scheduled by a bootstrap component running in the context of each injected victim
process. This pivotal element of Rope has the role of mapping the ROP stack, fetching the
next chunk, and setting up the execution.

Rope 5

The bootstrap component can be expressed as a standalone ROP chain or, depending
on the capabilities of the injection primitive, even as a short shellcode. The injection
technique that we designed allowed us to implement either scenario in a covert fashion,
hiding the component within a signed Microsoft DLL in a perfectly CIG-compliant manner.
Furthermore, we hijack a thread only temporarily and promptly restore its normal operation
once we scheduled the bootstrap component as an internal application thread.

For the injection, we revamped and extended the Phantom DLL Hollowing technique
originally proposed by Forrest Orr3, which is currently blocked by WDEG when attempting
to execute NtCreateSection on a TxF-ed DLL in the context of a CIG-enabled process.

In particular, we create a transacted file DLL-TxF on such a DLL (e.g., we may pick one
at random from those shipped with Windows), make the changes to its contents to host the
bootstrap component as code (i.e., shellcode inside the .text section) or data (i.e., ROP
chain), and force the victim to load it using a bypass technique for Windows mitigations.

To get around WDEG, we use the loader component for creating the DLL-TxF transacted
file and a Section object over it with NtCreateSection, and then duplicate a handle to
the Section for the victim. Next, we make the victim execute a ROP chain that calls
NtMapViewOfSection on the duplicated handle, effectively loading the modified signed DLL
in its own address space in compliance with all WDEG mitigations. In fact, at the moment
of writing NtMapViewOfSection is not among the sensitive APIs monitored by WDEG. The
loader subcomponent of the loader identifies suitable victim processes according to some
attacker-defined policy (e.g., network access permissions, actions that the distributed payload
needs to carry). Then for each of them we execute the following steps:

The injector enumerates the victim’s threads and suspends one of them, saving the CPU
state in a CONTEXT object for later restore;
The injector updates the value of the stack pointer and places on the victim’s stack area
the saved CONTEXT object and a short ROP chain that is responsible for making the
victim load the DLL-TxF with NtMapViewOfSection;
The injector then updates also the instruction pointer in the new CPU state so as to
refer to the first gadget in the chain. Finally, it resumes the thread;
The chain loads the transacted DLL, then executes a sequence that spawns the bootstrap
component. Here we simply use CreateThread to instantiate a separate execution unit;
Upon termination of the sequence, the chain restores the old CONTEXT from the stack
with NtContinue, and the victim thread resumes its work from where it left off.

Whenever having an additional thread in the context of the victim process turns out to
be suspicious due to the nature of the specific application, one can alternatively schedule an
APC call or use other methods. Note that in general internal threads and self APCs are not
suspicious elements for AV/EDR solutions, while their remote counterparts very likely are.

The bootstrap component is in turn responsible for loading the ROP-TxF contents. Ac-
cording to the TxF interface, a process can inspect a transacted file only if it has a handle
to it. As such handles are process-exclusive, we have to perform TxF handle initialization
and duplication from the loader component, so the bootstrap component of each victim will
operate on its own handle with a workflow similar to the one used for the injection. Listing 1
sketches the main steps for the creation and duplication of the ROP-TxF handles.

We defer to Section 4.3 the discussion of how the bootstrap component can solve the
API needed to load the ROP-TxF contents. The upcoming section instead will detail how we
handle the shared ROP-TxF stack contents.

3 https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing.

BHUSA 2021

https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing

6 Rope

1 char TxfPath [MAX_BUFF] = {0} ;
2 HANDLE hTxf , hTxfFi le ; // hTxfFi le i s our ROP−TxF
3 OBJECT_ATTRIBUTES ObjAttr = { s i z e o f (OBJECT_ATTRIBUTES) } ;
4

5 NTSTATUS NtStatus = NtCreateTransact ion (
6 &hTxf ,
7 TRANSACTION_ALL_ACCESS,
8 &ObjAttr ,
9 nu l lp t r , nu l lp t r , 0 , 0 , 0 , nu l lp t r , n u l l p t r) ;

10

11 hTxfFi le = pCreateFi leTransacted (// API so lved c o v e r t l y
12 TxfPath ,
13 GENERIC_WRITE | GENERIC_READ,
14 0 , nu l lp t r ,
15 CREATE_ALWAYS,
16 FILE_ATTRIBUTE_NORMAL,
17 nu l lp t r ,
18 hTxf ,
19 nu l lp t r , n u l l p t r) ;
20

