
Ghosts in a Nutshell

Moritz Lipp, Claudio Canella

moritz.lipp@iaik.tugraz.at, claudio.canella@iaik.tugraz.at

Abstract

Modern processors optimize performance by using techniques like branch pre-
diction and out-of-order execution. In the case where the prediction is wrong
or an exception occurred, the results of so-called transient instructions need to
be reverted. Unfortunately, microarchitectural state changes are not reverted
allowing attacks like Spectre or Meltdown to recover secret data.

In the introduction of the talk, we will shortly discuss previous microarchi-
tectural attacks. We will discuss the Spectre and Meltdown attacks and present
a consistent and extensible systematization of transient execution attacks. That
systematization led to the discovery of 6 new transient execution attacks, 2 of
those are new Meltdown variants, and the remaining 4 are new ways to mistrain
prediction mechanisms in Spectre-type attacks. One of the new Meltdown at-
tacks is the first on AMD, contradicting all previous statements and beliefs that
they are not affected. We will also present a novel classification of gadgets and
discuss how they can be combined in different attacks. Finally, we will discuss
different mitigations, highlighting their performance impact and whether they
can successfully mitigate an attack.

1 Overview

In this whitepaper, we cover the topics of our talk and also provide technical
background. The paper is a pre-print of the paper “A Systematic Evaluation of
Transient Execution Attacks and Defenses” [1]. Spectre and Meltdown are two
attacks that created a new research field for both attacks and defenses. In a short
period, many different attack variants have been discovered and ad-hoc defenses
created. We provide a clear and extensible systematization of both Spectre and
Meltdown-type attacks, which we call transient execution attacks, which led to
the discovery of 2 new Meltdown variants and 4 new ways to mistrain prediction
mechanisms for Spectre. For that, we also present a classification of gadgets and
discuss how they can be combined in different attacks. Furthermore, we provide
a classification of defenses and analyze their effectiveness in mitigating attacks.

The main takeaways of both the talk and the whitepaper are as follows.
1. Current defenses for transient execution attacks have a substantial perfor-

mance overhead, and not all of them work as intended.
2. There are new variants of Meltdown and Spectre out there that have not

yet been discovered.

1

3. We can categorize Meltdown and Spectre-type attacks based on what el-
ement they exploit and defenses on how they try to stop leakage in order
to avoid confusion provoked by the current naming scheme.

References

[1] Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg,
B., Ortner, P., Piessens, F., Evtyushkin, D., and Gruss, D.
A Systematic Evaluation of Transient Execution Attacks and Defenses.
arXiv:1811.05441 (2018).

2

A Systematic Evaluation of Transient Execution Attacks and Defenses

Claudio Canella1, Jo Van Bulck2, Michael Schwarz1, Moritz Lipp1,
Benjamin von Berg1, Philipp Ortner1, Frank Piessens2, Dmitry Evtyushkin3, Daniel Gruss1

1 Graz University of Technology, 2 imec-DistriNet, KU Leuven, 3 College of William and Mary

Abstract

Modern CPU optimizations such as branch prediction and
out-of-order execution are crucial for performance. Recent
research on transient execution attacks including Spectre
and Meltdown showed, however, that exception or branch
misprediction events may leave secret-dependent traces in
the CPU’s microarchitectural state. This observation led to
a proliferation of new Spectre and Meltdown attack vari-
ants and even more ad-hoc defenses (e.g., microcode and
software patches). Unfortunately, both the industry and
academia are now focusing on finding efficient defenses
that mostly address only one specific variant or exploitation
methodology. This is highly problematic as the state-of-the-
art provides only limited insight on residual attack surface
and the completeness of the proposed defenses.

In this paper, we present a consistent and extensible sys-
tematization of transient execution attacks. Our systematiza-
tion uncovers 6 (new) transient execution attacks that have
been overlooked and not been investigated so far. This in-
cludes 2 new Meltdown variants: Meltdown-PK on Intel, and
Meltdown-BND on Intel and AMD. It also includes 4 new
Spectre mistraining strategies. We evaluate all attacks in our
classification tree through proof-of-concept implementations
on 3 major CPU vendors (Intel, AMD, ARM). Our system-
atization does not only yield a complete picture of the attack
surface, but also allows a systematic evaluation of defenses.
Through this systematic evaluation, we discover that we can
still mount transient execution attacks that are supposed to
be mitigated by rolled out patches.

1 Introduction

CPU performance over the last decades was continuously
improved by shrinking processing technology and increasing
clock frequencies, but physical limitations are already hin-
dering this approach. To still increase the performance, ven-
dors shifted the focus to increasing the number of cores and
optimizing the instruction pipeline. Modern CPU pipelines

are massively parallelized allowing hardware logic in prior
pipeline stages to perform operations for subsequent in-
structions ahead of time or even out-of-order. Intuitively,
pipelines may stall when operations have a dependency on
a previous instruction which has not been executed (and re-
tired) yet. Hence, to keep the pipeline full at all times, it is
essential to predict the control flow, data dependencies, and
possibly even the actual data. Modern CPUs, therefore, rely
on intricate microarchitectural optimizations to predict and
sometimes even re-order the instruction stream. Crucially,
however, as these predictions may turn out to be wrong,
pipeline flushes may be necessary, and instruction results
should always be committed according to the intended in-
order instruction stream. Pipeline flushes may occur even
without prediction mechanisms, as on modern CPUs virtu-
ally any instruction can raise a fault (e.g., page fault or gen-
eral protection fault), requiring a roll-back of all operations
following the faulting instruction. With prediction mecha-
nisms, there are more situations when partial pipeline flushes
are necessary, namely on every misprediction. The pipeline
flush discards any architectural effects of pending instruc-
tions, ensuring functional correctness. Hence, the instruc-
tions are executed transiently (first they are, and then they
vanish), i.e., we call this transient execution [59, 52, 90].

While the architectural effects and results of transient in-
structions are discarded, microarchitectural side effects re-
main beyond the transient execution. This is the foundation
of Spectre [52], Meltdown [59], and Foreshadow [90]. These
attacks exploit transient execution to encode secrets through
microarchitectural side effects (e.g., cache state) that can
later be recovered by an attacker at the architectural level.
The field of transient execution attacks emerged suddenly
and proliferated, leading to a situation where people are not
aware of all variants and their implications. This is apparent
from the confusing naming scheme that already led to an ar-
guably wrong classification of at least one attack [50]. Even
more important, this confusion leads to misconceptions and
wrong assumptions for defenses. Many defenses focus ex-
clusively on hindering exploitation of a specific covert chan-

nel, instead of addressing the microarchitectural root cause
of the leakage [49, 47, 94, 52]. Other defenses rely on re-
cent CPU features that have not yet been evaluated from a
transient security perspective [89]. We also debunk implicit
assumptions including that AMD or the latest Intel CPUs are
completely immune to Meltdown-type effects, or that serial-
izing instructions mitigate Spectre Variant 1 on any CPU.

In this paper, we present a consistent and extensible sys-
tematization of transient execution attacks, i.e., Spectre,
Meltdown, Foreshadow, and related attacks. Using our de-
cision tree, all known transient execution attacks were ac-
curately classified through an unambiguous naming scheme
(cf. Figure 1). The hierarchical and extensible nature of our
taxonomy allows to easily identify residual attack surface,
leading to 6 previously overlooked transient execution at-
tacks (Spectre and Meltdown variants) first described in this
work. Two of the attacks are Meltdown-BND, exploiting a
Meltdown-type effect on the x86 bound instruction on In-
tel and AMD, and Meltdown-PK, exploiting a Meltdown-
type effect on memory protection keys on Intel. The other 4
attacks are previously overlooked mistraining strategies for
Spectre-PHT and Spectre-BTB attacks. We demonstrate all
attacks in our classification tree through practical proofs-of-
concept with vulnerable code patterns evaluated on CPUs of
Intel, ARM, and AMD.

Next, we provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot suffice. This system-
atic evaluation revealed that we can still mount transient exe-
cution attacks that are supposed to be mitigated by rolled out
patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We systematize all (known) Spectre- and Meltdown-type

attacks, advancing attack surface understanding and high-
lighting at least one arguable misclassification.

2. We provide a clear distinction between Meltdown/Spec-
tre, required for designing effective countermeasures.

3. We categorize all defenses and show that most, including
deployed ones, cannot fully mitigate all attack variants.

4. We exhaustively test x86 exceptions, revealing that only
faults, not traps/aborts, cause Meltdown-type leakage.

5. We contribute new branch mistraining strategies, high-
lighting the difficulty of eradicating Spectre-type attacks.

6. We discover 2 new Meltdown attacks, including the first
exploitable Meltdown-type effect on AMD, contradicting
previous claims by AMD and previous works citing this.

We responsibly disclosed the work to Intel, ARM, and AMD.
Experimental Setup. Unless noted otherwise, all of the
experimental results reported were performed on recent In-
tel Skylake i5-6200U, Coffee Lake i7-8700K, and Whiskey
Lake i7-8565U CPUs. Our AMD test machines were a

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [32]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [52, 50]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [52, 18]

BTB-CA-OP [52]

BTB-SA-IP ⭑

BTB-SA-OP [18]Cross-address-space

Same-address-space RSB-CA-IP [62, 54]

RSB-CA-OP [54]

RSB-SA-IP [62]

RSB-SA-OP [62, 54]

Meltdown-NM [83]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [10, 40]

Meltdown-US [59]

Meltdown-P [90, 93]

Meltdown-RW [50]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [43]

Meltdown-BND ⭑

prediction

fault

Figure 1: Transient execution attack classification tree with
demonstrated attacks (red, bold), negative results (green,
dashed), some first explored in this work (⭑ / ⭐).

Ryzen 1950X and a Ryzen Threadripper 1920X. For experi-
ments on ARM, an NVIDIA Jetson TX1 has been used.
Outline. Section 2 provides background. We present the
systematization of Spectre in Section 3 and Meltdown in
Section 4. We analyze and classify gadgets in Section 5 and
defenses in Section 6. We conclude in Section 7.

2 Transient Execution

Out-of-Order Execution. On modern CPUs, individual in-
structions of a complex instruction set are first decoded and
split-up into simpler micro-operations (µOPs) that are then
processed. This design decision allows for superscalar op-
timizations and to extend or modify the implementation of
specific instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the CPU
to execute µOPs not only in the sequential order provided by
the instruction stream but to dispatch them in parallel, utiliz-
ing the CPU’s execution units as much as possible and, thus,
improving the overall performance. If the required operands
of a µOP are available, and its corresponding execution unit
is not busy, the CPU starts its execution even if µOPs earlier
in the instruction stream have not finished yet. As immediate
results are only made visible at the architectural level when
all previous µOPs have finished, CPUs typically keep track
of the status of µOPs in a so-called Reorder Buffer (ROB).
The CPU takes care to retire µOPs in-order, deciding to ei-
ther discard their results or commit them to the architectural
state. For instance, exceptions and external interrupt requests
are handled during retirement by flushing any outstanding
µOP results from the ROB. Therefore, the CPU may have
executed so-called transient instructions [59], whose results
are never committed to the architectural state.
Speculative Execution. Software is mostly not linear but
contains (conditional) branches or data dependencies be-

preface1

reconstruct5

trigger instruction 2

transient instructions 3

fixup4

time
architectural architecturaltransient execution

Figure 2: High-level overview of a transient execution attack
in 5 phases: (1) put microarchitecture in desired state, (2) ex-
ecute a trigger instruction, (3) transient instructions encode
unauthorized data through a microarchitectural covert chan-
nel, (4) CPU retires trigger instruction and flushes transient
instructions, (5) reconstruct secret from microarchitectural
state.

tween instructions. In theory, the CPU would have to stall
until a branch or dependencies are resolved before it can con-
tinue the execution. As stalling decreases performance sig-
nificantly, CPUs deploy various mechanisms to predict the
outcome of a branch or a data dependency. Thus, CPUs con-
tinue executing along the predicted path, buffering the re-
sults again in the ROB until the correctness of the prediction
is verified as its dependencies are resolved. In the case of
a correct prediction, the CPU can commit the pre-computed
results from the reorder buffer, increasing the overall per-
formance. However, if the prediction was incorrect, the
CPU needs to perform a roll-back to the last correct state
by squashing all pre-computed transient instruction results
from the ROB.
Cache Covert Channels. Modern CPUs use caches to
hide memory latency. However, these latency differences
can be exploited in side-channels and covert channels [53,
70, 95, 29, 63]. In particular, Flush+Reload allows obser-
vations across cores at cache-line granularity, enabling at-
tacks, e.g., on cryptographic algorithms [95, 46, 30], user
input [29, 58, 77], and kernel addressing information [28].
For Flush+Reload, the attacker continuously flushes a shared
memory address using the clflush instruction and after-
ward reloads the data. If the victim used the cache line, ac-
cessing it will be fast; otherwise, it will be slow.

Covert channels are a special use case of side-channel at-
tacks, where the attacker controls both the sender and the
receiver. This allows an attacker to bypass all restrictions
that exist on the architectural level to leak information.
Transient Execution Attacks. Transient instructions reflect
unauthorized computations out of the program’s intended
code and/or data paths. For functional correctness, it is cru-
cial that their results are never committed to the architec-
tural state. However, transient instructions may still leave
traces in the CPU’s microarchitectural state, which can sub-
sequently be exploited to partially recover unauthorized re-
sults [59, 52, 90]. This observation has led to a variety of
transient execution attacks, which from a high-level however
always follow the same abstract flow, as shown in Figure 2.
The attacker first brings the microarchitecture into the de-

sired state, e.g., by flushing and/or populating internal branch
predictors or data caches. Next is the execution of a so-called
trigger instruction. This can be any instruction that causes
subsequent operations to be eventually squashed, e.g., due to
an exception or a mispredicted branch or data dependency.
Before completion of the trigger instruction, the CPU pro-
ceeds with the execution of a transient instruction sequence.
The attacker abuses the transient instructions to act as the
sending end of a microarchitectural covert channel, e.g., by
loading a secret-dependent memory location into the CPU
cache. Ultimately, at retirement of the trigger instruction,
the CPU discovers the exception/misprediction and flushes
the pipeline to discard any architectural effects of the tran-
sient instructions. However, in the final phase of the attack,
unauthorized transient computation results are recovered at
the receiving end of the covert channel, e.g., by timing mem-
ory accesses to deduce the secret-dependent loads from the
transient instructions.
High-Level Classification: Spectre vs. Meltdown. All
transient execution attacks have in common that they abuse
transient instructions (which are never architecturally com-
mitted) to encode unauthorized data in the microarchitectural
state. With different instantiations of the abstract phases in
Figure 2, a wide spectrum of transient execution attack vari-
ants emerges. We deliberately based our classification on
the root cause of the transient computation (phases 1, 2), ab-
stracting away from the specific covert channel being used
to transmit the unauthorized data (phases 3, 5). This leads to
a first important split in our classification tree (cf. Figure 1).
Attacks of the first type, dubbed Spectre [52], exploit tran-
sient execution following control or data flow misprediction.
Attacks of the second type, dubbed Meltdown [59], exploit
transient execution following a faulting instruction.

Importantly, Spectre and Meltdown exploit fundamentally
different CPU properties and hence require orthogonal de-
fenses. Where the former relies on dedicated control or data
flow prediction machinery, the latter merely exploits that
data from a faulting instruction is forwarded to instructions
ahead in the pipeline. Note that, while Meltdown-type at-
tacks so far exploit out-of-order execution, even elementary
in-order pipelines may allow for similar effects [91]. Es-
sentially, the different root cause of the trigger instruction
(Spectre-type misprediction vs. Meltdown-type fault) deter-
mines the nature of the subsequent unauthorized transient
computations and hence the scope of the attack.

That is, in the case of Spectre, transient instructions can
only compute on data which the application is also allowed
to access architecturally. Spectre thus transiently bypasses
software-defined security policies (e.g., bounds checking,
function call/return abstractions, memory stores) to leak se-
crets out of the program’s intended code/data paths. Hence,
much like in a “confused deputy” scenario, successful Spec-
tre attacks come down to steering a victim into transiently
computing on memory locations the victim is authorized to

Table 1: Spectre-type attacks and the microarchitectural ele-
ment they exploit (), partially target (), or not affect ().

Attack
Element

B
T

B

B
H

B

PH
T

R
SB

ST
L

Spectre-PHT (Variant 1) [52]
Spectre-PHT (Variant 1.1) [50]

Spectre-BTB (Variant 2) [52]
Spectre-RSB (ret2spec) [54, 62]

Spectre-STL (Variant 4) [32]

Glossary: Branch Target Buffer (BTB), Branch History Buffer (BHB), Pat-
tern History Table (PHT), Return Stack Buffer (RSB), Store To Load (STL).

access but the attacker not. In practice, this implies that one
or more phases of the transient execution attack flow in Fig-
ure 2 should be realized through so-called code gadgets ex-
ecuting within the victim application. We propose a novel
taxonomy of gadgets based on these phases in Section 5.

For Meltdown-type attacks, on the other hand, transient
execution allows to completely “melt down” architectural
isolation barriers by computing on unauthorized results of
faulting instructions. Meltdown thus transiently bypasses
hardware-enforced security policies to leak data that should
always remain architecturally inaccessible for the applica-
tion. Where Spectre-type leakage remains largely an unin-
tended side-effect of important speculative performance op-
timizations, Meltdown reflects a failure of the CPU to respect
hardware-level protection boundaries for transient instruc-
tions. That is, the mere continuation of the transient execu-
tion after a fault itself is required, but not sufficient for a suc-
cessful Meltdown attack. As further explored in Section 6,
this has profound consequences for defenses. Overall, miti-
gating Spectre requires careful hardware-software co-design,
whereas merely replacing the data of a faulting instruction
with a dummy value is sufficient to block Meltdown-type
leakage in silicon (e.g., as it is done for Meltdown-US in
AMD CPUs and recent Intel Whiskey Lake CPUs).