21 f o r (i n t i = 0 ; i < v i c t ims ; i++) {
22 HANDLE hTxfRemote , hTxfFileRemote ;
23 i f (! pDuplicateHandle (
24 (HANDLE) −1, // l oade r p roce s s
25 hTxf ,
26 proc [i] . hProcess , // v ic t im proce s s
27 &hTxfRemote ,
28 0 , // ignored
29 FALSE, // no i n h e r i t a n c e
30 DUPLICATE_SAME_ACCESS) e r r o r () ;
31 i f (! pDuplicateHandle (
32 (HANDLE) −1,
33 hTxfFi le ,
34 proc [i] . hProcess ,
35 &hTxfFileRemote ,
36 0 , FALSE, DUPLICATE_SAME_ACCESS) e r r o r () ;
37

38 /∗ proceeds with i n j e c t i o n and other preparatory ta sk s ∗/
39 [. . .]
40 }

Listing 1 Creation and duplication of ROP-TxF handles

4.2 Shared Stack and ROP Payload Generation
Our injection technique allows us to covertly load an altered signed DLL into processes
hardened with ACG and CIG, yet there is a small price to pay: unlike classic DLL injection
attacks, the DLL-TxF will get loaded at possibly different addresses in each victim process.

This implies that in order to execute a chunk of the ROP chain, each victim process will
have to patch it first so as to relocate the gadget addresses according to the base address of
the DLL-TxF in its address space. The bootstrap component4 is responsible for this task.

An alternative would be to borrow gadgets from a Windows DLL already in use by all
victim processes: while our design does not prevent this possibility, we believe that the
flexibility that a modifiable DLL can grant is higher (for instance, we can add missing or
handy ROP gadgets in code caves of the DLL-TxF).

The bootstrap component has two alternatives in order to lay out in memory the ROP
chain containing the chunks we wish to execute:

4 When implemented as a ROP chain instead of shellcode, also such chain would require relocation. With
modifications to relocation information of the PE header of the DLL-TxF we can have the loader do it.

Rope 7

(1) Mapping the ROP-TxF transacted file in memory and executing the chain directly from
there, with any changes readily visible to other processes that also have a memory-mapped
ROP-TxF. The patching happens directly inside the transacted file, and the bootstrap
component annotates each involved chunk with the offset used for patching (i.e., the
difference between preferred and actual DLL base address), so that any process that may
need to execute such a chunk later can account for it during their own patching.

(2) Placing the chain on a heap region, filling it by reading the desired chain portions from
the ROP-TxF, and writing them back when permanent changes are needed (e.g., to transfer
program values between processes). In this case, the patching happens only in the own
memory of the victim process, and is reverted upon any write-back operation to the file.

The two strategies have different trade-offs in terms of efficiency and conspicuousness,
and the bootstrap component may follow either. Due to the nature of ROP payloads, we can
use a single region to host any kind of storage for the payload, as read and write permissions
will suffice for both “ROP code” and data.

Another key aspect is how to generate ROP code for the chunks, which can be a daunting
prospect when done entirely manually [1]. We assume as working scenario a payload written
in C. To ease the translation to ROP code, we propose initially to add one level of indirection
around local variables: in other words, all stack-allocated variables should be transformed
and packed as fields of a single global data structure. In this way, we remove interferences
with gadgets in stack usage and we can transparently relocate the storage across the chain
by patching the references to the beginning of the data structure.

Next, we compile the code in Visual Studio with optimizations and stack protections
disabled, obtaining an output that closely resembles a shellcode (although it should be noted
that this strategy is not optimal in terms of code size). We then partially automate its
translation by looking up gadgets in the DLL-TxF for each of the involved instructions, adding
missing gadgets to .text caves, and laying out a chain skeleton. Finally, the attacker com-
pletes it by solving labels for relative offsets for control transfer sequences (i.e., branches and
calls to ROP subroutines) and adding chunk delimiters. As future work, we plan to adapt the
binary rewriter component of the Raindrop ROP obfuscator [3] to fully automate these tasks.

4.3 API: Resolution, Mitigations for Calls, Hook Evasion
The bootstrap component and the distributed ROP payload inevitably need to carry out
actions through the use of standard Windows APIs. As both components are operating in
the context of victim processes, there are three problems to consider for an attacker:

1 How to locate the addresses of the desired APIs within hardened processes;
2 The ROP mitigations of Windows that shepherd calls to sensitive APIs;
3 API hooking mechanisms that security solutions may have deployed.