3 Spectre-type Attacks

In this section, we provide an overview of all known Spectre-
type attacks (cf. Figure 1). Given the versatility of Spectre
variants in a variety of adversary models, we propose a novel
two-level taxonomy based on the preparatory phases of the
abstract transient execution attack flow in Figure 2. First, we
distinguish the different microarchitectural buffers that can
trigger a prediction (phase 2), and second, the mistraining
strategies that can be used to steer the prediction (phase 1).
Systematization of Spectre Variants. To predict the out-
come of various types of branches and data dependencies,
modern CPUs accumulate an extensive microarchitectural
state across various internal buffers and components [24].
Table 1 overviews all known Spectre-type attacks and the
corresponding microarchitectural elements they exploit. As
the first level of our classification tree, we categorize Spectre

in-place/
same-
address-space

out-of-place/
same-
address-space

Victim

Victim branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

in-place/
cross-
address-space

out-of-place/
cross-
address-space

Attacker

Shadow branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

Shared Branch Prediction State

Figure 3: A branch can be mistrained either by the victim
process (same-address-space) or by an attacker-controlled
process (cross-address-space). Mistraining can be achieved
either using the vulnerable branch itself (in-place) or a
branch at a congruent virtual address (out-of-place).

attacks based on the microarchitectural root cause that trig-
gers the misprediction leading to the transient execution:

• Spectre-PHT [52, 50] exploits the Pattern History Table
(PHT) that predicts the outcome of conditional branches.

• Spectre-BTB [52] exploits the Branch Target Buffer
(BTB) for predicting branch destination addresses.

• Spectre-RSB [62, 54] primarily exploits the Return Stack
Buffer (RSB) for predicting return addresses.

• Spectre-STL [32] exploits memory disambiguation for
predicting Store To Load (STL) data dependencies.

Note that NetSpectre [79], SGXSpectre [66], and SGXPec-
tre [18] focus on applying one of the above Spectre variants
in a specific exploitation scenario. Hence, we do not con-
sider them separate variants in our classification.

Systematization of Mistraining Strategies. We now pro-
pose a second-level classification scheme for Spectre vari-
ants that abuse history-based branch prediction (i.e., all of the
above except Spectre-STL). These Spectre variants first go
through a preparatory phase (cf. Figure 2) where the microar-
chitectural branch predictor state is “poisoned” to cause in-
tentional misspeculation of a particular victim branch. Since
branch prediction buffers in modern CPUs [52, 24] are com-
monly indexed based on the virtual address of the branch
instruction, mistraining can happen either within the same
address space or from a different attacker-controlled process.
Furthermore, as illustrated in Figure 3, when only a subset of
the virtual address is used in the prediction, mistraining can
be achieved using a branch instruction at a congruent virtual
address. We thus complete the field of Spectre-type branch
poisoning attacks with 4 distinct mistraining strategies:

1. Executing the victim branch in the victim process (same-
address-space in-place).

2. Executing a congruent branch in the victim process
(same-address-space out-of-place).

3. Executing a shadow branch in a different process (cross-
address-space in-place).

4. Executing a congruent branch in a different process
(cross-address-space out-of-place).

In current literature, several of the above branch poisoning
strategies have been overlooked for different Spectre vari-
ants. We summarize the results of an exhaustive vulnera-
bility assessment under all mistraining strategies in Table 2.
Our systematization thus reveals clear blind spots that allow
an attacker to mistrain branch predictors in previously un-
known ways. As explained further, depending on the adver-
sary’s capabilities (e.g., in-process, sandboxed, remote, en-
clave, etc.) these previously unknown mistraining strategies
may lead to new attacks and/or bypass existing defenses.

3.1 Spectre-PHT (Input Validation Bypass)
Microarchitectural Element. Kocher et al. [52] first in-
troduced Spectre Variant 1, an attack that poisons the Pat-
tern History Table (PHT) to mispredict the direction (taken
or not-taken) of conditional branches. Depending on the un-
derlying microarchitecture, the PHT is accessed based on a
combination of virtual address bits of the branch instruction
plus a hidden Branch History Buffer (BHB) that accumulates
global behavior for the last N branches [24, 23]
Reading Out-of-Bounds. Conditional branches are com-
monly used by programmers and/or compilers to maintain
memory safety invariants at runtime. For example, consider
the following code snippet for bounds checking [52]:

if (x < len(array1)) { y = array2[array1[x] * 4096]; }

At the architectural level, this program clearly ensures that
the index variable x always lies within the bounds of the
fixed-length buffer array1. However, after repeatedly sup-
plying valid values of x, the PHT will reliably predict that
this branch evaluates to true. When the adversary now sup-
plies an invalid index x, the CPU continues along a mispre-
dicted path and transiently performs an out-of-bounds mem-
ory access. The above code snippet features an explicit ex-
ample of a “leak gadget” that may act as a microarchitectural
covert channel: depending on the out-of-bounds value being
read, the transient instructions load another memory page be-
longing to array2 into the cache.
Writing Out-of-Bounds. Kiriansky and Waldspurger [50]
showed that transient writes are also possible by following
the same principle. Consider the following code line:

if (x < len(array)) { array[x] = value; }

After mistraining the PHT component, attackers controlling
the untrusted index x can transiently write to arbitrary out-
of-bounds addresses. This creates a transient buffer over-
flow, allowing the attacker to bypass both type and memory
safety. Ultimately, when repurposing traditional techniques
from return-oriented programming [80] attacks, adversaries
may even gain arbitrary code execution in the transient do-
main by overwriting return addresses or code pointers.
Overlooked Mistraining Strategies. All Spectre-PHT at-
tacks so far [52, 66, 50] rely on a same-address-space in-
place branch poisoning strategy. However, our results (cf.
Table 2) reveal that all Intel, ARM, and AMD CPUs we

Table 2: Spectre-type attacks performed in-place, out-of-
place, same-address-space, or cross-address-space.

Method
Attack

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Intel
same-address-space

in-place [52, 50] [62] [32]
out-of-place [18] [62, 54]

cross-address-space
in-place [52, 18] [62, 54]
out-of-place [52] [54]

ARM
same-address-space

in-place [52, 50] [6] [6]
out-of-place [6]

cross-address-space
in-place [6, 52]
out-of-place

AMD
same-address-space

in-place [52] [32]
out-of-place

cross-address-space
in-place [52]
out-of-place

Symbols indicate whether an attack is possible and known (), not possible
and known (), possible and previously unknown or not shown (), or
tested and did not work and previously unknown or not shown (). All tests
performed with no defenses enabled.

tested are vulnerable to all four PHT mistraining strategies.
In this, we are the first to successfully demonstrate Spectre-
PHT-style branch misprediction attacks without prior execu-
tion of the victim branch. This is an important contribution
as it may open up previously unknown attack avenues for
restricted adversaries.

Cross-address-space PHT poisoning may, for instance, en-
able advanced attacks against a privileged daemon process
that does not directly accept user input. Likewise, for Intel
SGX technology, remote attestation schemes have been de-
veloped [81] to enforce that a victim enclave can only be run
exactly once. This effectively rules out current state-of-the-
art SGXSpectre [66] attacks that repeatedly execute the vic-
tim enclave to mistrain the PHT branch predictor. Our novel
out-of-place PHT poisoning strategy, on the other hand, al-
lows us to perform the training phase entirely outside the
enclave by repeatedly executing a congruent branch in the
untrusted enclave host process (cf. Figure 3).

3.2 Spectre-BTB (Branch Target Injection)

Microarchitectural Element. In Spectre Variant 2 [52], the
attacker poisons the Branch Target Buffer (BTB) to steer the
transient execution to a mispredicted branch target. For di-
rect branches, the CPU indexes the BTB using a subset of
the virtual address bits of the branch instruction to yield the
predicted jump target. For indirect branches, CPUs use dif-
ferent mechanisms [33], which may take into account global
branching history accumulated in the BHB when indexing
the BTB. We refer to both types as Spectre-BTB.
Hijacking Control Flow. Contrary to Spectre-PHT, where
transient instructions execute along a restricted mispredicted
path, Spectre-BTB allows redirecting transient control flow
to an arbitrary destination. Adopting established techniques
from return-oriented programming (ROP) attacks [80], but
abusing BTB poisoning instead of application-level vulner-
abilities, selected code “gadgets” found in the victim ad-

dress space may be chained together to construct arbitrary
transient instruction sequences. Hence, where the suc-
cess of Spectre-PHT critically relies on unintended leakage
along the mispredicted code path, ROP-style gadget abuse in
Spectre-BTB allows to more directly construct covert chan-
nels that expose secrets from the transient domain (cf. Fig-
ure 2). We discuss gadget types in more detail in Section 5.
Overlooked Mistraining Strategies. Spectre-BTB was ini-
tially demonstrated on Intel, AMD, and ARM CPUs using a
cross-address-space in-place mistraining strategy [52]. With
SGXPectre [18], Chen et al. extracted secrets from Intel SGX
enclaves using either a cross-address-space in-place or same-
address-space out-of-place BTB poisoning strategy. We ex-
perimentally reproduced these mistraining strategies through
a systematic evaluation presented in Table 2. On AMD and
ARM, we could not demonstrate out-of-place BTB poison-
ing. Possibly, these CPUs use an unknown (sub)set of virtual
address bits which we were not able to reverse engineer.

We are the first to recognize that Spectre-BTB mistrain-
ing can also proceed by repeatedly executing the vulnerable
indirect branch with valid inputs. Much like Spectre-PHT,
such same-address-space in-place BTB poisoning abuses the
victim’s own execution to mistrain the underlying branch tar-
get predictor. Hence, as an important contribution to un-
derstanding attack surface and defenses, in-place mistrain-
ing within the victim domain may allow bypassing widely
deployed mitigations [3, 43] that flush and/or partition the
BTB before entering the victim. Since the branch destina-
tion address is now determined by the victim code and not
under direct control of the attacker, however, Spectre-BTB-
SA-IP cannot offer the full power of arbitrary transient con-
trol flow redirection. Yet, in higher-level languages like C++
that commonly rely on indirect branches to implement poly-
morph abstractions, Spectre-BTB-SA-IP may lead to subtle
“speculative type confusion” vulnerabilities. For example, a
victim that repeatedly executes a virtual function call with an
object of TypeA may inadvertently mistrain the branch target
predictor to cause misspeculation when finally executing the
virtual function call with an object of another TypeB.

3.3 Spectre-RSB (Return Address Injection)

Microarchitectural Element. Maisuradze and Rossow [62]
and Koruyeh et al. [54] introduced a new Spectre variant
that exploits the Return Stack Buffer (RSB). The RSB is a
small per-core microarchitectural buffer that stores the vir-
tual addresses following the N most recent call instructions.
When encountering a ret instruction, the CPU pops the top-
most element from the RSB to predict the return flow.
Hijacking Return Flow. Misspeculation arises whenever
the RSB layout diverges from the actual return addresses on
the software stack. Such disparity for instance naturally oc-
curs when restoring kernel/enclave/user stack pointers upon
protection domain switches. Furthermore, same-address-

space adversaries may explicitly overwrite return addresses
on the software stack, or transiently execute call instruc-
tions which update the RSB without committing architec-
tural effects [54]. This may allow untrusted code executing
in a sandbox to transiently divert return control flow to inter-
esting code gadgets outside of the sandboxed environment.

Due to the fixed-size nature of the RSB, a special case of
misspeculation occurs for deeply nested function calls [54,
62]. Since the RSB can only store return addresses for the
N most recent calls, an underfill occurs when the software
stack is unrolled. In this case, the RSB can no longer provide
accurate predictions. Starting from Skylake, Intel CPUs use
the BTB as a fallback then [24, 54], thus allowing Spectre-
BTB-style attacks triggered by ret instructions.
Overlooked Mistraining Strategies. Spectre-RSB is the
only variant that has been demonstrated with all four mis-
training strategies, but only on Intel [62, 54]. Our experimen-
tal results presented in Table 2 generalize these strategies to
AMD CPUs. Furthermore, in line with ARM’s own anal-
ysis [6], we successfully poisoned RSB entries within the
same-address-space, but did not observe any cross-address-
space leakage on ARM CPUs. We expect this may be a lim-
itation of our current proof-of-concept code.

3.4 Spectre-STL (Speculative Store Bypass)

Microarchitectural Element. Speculation in modern CPUs
is not restricted to control flow but also includes predicting
dependencies in the data flow. A common type of Store To
Load (STL) dependencies require that a memory load shall
not be executed before all preceding stores that write to the
same location have completed. However, even before the
addresses of all prior stores in the pipeline are known, the
CPUs’ memory disambiguator [38, 2] may predict which
loads can already be executed speculatively.

When the disambiguator predicts that a load does not have
a dependency on a prior store, the load reads data from the
L1 data cache. When the addresses of all prior stores are
known, the prediction is verified. If any overlap is found, the
load and all succeeding instructions are re-executed.
Reading Stale Values. Horn [32] showed how mispredic-
tions by the memory disambiguator can be abused to spec-
ulatively bypass store instructions. Like previous attacks,
Spectre-STL adversaries rely on an appropriate transient in-
struction sequence to leak unsanitized stale values via a mi-
croarchitectural covert channel. Furthermore, operating on
stale pointer values may speculatively break type and mem-
ory safety guarantees in the transient execution domain [32].

4 Meltdown-type Attacks

This section overviews known Meltdown-type attacks, and
presents a classification scheme that led to the discovery

Table 3: Demonstrated Meltdown-type attacks by their orig-
inal names and the exception type or permission bit they ex-
ploit () or not (). The systematic names are derived from
the exception type (and permission bit) they exploit.

Exception Type Permission Bit

Attack #G
P

#N
M

#B
R

#P
F

U/S P R/W RSVD
XD PK

Variant 3a [10]
Lazy FP [83]

Meltdown-BR
Meltdown [59]

Foreshadow [90]
Foreshadow-NG [93]

Meltdown-RW [50]
Meltdown-PK

Table 4: Secrets recoverable via Meltdown-type attacks and
whether they cross the current privilege level (CPL).

Attack
Leaks

Memory
Cache

Registe
r
Cross-C

PL

Meltdown-US (Meltdown) [59] 3

Meltdown-P (Foreshadow) [90, 93] 3

Meltdown-GP (Variant 3a) [10] 3

Meltdown-NM (Lazy FP) [83] 3

Meltdown-RW (Variant 1.2) [50] 7

Meltdown-PK 7

Meltdown-BR 7

Symbols indicate whether an attack can leak secrets from a target () or
not (), respectively (and) if we are the first to show it and whether it
violates a security property (3) or not (7).

of two previously overlooked Meltdown variants (cf. Fig-
ure 1). Importantly, where Spectre-type attacks exploit
(branch) misprediction events to trigger transient execution,
Meltdown-type attacks rely on transient instructions follow-
ing a CPU exception. Essentially, Meltdown exploits that ex-
ceptions are only raised (i.e., become architecturally visible)
upon the retirement of the faulting instruction. In some mi-
croarchitectures, this property allows transient instructions
ahead in the pipeline to compute on unauthorized results of
the instruction that is about to suffer a fault. The CPU’s in-
order instruction retirement mechanism takes care to discard
any architectural effects of such computations, but as with
the Spectre-type attacks above, secrets may leak through mi-
croarchitectural covert channels.
Systematization of Meltdown Variants. We introduce an
extensible classification for Meltdown-type attacks in two di-
mensions. In the first level, we categorize attacks based on
the exception that causes transient execution. Second, for
page faults, we further categorize based on page-table entry
protection bits (cf. Table 3). We also categorize attacks based
on which storage locations can be reached, and whether it
crosses a privilege boundary (cf. Table 4). Supporting the
completeness of our systematization, we present several pre-
viously unknown Meltdown variants exploiting different ex-
ception types as well as page-table protection bits, including
two exploitable ones. Our systematic analysis furthermore
resulted in the first demonstration of exploitable Meltdown-
type delayed exception handling effects on AMD CPUs.

4.1 Meltdown-US (Supervisor-only Bypass)

Modern CPUs commonly feature a “user/supervisor” page-
table attribute to denote a virtual memory page as belonging
to the OS kernel. The original Meltdown attack [59] reads
kernel memory from user space on CPUs that do not tran-
siently enforce the user/supervisor flag. In the trigger phase
(cf. Figure 2) an unauthorized kernel address is dereferenced,
which eventually causes a page fault. Before the fault be-
comes architecturally visible, however, the attacker executes
a transient instruction sequence that for instance accesses a
cache line based on the privileged data read by the trigger
instruction. In the final phase, after the exception has been
raised, the privileged data is reconstructed at the receiving
end of the covert channel (e.g., Flush+Reload).

The attacks bandwidth can be improved by suppressing
exceptions through transaction memory CPU features such
as Intel TSX [35], exception handling [59], or hiding it in
another transient execution [33, 59]. By iterating byte-by-
byte over the kernel space and suppressing or handling ex-
ceptions, an attacker can dump the entire kernel. This in-
cludes the entire physical memory if the operating system
has a direct physical map in the kernel. While extraction
rates are significantly higher when the kernel data resides in
the CPU cache, Meltdown has even been shown to success-
fully extract uncached data from memory [59].