Problem 1

A naive solution to locate APIs would be to solve all the required ones from the loader
and hard-code their addresses in the bootstrap component and in the ROP chunks for the
payload. On the other hand, this mechanism would place constraints on the payload: all the
required functionality must be known upfront, hindering complex malware designs where,
e.g., a sample receives from the network a functional update that exercises new APIs. Also,
the loader would have to import the APIs or solve them dynamically by loading the enclosing
DLLs—which could be conspicuous: think of, e.g., network or crypto-related libraries—while
victims may have instead already loaded such libraries for their own activities.

BHUSA 2021

8 Rope

To solve APIs from the victim processes, we came up with two alternative solutions
involving two new bypasses for as many Windows mitigations. We get around the EAF and
IAF mitigations (Section 3) of WDEG, which prevent code not backed from an image on disk
from scanning, respectively, the Export Address Table (EAT) of any loaded DLL and the
Import Address Table (IAT) of the victim executable [9, 14]. With either bypass we are able
to locate covertly any required APIs just like shellcodes would do in non-hardened processes.

Both EAF and IAF shepherd memory accesses to the sensitive regions hosting, respectively,
export and import information by using guard pages. The key to getting around both
mitigations is to trick the guard page handler into believing that the code attempting to
access the EAT/IAT is legitimate code. In fact, code that belongs to the main executable or
any DLL is allowed to scan the EAT/IAT for the current policy employed by WDEG.

What we leverage is an arbitrary memory read primitive borrowed from a legitimate
module in the form of a ROP gadget. Note that our new injection primitive does not follow
standard Windows loading, hence gadgets from the DLL-TxF are not suitable for EAF/IAF
bypass. However, the kind of gadget that we need is really simple and we can find it in
nearly any Windows library that the victims load. A suitable gadget, for instance, is:

// 8b 00 mov eax, dword ptr [eax]
// c3 ret

To locate a gadget we inspect the PEB of the process, which is not guarded by either
mitigation, and look up the base address of kernel32.dll, which is loaded by almost any
Windows process by default. Then we execute a scanning sequence to look up the bytes 8b
00 c3 for the gadget in the .text section of the DLL. In our implementation each victim
performs its own search. However, for simplicity one may also have the loader look up the
gadget and hard-code its address in the bootstrap component and in the ROP-TxF.

We use a standard EAT/IAT scanning procedure to look up function names and corre-
sponding addresses, replacing read accesses to the EAT/IAT region with a wrapping sequence
semantically equivalent to the subroutine reported in Listing 2.

1 DWORD readp (LPBYTE target , DWORD GADGET_read) {
2 DWORD r e s = NULL;
3 __asm{
4 mov eax , t a r g e t ;
5 c a l l GADGET_read; // address o f ke rne l32 . d l l gadget
6 mov res , eax ;
7 }
8 re turn r e s ; // reads 4 bytes at a time
9 }

Listing 2 ROP-based primitive for EAF/IAF-compliant memory scanning

This subroutine can be used as-is in shellcode, and is even simpler to embed in ROP
chains as we just need to use GADGET_read for accessing EAT/IAT locations.

Problem 2

The second problem concerns the ROP mitigations of WDEG that shepherd calls to sensi-
tive APIs (e.g., VirtualAlloc, LoadLibraryA, CreateFileMappingA). These mitigations,
namely StackPivot, CallerCheck, and SimExec (Section 3), turn out effective in exploitation
contexts as the attacker typically hijacks the stack pointer to a location different than the
native stack and may face a limited availability of gadgets to deceive mitigations.

In our scenario, however, we can craft chains in a way such that the stack pointer
falls into legitimate ranges upon API calls, and operates instead from a heap region or a

Rope 9

LOAD STACK

ADD EDX,4
SUB ECX,4
MOV [ECX],EDX

PIVOT

ARG N

ARG 1

&FUNCTION

MOV ESP,ECX; RET

<-- EDX

<-- EDX

<-- EDX

<-- ESP

<-- ESP

<-- ESP

<-- ECX

<-- ECX

;save EAX
POP EAX; RET
&SHELLCODE
JMP EAX

SAVED ESP

&STAGE2

ARG N

ARG N-1

FUNCTION

GADGET_pivot

ARG 1

<-- ESP

STAGE2

Figure 2 Calling non-sensitive Windows APIs. On the left, the fragment of ROP chain for setting
up a call. On the right, the native stack during the call. By &SHELLCODE we indicate the return
address in the boostrap component when implemented as shellcode. For the ROP-only variant of
the bootstrap component we can follow the approach of [3] with custom stack-switching gadgets.

memory-mapped ROP-TxF when carrying internal computations. Similar considerations apply
to CallerCheck and SimExec as we will detail shortly.

Switching stacks is helpful also with non-sensitive APIs. The careful reader would observe
that the normal execution of EIP-driven code can pollute the chain with stack-allocated
variables and parameter passing for function calls. Before we discuss chain crafting for calls
to sensitive APIs, we first detail how we handle non-sensitive API calls with stack switching.

Figure 2 shows a chain fragment that executes an API call and, for the sake of presentation,
returns to the bootstrap component as if the current chunk ended. We use a set of gadgets
to fill up the stack for the function call and a gadget to pivot the stack pointer ESP, followed
by each of the parameters to be loaded. When the function returns, a second fragment of
the chain deals with saving the function’s return value (i.e., the contents of register EAX) and
returning into the bootstrap component. In more detail, the chain uses register ECX to point to
the real program stack, while register EDX walks the chain to select each parameter. Concisely,
to place a parameter on the stack we increment EDX to point to the next slot, decrement
ECX, and push the argument with a “MOV [EDX],EDX; MOV [ECX],EDX”-like sequence. Once
everything is arranged, we perform a stack pivoting for ESP from the chain to the real stack
through a MOV ESP,ECX; RET sequence.

At this time, ESP points to the entry point of the desired API, whose code takes over once
the RET instruction is executed. As Windows APIs follow the stdcall calling convention [9],
the callee is appointed for the cleanup and this operation will modify the stack pointer
accordingly upon return. Hence, to the location corresponding to the return address we
directly encode a new pivot that alters ESP so as to point to the exiting sequence (&STAGE2
in the figure). Here the return value of the API, available in EAX, is saved and the control
returns to the bootstrap component, waiting for a new block to execute.

BHUSA 2021

10 Rope

SAVED ESP

ARG N

ARG N-1

ARG 1

RETURN

FUNCTION FRAME

<-- ESP

<-- ECX

<-- ECX

LOAD STACK

ADD EDX,4
SUB ECX,4
MOV [ECX],EDX

PIVOT

ARG N

ARG 1

&FUNCTION

MOV ESP,ECX; RET

<-- EDX

<-- EDX

<-- EDX

<-- ESP

<-- ESP

<-- ESP

&SHELLCODE

JMP EAX

<-- EAX

Figure 3 Revised stack switching mechanism for the invocation of sensitive APIs guarded by
Windows ROP mitigations.

For sensitive API calls, the requirements to meet are the following:

To comply with the StackPivot mitigation, the function call must occur with a stack
pointer value being between the upper and lower stack limits defined in the Thread
Environment Block of the caller thread;
For CallerCheck, the sensitive function should return to an address preceded by a CALL
instruction. Further checks may be performed on the targets of surrounding indirect
control transfer instructions [17];
Lastly, for SimExec, the execution must return to a legitimate caller also for subsequent
return addresses, since the mitigation walks from the return address and simulates a bunch
of instructions in order to deny any return transfers to non-call-preceded targets [18].

We satisfy the first mitigation by design as all calls are executed on the real stack of the
process. For the second mitigation, we replace the pivoting gadget of Figure 2 by making
the bootstrap component issue the call. We place on the stack a long gadget to stop any
backward search, and load the address of the sensitive function into EDX. Since the control
flow returns back into the bootstrap component, no attack is detected by SimExec. Figure 3
depicts the overall flow. For ROP-only versions of the bootstrap component we can use
techniques discussed in previous works [17, 4] to get around the ROP mitigations of WDEG.

Problem 3

The problem of evading hooking mechanisms from AV/EDR solutions is a rather well-known
hurdle in nearly any malware design, as the use of certain “conspicuous” APIs turns out to
be clearly suspicious in the eyes of a behavioral analysis. Reducing the footprint of specific
unavoidable actions can be valuable also in the context of distributed malware design.

In Rope this step is mainly relevant for the loader component, which will operate in
plain sight as a single process. For the ROP chunks, instead, the distributed nature of the
computation seems already well-suited to deceive behavioral detections as studied in prior

Rope 11

literature. However, for the sake of discussion, we note that avoiding API hooks from chunks
may still be useful under further specific conditions, e.g., when using very large ROP chunks
or for atomic actions that are excessively conspicuous on their own.

For 64-bit code, bypassing user-mode hooks typically involves the use of direct syscalls [9]:
this process involves retrieving the syscall ordinals for the Windows version in use, and
possibly the removal of any registered post-syscall callbacks5. The case of 32-bit code poses a
more difficult challenge as the Windows kernel is 64-bit: to bypass 32-bit user-mode hooks, in
the loader component we experimented with Heaven’s Gate to enter 64-bit mode and invoke
the WOW64 versions of the conspicuous APIs we needed, using the WOW64Ext library
written by Rolf Rolles6. We left to future work attempting direct syscalls after Heaven’s
Gate to cope with products that may place instrumentation in the WOW64 subsystem.