4.2 Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [90] presented Foreshadow, a
Meltdown-type attack targeting Intel SGX technology [34].
Unauthorized accesses to enclave memory usually do not
raise a #PF exception but are instead silently replaced with
abort page dummy values (cf. Section 6.2). In the absence of
a fault, plain Meltdown cannot be mounted against SGX en-
claves. To overcome this limitation, a Foreshadow attacker
clears the “present” bit in the page-table entry mapping the
enclave secret, ensuring that a #PF will be raised for subse-
quent accesses. Analogous to Meltdown-US, the adversary
now proceeds with a transient instruction sequence to leak
the secret (e.g., through a Flush+Reload covert channel).

Intel [39] named L1 Terminal Fault (L1TF) as the root
cause behind Foreshadow. A terminal fault occurs when ac-
cessing a page-table entry with either the present bit cleared
or a “reserved” bit set. In such cases, the CPU immediately
aborts address translation. However, since the L1 data cache
is indexed in parallel to address translation, the page table
entry’s physical address field (i.e., frame number) may still
be passed to the L1 cache. Any data present in L1 and tagged
with that physical address will now be forwarded to the tran-
sient execution, regardless of access permissions.

Although Meltdown-P-type leakage is restricted to the L1
data cache, the original Foreshadow [90] attack showed how

SGX’s secure page swapping mechanism may first be abused
to prefetch arbitrary enclave pages into the L1 cache.
Foreshadow-NG. Foreshadow-NG [93] generalizes Fore-
shadow from the attack on SGX enclaves to bypass operat-
ing system or hypervisor isolation. The generalization builds
on the observation that the physical frame number in a page-
table entry is sometimes under direct or indirect control of
an adversary. For instance, when swapping pages to disk,
the kernel is free to use all but the present bit to store meta-
data (e.g., the offset on the swap partition). However, if this
offset is a valid physical address, any cached memory at that
location leaks to an unprivileged Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which al-
lows an untrusted virtual machine, controlling guest-physical
addresses, to extract the host machine’s entire L1 data cache
(including data belonging to the hypervisor or other virtual
machines). The underlying problem is that a terminal fault
in the guest page-tables early-outs the address translation
process, such that guest-physical addresses are erroneously
passed to the L1 data cache, without first being translated
into a proper host physical address [39].

4.3 Meltdown-GP (System Register Bypass)
Meltdown-GP (named initially Variant 3a) allows an attacker
to read privileged system registers. It was first discovered
and published by ARM [10] and subsequently Intel [40] de-
termined that their CPUs are also susceptible to the attack.
Unauthorized access to privileged system registers (e.g., via
rdmsr) raises a general protection fault (#GP). Similar to pre-
vious Meltdown-type attacks, however, the attack exploits
that the transient execution following the faulting instruc-
tion can still compute on the unauthorized data, and leak the
system register contents through a microarchitectural covert
channel (e.g., Flush+Reload).

4.4 Meltdown-NM (FPU Register Bypass)
During a context switch, the OS has to save all the registers,
including the floating point unit (FPU) and SIMD registers.
These latter registers are large and saving them would slow
down context switches. Therefore, CPUs allow for a lazy
state switch, meaning that instead of saving the registers, the
FPU is simply marked as “not available”. The first FPU in-
struction issued after the FPU was marked as “not available”
causes a device-not-available (#NM) exception, allowing the
OS to save the FPU state of previous execution context be-
fore marking the FPU as available again.

Stecklina and Prescher [83] propose an attack on the above
lazy state switch mechanism. The attack consists of three
steps. In the first step, a victim performs operations load-
ing data into the FPU registers. Then, in the second step,
the CPU switches to the attacker and marks the FPU as “not
available”. The attacker now issues an instruction that uses

the FPU, which generates an #NM fault. Before the faulting
instruction retires, however, the CPU has already transiently
executed the following instructions using data from the pre-
vious context. As such, analogous to previous Meltdown-
type attacks, a malicious transient instruction sequence fol-
lowing the faulting instruction can encode the unauthorized
FPU register contents through a microarchitectural covert
channel (e.g., Flush+Reload).

4.5 Meltdown-RW (Read-only Bypass)
Where the above attacks [59, 90, 10, 83] focussed on steal-
ing information across privilege levels, Kiriansky and Wald-
spurger [50] presented the first Meltdown-type attack that
bypasses page-table based access rights within the current
privilege level. Specifically, they showed that transient exe-
cution does not respect the “read/write” page-table attribute.
The ability to transiently overwrite read-only data within the
current privilege level can bypass software-based sandboxes
which rely on hardware enforcement of read-only memory.

Confusingly, the above Meltdown-RW attack was origi-
nally named “Spectre Variant 1.2” [50]. Our systematization
revealed, however, that the transient cause exploited above is
clearly a #PF exception. Hence, this attack must be consid-
ered of Meltdown-type, but not a variant of Spectre.

4.6 Meltdown-PK (Protection Key Bypass)
Intel Skylake-SP server CPUs support memory-protection
keys for user space (PKU) [37]. This feature allows pro-
cesses to change the access permissions of a page directly
from user space, i.e., without requiring a syscall/hypercall.
Thus, with PKU, user-space applications can implement ef-
ficient hardware-enforced isolation of trusted parts [89, 31].

We present a novel Meltdown-PK attack to bypass both
read and write isolation provided by PKU. Meltdown-PK
works if an attacker has code execution in the containing
process, even if the attacker cannot execute the wrpkru in-
struction (e.g., blacklisting). Moreover, in contrast to cross-
privilege level Meltdown attack variants, there is no software
workaround. Meltdown-PK can be mitigated in hardware in
future CPUs and possibly also in microcode.
Experimental Results. We tested Meltdown-PK on an
Amazon EC2 C5 instance running Ubuntu 18.04 with PKU
support. We created a memory mapping and used PKU to
remove both read and write access. As expected, protected
memory accesses produce a #PF. However, our proof-of-
concept manages to leak the data via an adversarial transient
instruction sequence with a Flush+Reload covert channel.

4.7 Meltdown-BR (Bounds Check Bypass)
To facilitate efficient software instrumentation, x86 CPUs
come with dedicated hardware instructions that raise a bound

Table 5: CPU vendors vulnerable to Meltdown-type attacks.

Vendor
Attack

Melt
dow

n-U
S [59]

Melt
dow

n-P
[90, 93]

Melt
dow

n-G
P [10, 40]

Melt
dow

n-N
M

[83]

Melt
dow

n-R
W

[50]

Melt
dow

n-PK

Melt
dow

n-B
R

Melt
dow

n-D
E

Melt
dow

n-A
C

Melt
dow

n-U
D

Melt
dow

n-SS

Melt
dow

n-X
D

Melt
dow

n-SM

Intel
ARM
AMD

Symbols indicate whether at least one CPU model is vulnerable (filled) vs.
no CPU is known to be vulnerable (empty). Glossary: reproduced (vs.

), first showed in this paper (vs.), not applicable (). All tests per-
formed without defenses enabled.

range exceeded exception (#BR) when encountering out-of-
bound array indices. The IA-32 ISA, for instance, defines
a bound opcode for this purpose. While the bound instruc-
tion was omitted in the subsequent x86-64 ISA, modern Intel
CPUs ship with Memory Protection eXtensions (MPX) for
efficient array bounds checking.

Our systematic evaluation revealed that Meltdown-type
effects of the #BR exception have not been thoroughly in-
vestigated yet. Specifically, Intel’s analysis [43] only briefly
mentions MPX-based bounds check bypass as a possibil-
ity, and recent defensive work by Dong et al. [21] high-
lights the need to introduce a memory lfence after MPX
bounds check instructions. They classify this as a Spectre-
type attack, implying that the lfence is needed to prevent
the branch predictor from speculating on the outcome of the
bounds check. According to Oleksenko et al. [67], neither
bndcl nor bndcu exert pressure on the branch predictor, in-
dicating that there is no prediction happening. Based on that,
we argue that the classification as a Spectre-type attack is
misleading as no prediction is involved. The observation by
Dong et al. [21] indeed does not shed light on the #BR ex-
ception as the root cause for the MPX bounds check bypass,
and they do not consider IA32 bound protection at all. Simi-
lar to Spectre-PHT, Meltdown-BR is a bounds check bypass,
but instead of mistraining a predictor it exploits the lazy han-
dling of the raised bound-range-exceeded exception.

Experimental Results. We introduce the Meltdown-BR at-
tack which exploits transient execution following a #BR ex-
ception to encode out-of-bounds secrets that are never archi-
tecturally visible. As such, Meltdown-BR is an exception-
driven alternative for Spectre-PHT. Our proofs-of-concept
demonstrate out-of-bounds leakage through a Flush+Reload
covert channel for an array index safeguarded by either
IA32 bound (Intel, AMD), or state-of-the-art MPX protec-
tion (Intel-only). For Intel, we ran the attacks on a Skylake
i5-6200U CPU with MPX support, and for AMD we eval-
uated both a E2-2000 and a Ryzen Threadripper 1920X. In
this, we are the first to practically showcase a Meltdown-type
transient execution attack exploiting delayed exception han-
dling on AMD CPUs [4, 59].