An alternative to getting around user-mode hooks could be attempting stolen code [12]
and similar attacks that bypass instrumentation in the prologue of API functions by emulating
their initial instructions, e.g., with own code. However, this avenue may raise compatibility
issues for different Windows versions, and also increases the complexity in the implementation
especially of low-level APIs (unless the stolen sequences are really short, which would make
them amenable to detection and/or mitigation).

4.4 Practical Considerations for Distributed Execution

There are a few unique challenges in orchestrating a distributed malware execution, which we
attribute to two main categories. One is synchronization, that is, how the different victims
can coordinate in transferring both control and program state when processing the chunks.
The other is resource sharing, that is, how multiple processes can access and share resources
(such as file and socket descriptors) for implementing functionalities that in standalone
designs are meant to run as a whole; this problem is well studied in malWASH [11]. This
section covers implementation solutions that we used in our Rope proofs-of-concept (PoCs).

Synchronization

As we discussed in Section 3, the design of Rope supports two execution modes: one where
the Rope bootstrap component aids the chunks by coordinating their execution, and one
where those can execute simultaneously and synchronize their actions on their own if needed.

As the first mode requires explicit assistance, in the ROP-TxF file hosting the chunks we
use a portion of its header contents for bookkeeping relevant aspects of the execution. Such
header maintains the PID of the last-executer victim, the index of the current chunk, and a
per-victim structure that contains the index of the last chunk to execute when scheduled
and the TxF handles that the loader component duplicated for it. The ROP-TxF header also
encloses additional useful fields such as pointers to solved APIs and scratch locations.

Each victim carries out the execution of the ROP chunks within a loop, starting from the
current chunk until the one marked as last for it has been executed. Synchronization and
mutual exclusion can be ensured using standard means explored in previous literature [11, 5],
e.g., a mutex, a semaphore, or a covert side channel. In the PoC implementations we used a
named mutex. When a victim is about to complete its turn and release the lock, the index
of the current chunk in the header field is updated accordingly in the ROP-TxF.

5 For the interested reader an excellent reference is https://www.mdsec.co.uk/2020/12/bypassing-
user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/.

6 Available at https://github.com/rwfpl/rewolf-wow64ext.

BHUSA 2021

https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://github.com/rwfpl/rewolf-wow64ext

12 Rope

Resource sharing

As highlighted in [11], a major challenge for multi-process distribution of chunks is the use of
handles and other descriptors in the code. Indeed, it should be noted that classic Windows
HANDLE objects as well as registry and socket ones are unique per process. In Section 4.2
we mentioned that stack variables (but this can apply to global storage as well) should be
enclosed in a data structure to ease the ROP encoding, so that every variable dereference
will take place through indirection. This means that we can process handle fields in the
structure and duplicate them for other processes when resource sharing is required.

Regions

We conclude by discussing further implications of using ROP for encoding the chunks
compared to prior solutions based on plain machine instructions scheduled by an emulator.
Rope brings the advantage of not having any executable memory mapped for the payload,
as we borrow gadgets from legitimate sources. We also use a single memory region for the
payload and its data—that is, the memory-mapped or heap-mirrored ROP-TxF—instead of
having as many extra regions in the victim as the sections of the “distributed” PE file.

The payload chopping design of malWASH and D-TIME requires special handling for
block relocations and for the multiple sections of the standalone PE file. Our approach is
conceptually simpler as in the ROP encoding that we use all the references to the chain
for data accesses and control transfers are relative offsets, similarly to position-independent
code also on 32-bit instances. We leave to future work the implementation of ROP rewriting
techniques [3] that can fully automate the translation of payloads to Rope, and the addition
of heap allocation primitives to dynamically map extra space in the ROP-TxF file.

5 Validation and Final Remarks

Methodology

To evaluate the proposed design we have implemented several proof-of-concept (PoC) malware
samples and executed them on the latest Windows 10 releases available right before the
responsible disclosure process started: 2004, 20H2, and an Insider build from January 2021.

We considered 10 state-of-the-art AV/EDR products (reported in Table 1) and a selec-
tion of common applications running with medium Mandatory Integrity Control7: Chrome
v86.0.4240.198, Skype v8.66.0.77, Telegram v2.4.7, Discord v0.0.309, Steam v2.10.91.91, Fire-
fox v83.0, Dropbox v112.4.321, Adobe Reader DC v19.010.20098, and Opera v73.0.3856.257.
We used their 32-bit versions so we could test also prior research concepts on the payloads
meant for distribution, as well as better evaluate the API hook evasion techniques and
SimExec. However, we remark that Rope can work on 64-bit victims as well.

The Windows releases ran with the following system mitigations enabled: DEP, Mandatory
ASLR, Bottom-up ASLR, High-entropy ASLR, SEHOP, and Validate Heap Integrity, as
well as Control Flow Guard for compliant applications. For each of the victim processes, we
enabled the following opt-in mitigations: CIG, EAF, IAF, and alternatively ACG or the
ROP mitigations (StackPivot, CallerCheck, and SimExec) as at the moment they cannot
both be enabled at the same time according to the documentation of WDEG.

Notice that ACG and CIG face compatibility issues with non-Microsoft applications
whenever they need to load unsigned DLLs or modify code (think of, e.g., browsers). For

7 https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control.

https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

Rope 13

AV/EDR Product Version
Avast 2.1.27.0
Bitdefender Total Security 25.0.10.52
Comodo Client Security 12.5.0.8351
Defender January 2021
Defender ATP January 2021
Kaspersky Total Security 21.2.16.590
Intezer Endpoint Scanner 1.0.1.8
Malwarebytes 4.1.1.167
Sophos Intercept X 2.0.18
Webroot SecureAnywhere 9.0.29.62

Table 1 List of AV/EDR products used for validating Rope.

this reason, we enabled both mitigations in audit mode so as not to prematurely kill any
hardened process, and manually investigated in the Windows Event Logs if the events they
reported originated from Rope or from the own activities of the application.

Validation

We now report on our experimental findings, presenting two of the Rope PoCs that we wrote.
Each PoC alerts the behavioral detection of the tested security products when executed
as a standalone sample. Our expectation is that once encoded and executed in Rope the
PoC will no longer raise an alert. For simplicity, both PoCs were crafted to have one
chunk for each straight-line C fragment hosting one API call, but the design is open to any
payload partitioning strategy. Each PoC is representative of one of the two execution modes
envisioned in Section 3. We use the smallest possible number of victim processes (i.e., two)
to distribute the payload, choosing from different combinations of the listed applications.

Our first PoC adds a key entry to the Windows registry under the path HKCU\SOFTWARE
\Microsoft\Windows\CurrentVersion\Run to achieve persistence or alternatively to run
bcdedit to tamper with the Windows boot process. The two injected victims race to run
one chunk at a time, synchronizing through a named mutex for acquiring the execution lock.

The second PoC is a file dropper mimicking a download-and-execute scenario. The
first victim process requests a file containing a PowerShell script from a C&C server and
downloads it into the %TEMP% folder. Later on, the second process reads the file path just
written in the ROP-TxF by the first process and in turn spawns a new process that executes
the script from the command line. The first victim commits its state after the execution of
the first 6 chunks and releases the lock, so that the second process can map the ROP chunks
in its address space and resume from where the other left off. To some extent, this scenario
is also probative of tasks that cannot be broken down into too short execution units.

During the injection stage, we could not complete our tests with two products since their
“sandboxes”—in which the Rope loader initially runs—restrained us from interacting with
other processes. The issue arises when the loader tries to get a handle on each victim with
OpenProcess, and the API call fails with error code 5 (i.e., Access denied).

We believe the reason is that the loader executable is not signed with a certificate, hence
it likely runs with low integrity within the user-space sandbox. We note that this approach
can pose compatibility issues with benign applications, and can likely be circumvented using
stalling tactics (as the sandboxed execution is slow and the process eventually gets released
from it), a different injection primitive, or other evasion techniques. By further investigation,

BHUSA 2021

14 REFERENCES

we observed that with OpenProcess or DuplicateHandle our samples see flawed outputs
or denied accesses, despite having the necessary privileges to obtain or duplicate a handle.
With tests of this kind [2], one can deduce when their sample is running within an emulated
AV/EDR environment and decide not to expose the malicious behavior, invalidating the
detection and a potential cloud submission of data for detailed analysis.

For the other 8 products, 7 did not detect our loader (nor the subsequent distributed
actions) already in the version that does not attempt to bypass user-mode hooks. The
remaining product would classify our initial actions as suspicious, but resorting to the
WOW64 API counterparts via Heaven’s Gate in the loader resulted in no detection. As for
the Windows mitigations, Rope caused no violations in any of the victim processes.

When we tested D-TIME (Section 2) on the standalone PoCs that we encoded and
evaluated with Rope, 7 of the 10 products detected a threat and halted the execution.