4.8 Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for
other, not yet tested exceptions. Following Intel’s [35] clas-
sification of exceptions as faults, traps, or aborts, we ob-
served that all known Meltdown variants so far have ex-
ploited faults, but not traps or aborts. We consistently found
no traces of transient execution beyond traps or aborts, which
leads us to the hypothesis that Meltdown is only possible
with faults (as they can occur at any moment during instruc-
tion execution). Table 5 and Figure 1 summarize experimen-
tal results for fault types tested on Intel, ARM, and AMD.

Division Errors. For the divide-by-zero experiment, we
leveraged the signed division instruction (idiv on x86 and
sdiv on ARM). On the ARMs we tested, there is no excep-
tion, but the division yields merely zero. On x86, the division
raises a divide exception (#DE). Both on the AMD and Intel
we tested, the CPU continues with the transient execution af-
ter the exception. In both cases, the result register is set to
‘0’, which is the same result as on the tested ARM. Thus,
Meltdown-DE is not possible, as no real values are leaked.

Supervisor Access. Although supervisor mode access pre-
vention (SMAP) raises a page fault (#PF) when accessing
user-space memory from the kernel, it seems to be free of
any Meltdown effect. Thus, Meltdown-SM is not possible.

Alignment Faults. Upon detecting an unaligned mem-
ory operand, the CPU can (optionally) generate an align-
ment check exception (#AC). We found that the results of
unaligned memory accesses never reach the transient execu-
tion. We suspect that this is because #AC is generated early-
on (even before the operand’s virtual address is translated to
a physical one). Thus, Meltdown-AC is not possible.

Segmentation Faults. We consistently found that out-of-
limit segment accesses never reach transient execution. We
suspect that, due to the simplistic IA32 segmentation design,
segment limits are validated early-on, and immediately raise
a #GP or #SS exception, without sending the offending in-
struction to the ROB. Thus, Meltdown-SS is not possible.

Instruction Fetch. To yield a complete picture, we inves-
tigated Meltdown-type effects during the instruction fetch
and decode phases. On all of our test systems, we did not
succeed in transiently executing instructions residing in non-
executable memory (i.e., Meltdown-XD), or following an
invalid opcode exception (i.e., Meltdown-UD). We suspect
that exceptions during instruction fetch or decode are im-
mediately handled by the CPU, without first buffering the
offending instruction in the ROB. Moreover, as invalid op-
codes have an undefined length, the CPU does not even know
where the next instruction starts. Hence, we suspect that in-
valid opcodes only leak if the microarchitectural effect is al-
ready an effect caused by the invalid opcode itself, not by
subsequent transient instructions.

Table 6: Gadget classification according to the attack flow and whether executed by the attacker (), victim (), or either ().
Attack 1. Preface 2. Trigger example 3. Transient 5. Reconstruction
Covert channel [95, 1, 79] Flush/Prime/Evict - Load/AVX/Port/... Reload/Probe/Time
Meltdown-US/RW/GP/NM/PK [59, 50, 10, 83] (Exception suppression) mov/rdmsr/FPU Controlled encode Exception handling
Meltdown-P [90, 93] (L1 prefetch) mov Controlled encode & controlled decode
Meltdown-BR - bound/bndclu Inadvertent leak — ” —
Spectre-PHT [52] PHT poisoning jz Inadvertent leak Controlled decode
Spectre-BTB/RSB [52, 18, 62, 54] BTB/RSB poisoning call/jmp/ret ROP-style encode — ” —
Spectre-STL [32] - mov Inadvertent leak — ” —
NetSpectre [79] Thrash/reset jz Inadvertent leak Inadvertent transmit

5 Gadget Analysis and Classification

We deliberately oriented our attack tree (cf. Figure 1) on the
microarchitectural root causes of the transient computation,
abstracting away from the underlying covert channel and/or
code gadgets required to successfully carry out the attack.
In this section, we further dissect transient execution attacks
by categorizing known gadget types and overviewing current
results on their exploitability in real-world software.
Gadget Classification. We define a “gadget” as a series
of instructions executed by either the attacker or the victim.
Table 6 shows how all gadget types discussed in literature
can be unambiguously assigned to one of the abstract attack
phases from Figure 2. New gadgets can be added straightfor-
wardly after determining their execution phase and objective.

Importantly, our classification table highlights that gad-
get choice largely depends on the attacker’s capabilities. By
plugging in different gadget types to compose the required
attack phases, an almost boundless spectrum of adversary
models can be covered. For local adversaries with arbitrary
code execution (e.g., Meltdown-US [59]), all of the gadget
functionality can be explicitly implemented by the attacker.
For sandboxed adversaries (e.g., Spectre-PHT [52]), on the
other hand, much of the gadget functionality has to be pro-
vided by “confused deputy” code executing in the victim do-
main. Ultimately, as demonstrated by NetSpectre [79], even
remote adversaries can attack a fully isolated microarchitec-
ture given that enough gadgets are found in the victim code
to realize each of the individual attack phases.
Prevalence and Exploitability. While for Meltdown-type
attacks, convincing real-world exploits have been developed
to dump arbitrary process [59] and enclave [90] memory,
most Spectre-type attacks have so far only been demon-
strated in controlled environments. The most significant bar-
rier to mounting a successful Spectre attack is to find ex-
ploitable gadgets in real-world software, which at present re-
mains an important open research question in itself [62, 79].

To date, only 4 academic papers have demonstrated
Spectre-type gadget exploitation in real-world software. Ta-
ble 7 reveals that they either abuse ROP-style gadgets in
larger code bases, or more commonly rely on Just-In-Time
(JIT) compilation to indirectly provide the vulnerable gadget
code. JIT compilers as commonly used in e.g., JavaScript,
WebAssembly, or the eBPF Linux kernel interface, create a
software-defined sandbox by extending untrusted attacker-

Table 7: Spectre-type attacks on real-world software.
Attack Gadgets JIT Description
Spectre-PHT [52] 2 3 Chrome Javascript, Linux eBPF
Spectre-BTB [52] 2 3/7 Windows ntdll, Linux eBPF
Spectre-BTB [18] 336 7 SGX SDK Intel/Graphene/Rust
Spectre-RSB [62] 1 3 Firefox WebAssembly
Spectre-STL [32] 1 3 Partial PoC on Linux eBPF

0
40

80
12

0
O

cc
ur

re
nc

es

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

array_index_nospec
array_index_mask_nospec

Figure 4: Evolution of Spectre v1 speculative load hardening
patches in the Linux kernel over time (2018-2019).

provided code with runtime checks. However, the attacks in
Table 7 demonstrate that such JIT checks can be transiently
circumvented to leak memory contents outside of the sand-
box. Furthermore, in the case of Spectre-BTB/RSB, even
non-JIT compiled real-world code has been shown to be ex-
ploitable when the attacker controls sufficient inputs to the
victim application. Kocher et al. [52] constructed a mini-
malist proof-of-concept that reads attacker-controlled inputs
into registers before calling a function. Next, they rely on
BTB poisoning to redirect transient control flow to a gad-
get they identified in the Windows ntdll library that al-
lows leaking abitrary memory from the victim process. Like-
wise, Chen et al. [18] analyzed various trusted enclave run-
times for Intel SGX and found several instances of vulner-
able branches with attacker-controlled input registers, plus
numerous exploitable gadgets to which transient control flow
may be directed to leak unauthorized enclave memory.

To further assess the prevalence of Spectre gadgets in
real-world software, we selected the Linux kernel as a rel-
evant case study of a major open-source project that un-
derwent numerous Spectre-related security patches over the
last year. To guide this effort, Linux kernel develop-
ers extended the Smatch static analysis tool to automati-
cally discover potential Spectre-PHT-style out-of-bounds ac-
cess gadgets [14]. Specifically, Smatch finds all instances
of user-supplied array indices that have not been explic-
itly hardened. Unfortunately, Smatch’s false positive rate
is quite high. According to Carpenter [14], the tool re-
ported 736 gadget candidates in April 2018, whereas the
kernel only featured about 15 Spectre-resistant array in-

Table 8: Categorization of Spectre defenses and systematic
overview of their microarchitectural target.

Defense In
vi

siS
pe

c [
94

]
Sa

fe
Sp

ec
[4

7]
DA

W
G

[4
9]

Ta
in

t T
ra

ck
in

g
[5

2]

Ti
m

er
Re

du
ct

io
n

[5
2]

RS
B

St
uf

fin
g

[4
2]

Re
tp

ol
in

e [
88

]
SL

H
[1

6,
22

]
Y

SN
B

[6
8]

IB
RS

[3
, 4

3]
ST

IP
B

[3
, 4

3]
IB

PB
[3

, 4
3]

Se
ria

liz
at

io
n

[4
, 4

0]

Sl
ot

h
[5

0]
SS

BD
/S

SB
B

[2
, 4

3,
6]

Po
iso

n
Va

lu
e [

74
]

In
de

x
M

as
ki

ng
[7

4]

Si
te

Is
ol

at
io

n
[8

6]

M
ic

ro
ar

ch
ite

ct
ur

al
E

le
m

en
t Cache

TLB
BTB
BHB
PHT
RSB
AVX
FPU

Execution Ports

Category: C1 C2 C3

A defense considers the microarchitectural element (), partially considers
it or same technique possible for it () or does not consider it at all ().

dices at that time. We analyzed the number of occur-
rences of the newly introduced array index nospec and
array index mask nospec macros in the Linux kernel per
month. Figure 4 shows that the number of Spectre-PHT
patches has been continuously increasing over the past year.
Providing further evidence that patching Spectre gadgets in
real-world software is an ongoing effort and that automated
detection methods pose an important research challenge.