Final Remarks

Return-oriented programming represents a valuable ally to hide executable code from the
prying eyes of AV/EDR solutions, removing the need for suspicious allocations or modifications
of executable memory and hindering also code fingerprinting attempts. The lack of immediate
operand values in plain sight for instructions, the intrinsic polymorphism [20] of gadget
ordering and contents, and other obfuscation-related properties of ROP [3] pose new challenges
for AV/EDRs when applied to the context of distributed malware execution.

Our design is modular and allows for individual replacement of components: for instance,
the DLL-TxF can be removed if a different stealth injection primitive is available, or we
may interleave ROP with other code reuse flavors in the presence of fine-grained ROP
mitigations or fingerprinting techniques. The design itself is amenable to further extensions
and improvements, for instance by exploring other means for hijacking victims and for
spawning the bootstrap component (e.g., we explored IAT hijacking after bypassing IAF).

We anticipate different ways in which defenders could react to Rope and enhance their
products. Monitoring handle duplication would provide an initial alert for possibly ongoing
malicious activity, especially when involving TxF handles. While extending behavioral
detections to account for fine-grained chunks executed alongside normal activities of multiple
victims may be challenging for scalability, an alternative point to look at for detecting
distributed malware may be treating the activities involving duplicated handles as if they
were coming from a single execution unit. Also, the in-memory code scanning solutions of
the most sophisticated AV/EDR products could be enhanced with ROP-aware analyses like
ROPDissector [7] and ROPMEMU [10], at least in order to be able to spot basic elements of
ROP chains such as data operands (e.g., typical constants used in common API calls from
malware) or recurrent patterns of gadgets (e.g., those that we use to set up API calls).

We refer our interested readers to the Black Hat USA 2021 Briefings presentation and to
the upcoming companion academic paper [8] for the methodological aspects behind Rope
and for other details that are not covered in this White Paper.

References

1 Marco Angelini, Graziano Blasilli, Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia,
Serena Ferracci, Simone Lenti, and Giuseppe Santucci. ROPMate: Visually Assisting
the Creation of ROP-based Exploits. In Proceedings of the 15th IEEE Symposium on
Visualization for Cyber Security, VizSec ’18, 2018. URL: https://doi.org/10.1109/
VIZSEC.2018.8709204, doi:10.1109/VIZSEC.2018.8709204.

https://doi.org/10.1109/VIZSEC.2018.8709204
https://doi.org/10.1109/VIZSEC.2018.8709204
http://dx.doi.org/10.1109/VIZSEC.2018.8709204

REFERENCES 15

2 Jeremy Blackthorne, Alexei Bulazel, Andrew Fasano, Patrick Biernat, and Bülent
Yener. AVLeak: Fingerprinting antivirus emulators through black-box testing. In 10th
USENIX Workshop on Offensive Technologies (WOOT 16), Austin, TX, August 2016.
USENIX Association. URL: https://www.usenix.org/conference/woot16/workshop-
program/presentation/blackthorne.

3 Pietro Borrello, Emilio Coppa, and Daniele Cono D’Elia. Hiding in the particles: When
return-oriented programming meets program obfuscation. In Proceedings of the 51st
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
’21. IEEE, 2021. https://arxiv.org/abs/2012.06658.

4 Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. The ROP
needle: Hiding trigger-based injection vectors via code reuse. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC ’19, pages 1962–1970, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3297280.3297472.

5 Marcus Botacin, Paulo De Geus, and Andre Gregio. Vanilla malware: vanishing antiviruses
by interleaving layers and layers of attacks. Journal of Computer Virology and Hacking
Techniques, 15, 12 2019. doi:10.1007/s11416-019-00333-y.

6 Fabio De Gaspari, Dorjan Hitaj, Giulio Pagnotta, Lorenzo De Carli, and Luigi V. Mancini.
The Naked Sun: Malicious cooperation between benign-looking processes. In Mauro
Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors, Applied
Cryptography and Network Security, pages 254–274, Cham, 2020. Springer International
Publishing.

7 Daniele Cono D’Elia, Emilio Coppa, Andrea Salvati, and Camil Demetrescu. Static
analysis of ROP code. In Proceedings of the 12th European Workshop on Systems Security,
EuroSec ’19, pages 2:1–2:6. ACM, 2019. doi:10.1145/3301417.3312494.

8 Daniele Cono D’Elia, Lorenzo Invidia, and Leonardo Querzoni. Rope: Covert multi-
process malware execution with return-oriented programming. In Computer Security –
ESORICS 2021, Cham, October 2021. Springer International Publishing.

9 Daniele Cono D’Elia, Simone Nicchi, Matteo Mariani, Matteo Marini, and Federico
Palmaro. Designing robust API monitoring solutions. arXiv, abs/2005.00323, 2020. URL:
https://arxiv.org/abs/2005.00323.

10 Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. ROPMEMU: A framework
for the analysis of complex code-reuse attacks. In Proceedings of 11th Asia Conference
on Computer and Communications Security, ASIACCS ’16, pages 47–58. ACM, 2016.
doi:10.1145/2897845.2897894.

11 Kyriakos K. Ispoglou and Mathias Payer. malWASH: Washing malware to evade dynamic
analysis. In 10th USENIX Workshop on Offensive Technologies (WOOT 16), Austin,
TX, August 2016. USENIX Association. URL: https://www.usenix.org/conference/
woot16/workshop-program/presentation/ispoglou.

12 Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo Hariu. API Chaser: Anti-
analysis resistant malware analyzer. In Salvatore J. Stolfo, Angelos Stavrou, and Charles V.
Wright, editors, Research in Attacks, Intrusions, and Defenses, RAID ’13, pages 123–143.
Springer Heidelberg, 2013.

13 Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu, and Jyh-Charn Liu. Shadow attacks:
automatically evading system-call-behavior based malware detection. Journal in Computer
Virology, 8(1):1–13, 2012. doi:10.1007/s11416-011-0157-5.

14 Microsoft. Exploit protection reference. https://docs.microsoft.com/en-
us/microsoft-365/security/defender-endpoint/exploit-protection-
reference?view=o365-worldwide (Accessed: July 19, 2021).

BHUSA 2021

https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne
https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne
https://arxiv.org/abs/2012.06658
http://dx.doi.org/10.1145/3297280.3297472
http://dx.doi.org/10.1007/s11416-019-00333-y
http://dx.doi.org/10.1145/3301417.3312494
https://arxiv.org/abs/2005.00323
http://dx.doi.org/10.1145/2897845.2897894
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
http://dx.doi.org/10.1007/s11416-011-0157-5
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide

16 REFERENCES

15 Microsoft. Windows Defender Exploit Guard: Reduce the attack surface against
next-generation malware, 2017. https://www.microsoft.com/security/blog/2017/
10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-
next-generation-malware/.

16 B. Min and V. Varadharajan. Design and analysis of a new feature-distributed malware.
In 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing
and Communications, pages 457–464, 2014. doi:10.1109/TrustCom.2014.58.

17 Z. L. Nemeth. Modern binary attacks and defences in the windows environment –
fighting against microsoft emet in seven rounds. In 2015 IEEE 13th International
Symposium on Intelligent Systems and Informatics (SISY), SYSY ’15, pages 275–280,
2015. doi:10.1109/SISY.2015.7325394.

18 Christoforos Ntantogian, Georgios Poulios, Georgios Karopoulos, and Christos Xenakis.
Transforming malicious code to ROP gadgets for antivirus evasion. IET Information
Security, 13(6):570–578, 2019. doi:10.1049/iet-ifs.2018.5386.

19 Jithin Pavithran, Milan Patnaik, and Chester Rebeiro. D-TIME: Distributed threadless
independent malware execution for runtime obfuscation. In 13th USENIX Workshop on
Offensive Technologies (WOOT 19), Santa Clara, CA, August 2019. USENIX Association.
URL: https://www.usenix.org/conference/woot19/presentation/pavithran.

20 Giorgos Poulios, Christoforos Ntantogian, and Christos Xenakis. ROPInjector: Using
return oriented programming for polymorphism and antivirus evasion. Black Hat
USA, 2015. https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-
ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-
Antivirus-Evasion-wp.pdf.

21 M. Ramilli, M. Bishop, and S. Sun. Multiprocess malware. In 2011 6th International
Conference on Malicious and Unwanted Software, pages 8–13, 2011. doi:10.1109/
MALWARE.2011.6112320.

22 Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 552–561, New York, NY, USA, 2007. ACM.
doi:10.1145/1315245.1315313.

https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
http://dx.doi.org/10.1109/TrustCom.2014.58
http://dx.doi.org/10.1109/SISY.2015.7325394
http://dx.doi.org/10.1049/iet-ifs.2018.5386
https://www.usenix.org/conference/woot19/presentation/pavithran
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion-wp.pdf
http://dx.doi.org/10.1109/MALWARE.2011.6112320
http://dx.doi.org/10.1109/MALWARE.2011.6112320
http://dx.doi.org/10.1145/1315245.1315313

	1 Introduction
	2 Background
	3 Design
	4 Implementation
	4.1 Bootstrap Component and Injection Primitive
	4.2 Shared Stack and ROP Payload Generation
	4.3 API: Resolution, Mitigations for Calls, Hook Evasion
	4.4 Practical Considerations for Distributed Execution

	5 Validation and Final Remarks