6 Defenses

In this section, we discuss proposed defenses in software and
hardware for the known Spectre and Meltdown variants. We
propose a classification scheme for defenses based on their
attempt to stop leakage, similar to Miller [65]. Our work dif-
fers from Miller in three points. First, ours extends to newer
transient execution attacks. Second, we consider Meltdown
and Spectre as two problems with different root causes, lead-
ing to a different classification. Third, it helped uncover
problems that were not clear with the previous classification.
We categorize Spectre-type defenses into three categories:
C1: Mitigating or reducing the accuracy of covert channels

used to extract the secret data.
C2: Mitigating or aborting speculation if data is potentially

accessible during transient execution.
C3: Ensuring that secret data cannot be reached.

Table 8 lists all proposed defenses against Spectre-type
attacks and assigns them to the category they belong.
We categorize Meltdown-type defenses into two categories:
D1: Ensuring that architecturally inaccessible data remains

inaccessible on the microarchitectural level.
D2: Preventing the occurrence of faults.

6.1 Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels.
Transient execution attacks use a covert channel to transfer a

microarchitectural state change induced by the transient in-
struction sequence to the architectural level. One approach
in mitigating Spectre-type attacks is reducing the accuracy
of covert channels or preventing them.
Hardware. One enabler of transient execution attacks is
that the transient execution sequence introduces a microar-
chitectural state change the receiving end of the covert chan-
nel observes. To secure CPUs, SafeSpec [47] introduces
shadow hardware structures used during transient execu-
tion. Thereby, any microarchitectural state change can be
squashed if the prediction of the CPU was incorrect. While
their prototype implementation protects only caches (and the
TLB), other channels, e.g., DRAM buffers [73], or execution
unit congestion [59, 1], remain open.

Yan et al. [94] proposed InvisiSpec, a method to make
transient loads invisible in the cache hierarchy. By using a
speculative buffer, all transiently executed loads are stored
in this buffer instead of the cache. Similar to SafeSpec, the
buffer is invalidated if the prediction was incorrect. How-
ever, if the prediction was correct, the content of the buffer is
loaded into the cache. For data coherency, InvisiSpec com-
pares the loaded value during this process with the most re-
cent, up-to-date value from the cache. If a mismatch occurs,
the transient load and all successive instructions are reverted.
Since InvisSpec only protects the caching hierarchy of the
CPU, an attacker can still exploit other covert channels.

Kiriansky et al. [49] securely partition the cache across
its ways. With protection domains that isolate on a cache
hit, cache miss and metadata level, cache-based covert chan-
nels are mitigated. This does not only require changes to the
cache and adaptions to the coherence protocol but also en-
forces the correct management of these domains in software.
Kocher et al. [52] proposed to limit data from entering covert
channels through a variation of taint tracking. The idea is
that the CPU tracks data loaded during transient execution
and prevents their use in subsequent operations.
Software. Many covert channels require an accurate timer
to distinguish microarchitectural states, e.g., measuring the
memory access latency to distinguish between a cache hit
and cache miss. With reduced timer accuracy an attacker
cannot distinguish between microarchitectural states any
longer, the receiver of the covert channel cannot deduce the
sent information. To mitigate browser-based attacks, many
web browsers reduced the accuracy of timers in JavaScript
by adding jitter [64, 74, 85, 92]. However, Schwarz et al. [78]
demonstrated that timers can be constructed in many dif-
ferent ways and, thus, further mitigations are required [76].
While Chrome initially disabled SharedArrayBuffers in
response to Meltdown and Spectre [85], this timer source has
been re-enabled with the introduction of site-isolation [82].

NetSpectre requires different strategies due to its remote
nature. Schwarz et al. [79] propose to detect the attack using
DDoS detection mechanisms or adding noise to the network
latency. By adding noise, an attacker needs to record more

traces. Adding enough noise makes the attack infeasible as
the amount of traces required becomes too large.
C2: Mitigating or aborting speculation if data is poten-
tially accessible during transient execution.

Since all Spectre-type attacks exploit different predic-
tion mechanisms used for speculative execution, an effec-
tive approach would be to disable speculative execution en-
tirely [52, 84]. As the loss of performance for commodity
computers and servers would be too drastic, another proposal
is to disable speculation only while processing secret data.
Hardware. A building blocks for some variants of Spectre
is branch poisoning (an attacker mistrains a prediction mech-
anism, cf. Section 3). To deal with mistraining, both In-
tel and AMD extended the instruction set architecture (ISA)
with a mechanism for controlling indirect branches [3, 43].
The proposed addition to the ISA consists of three controls:

• Indirect Branch Restricted Speculation (IBRS) prevents
indirect branches executed in privileged code from being
influenced by those in less privileged code. To enforce
this, the CPU enters the IBRS mode which cannot be
influenced by any operations outside of it.

• Single Thread Indirect Branch Prediction (STIBP) re-
stricts sharing of branch prediction mechanisms among
code executing across hyperthreads.

• The Indirect Branch Predictor Barrier (IBPB) prevents
code that executes before it from affecting the prediction
of code following it by flushing the BTB.

For existing ARM implementations, there are no generic
mitigation techniques available. However, some CPUs im-
plement specific controls that allow invalidating the branch
predictor which should be used during context switches [6].
On Linux, those mechanisms are enabled by default [48].
With the ARMv8.5-A instruction set [9], ARM introduces
a new barrier (sb) to limit speculative execution on follow-
ing instructions. Furthermore, new system registers allow to
restrict speculative execution and new prediction control in-
structions prevent control flow predictions (cfp), data value
prediction (dvp) or cache prefetch prediction (cpp) [9].

To mitigate Spectre-STL, ARM introduced a new barrier
called SSBB that prevents a load following the barrier from
bypassing a store using the same virtual address before it [6].
For upcoming CPUs, ARM introduced Speculative Store By-
pass Safe (SSBS); a configuration control register to pre-
vent the re-ordering of loads and stores [6]. Likewise, In-
tel [43] and AMD [2] provide Speculative Store Bypass Dis-
able (SSBD) microcode updates that mitigate Spectre-STL.

As an academic contribution, plausible hardware mitiga-
tions have furthermore been proposed [50] to prevent tran-
sient computations on out-of-bounds writes (Spectre-PHT).
Software. Intel and AMD proposed to use serializing in-
structions like lfence on both outcomes of a branch [4, 40].
ARM introduced a full data synchronization barrier (DSB
SY) and an instruction synchronization barrier (ISB) that can
be used to prevent speculation [6]. Unfortunately, serializing

every branch would amount to completely disabling branch
prediction, severely reducing performance [40]. Hence, In-
tel further proposed to use static analysis [40] to minimize
the number of serializing instructions introduced. Microsoft
uses the static analyzer of their C Compiler MSVC [71] to
detect known-bad code patterns and insert lfence instruc-
tions automatically. Open Source Security Inc. [69] use a
similar approach using static analysis. Kocher [51] showed
that this approach misses many gadgets that can be exploited.

Serializing instructions can also reduce the effect of in-
direct branch poisoning. By inserting it before the branch,
the pipeline prior to it is cleared, and the branch is resolved
quickly [4]. This, in turn, reduces the size of the speculation
window in case that misspeculation occurs.

While lfence instructions stop speculative execution,
Schwarz et al. [79] showed they do not stop microarchi-
tectural behaviors happening before execution. This, for in-
stance, includes powering up the AVX functional units, in-
struction cache fills, and iTLB fills which still leak data.

Evtyushkin et al. [23] propose a similar method to seri-
alizing instructions, where a developer annotates potentially
leaking branches. When indicated, the CPU should not pre-
dict the outcome of these branches and thus stop speculation.

Additionally to the serializing instructions, ARM also in-
troduced a new barrier (CSDB) that in combination with con-
ditional selects or moves controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used
by LLVM and was proposed by Carruth [16]. Using this
idea, loads are checked using branchless code to ensure that
they are executing along a valid control flow path. To do
this, they transform the code at the compiler level and in-
troduce a data dependency on the condition. In the case of
misspeculation, the pointer is zeroed out, preventing it from
leaking data through speculative execution. One prerequisite
for this approach is hardware that allows implementation of
a branchless and unpredicted conditional update of a regis-
ter’s value. As of now, the feature is only available in LLVM
for x86 as the patch for ARM is still under review. GCC
adopted the idea of SLH for their implementation, support-
ing both x86 and ARM. They provide a builtin function to
either emit a speculation barrier or return a safe value if it
determines that the instruction is transient [22].

Oleksenko et al. [68] propose an approach similar to Car-
ruth [16]. They exploit that CPUs have a mechanism to de-
tect data dependencies between instructions and introduce
such a dependency on the comparison arguments. This en-
sures that the load only starts when the comparison is either
in registers or the L1 cache, reducing the speculation win-
dow to a non-exploitable size. They already note that their
approach is highly dependent on the ordering of instructions
as the CPU might perform the load before the comparison.
In that case, the attack would still be possible.

Google proposes a method called retpoline [88], a code
sequence that replaces indirect branches with return instruc-

tions, to prevent branch poisoning. This method ensures
that return instructions always speculate into an endless loop
through the RSB. The actual target destination is pushed on
the stack and returned to using the ret instruction. For ret-
poline, Intel [42] notes that in future CPUs that have Control-
flow Enforcement Technology [36] (CET) capabilities to de-
fend against ROP attacks, retpoline might trigger false posi-
tives in the CET defenses. To mitigate this possibility, future
CPUs also implement hardware defenses for Spectre-BTB
called enhanced IBRS [42] to supersede retpoline.

On Skylake and newer architectures, Intel [42] proposes
RSB stuffing to prevent an RSB underfill and the ensuing
fallback to the BTB. Hence, on every context switch into the
kernel, the RSB is filled with the address of a benign gad-
get. This behavior is similar to retpoline. For Broadwell and
older architectures, Intel [42] provided a microcode update
to make the ret instruction predictable, enabling retpoline
to be a robust defense against Spectre-BTB.
C3: Ensuring that secret data cannot be reached. Differ-
ent projects use different techniques to mitigate the problem
of Spectre. WebKit employs two such techniques to limit the
access to secret data [74]. WebKit first replaces array bound
checks with index masking. By applying a bit mask, WebKit
cannot ensure that the access is always in bounds, but intro-
duces a maximum range for the out-of-bounds violation. In
the second strategy, WebKit uses a pseudo-random poison
value to protect pointers from misuse. Using this approach,
an attacker would first have to learn the poison value before
he can use it. The more significant impact of this approach
is that mispredictions on the branch instruction used for type
checks results in the wrong type being used for the pointer.

Google proposes another defense called site isolation [86],
which is now enabled in Chrome by default. Site isolation
executes each site in its own process and therefore limits the
amount of data that is exposed to side-channel attacks. Even
in the case where the attacker has arbitrary memory reads, he
can only read data from its own process.

Kiriansky and Waldspurger [50] propose to restrict access
to sensitive data by using protection keys like Intel Memory
Protection Key (MPK) technology [35]. They note that by
using Spectre-PHT an attacker can first disable the protec-
tion before reading the data. To prevent this, they propose
to include an lfence instruction in wrpkru, an instruction
used to modify protection keys.

6.2 Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data re-
mains inaccessible on the microarchitectural level.

The fundamental problem of Meltdown-type attacks is
that the CPU allows the transient instruction stream to com-
pute on architecturally inaccessible values, and hence, leak
them. By assuring that on a fault the execution does not
continue or respectively does not continue with the other-

wise inaccessible value, such attacks can be mitigated in fu-
ture hardware designs. However, mitigations for existing
microarchitectures are necessary, either through microcode
updates, or operating-system-level software workarounds.
These approaches aim to keep architecturally inaccessible
data also inaccessible at the microarchitectural level.

Gruss et al. originally proposed KAISER [27, 28] to miti-
gate side-channel attacks defeating KASLR. However, it also
defends against Meltdown-US attacks by preventing kernel
secrets from being mapped in user space. Besides its perfor-
mance impact, KAISER has one practical limitation [59, 27].
For x86, some privileged memory locations must always be
mapped in user space. KAISER is implemented in Linux
as kernel page-table isolation (KPTI) [61] and has also been
backported to older versions. Microsoft provides a similar
patch as of Windows 10 Build 17035 [45] and Mac OS X
and iOS have similar patches [44].

For Meltdown-GP, where the attacker leaks the contents
of system registers that are architecturally not accessible
in its current privilege level, Intel released microcode up-
dates [40]. While AMD is not susceptible [5], ARM incor-
porated mitigations in future CPU designs and suggests to
substitute the register values with dummy values on context
switches for CPUs where mitigations are not available [6].

Preventing the access-control race condition exploited by
Foreshadow and Meltdown may not be feasible with mi-
crocode updates [90]. Thus, Intel proposes a multi-stage
approach to mitigate Foreshadow (L1TF) attacks on current
CPUs [39, 93]. First, to maintain process isolation, the op-
erating system has to sanitize the physical address field of
unmapped page-table entries. The kernel clears the physical
address field, or set it to non-existent physical memory. In
case of the former, Intel suggests placing 4 KB dummy data
at physical address 0, and clearing the PS bit in page tables,
preventing attackers from exploiting huge pages.

For SGX enclaves or hypervisors, which cannot trust the
address translation performed by an untrusted OS, Intel pro-
poses to either store secrets in uncacheable memory (as spec-
ified in the PAT or the MTRRs), or flush the L1 data cache
when switching protection domains. With recent microcode
updates, L1 is automatically flushed upon enclave exit, and
hypervisors can additionally flush L1 before handing over
control to an untrusted virtual machine. Flushing the cache
is also done upon exiting System Management Mode (SMM)
to mitigate Foreshadow-NG attacks on SMM.

To mitigate attacks across logical cores, Intel supplied a
microcode update to ensure that different SGX attestation
keys are derived when hyperthreading is enabled or disabled.
To ensure that no non-SMM software runs while data be-
longing to SMM are in the L1 data cache, SMM software
must rendezvous all logical cores upon entry and exit. Ac-
cording to Intel, this is expected to be the default behavior for
most SMM software [39]. To protect against Foreshadow-
NG attacks when hyperthreading is enabled, the hypervisor

must ensure that no hypervisor thread runs on a sibling core
with an untrusted VM.
D2: Preventing the occurrence of faults. Since Meltdown-
type attacks exploit delayed exception handling in the CPU,
another mitigation approach is to prevent the occurrence of a
fault in the first place. Thus, accesses which would normally
fault, become (both architecturally and microarchitecturally)
valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page se-
mantics, where accessing enclave memory from the out-
side returns -1 instead of faulting. Thus, SGX has inad-
vertent protection against Meltdown-US. However, the Fore-
shadow [90] attack showed that it is possible to actively pro-
voke another fault by unmapping the enclave page, making
SGX enclaves susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for
Meltdown-NM [83] that is deployed since Linux 4.6 [60].
By replacing lazy switching with eager switching, the FPU
is always available, and access to the FPU can never fault.
Here, the countermeasure is effective, as there is no other
way to provoke a fault when accessing the FPU.

6.3 Evaluation of Defenses

Spectre Defenses. We evaluate all defenses based on their
capabilities of mitigating Spectre attacks. Defenses that re-
quire hardware modifications are only evaluated theoreti-
cally. In addition, we discuss which vendors have CPUs vul-
nerable to what type of Spectre- and Meltdown-type attack.

InvisiSpec, SafeSpec, and DAWG are similar in how they
approach the problem. Unfortunately, they only consider a
cache-based covert channel. An attacker can easily substi-
tute the covert channel and once again leak data through it.
Based on that, we do not consider these three techniques as
a reliable defense. DAWG has the additional problem that it
does not mitigate an attack like NetSpectre, simply because
the leak and transmit gadget are in the same domain.

WebKit’s poison value prevents Spectre-PHT-based at-
tacks as during speculation the type is confused, making the
secret inaccessible. Index masking is only a partial solution;
it only limits how far beyond the bound an access is possible.

Site isolation still allows data leakage within the same pro-
cess and is therefore not a full solution. With SLH, we were
not able to observe any leakage, indicating that it success-
fully prevents Spectre-PHT-based attacks, although it is pos-
sible that our experiments were simply not able to bypass
the mitigation. This does not hold for YSNB as we were still
able to observe leakage after introducing a data dependency
for the same reason that Oleksenko et al. [68] mention.

IBRS, STIBP, and IBPB are depended on the specific
hardware and OS. As of Linux 4.19, enhanced IBRS super-
sedes retpoline. If it is not available, the kernel is protected
by retpoline if compiled correspondingly. IBRS is only acti-

vated for firmware calls as retpoline has a lower performance
impact and the kernel does not contain any indirect branches.

The IBPB support on Linux is incomplete as the BTB
is not flushed for dumpable processes [19] using the proc
filesystem. As the default behavior on Linux is to mark a pro-
cess as dumpable, all processes that do not explicitly change
this remain vulnerable to Spectre-BTB. On AMD, IBPB also
flushes the RSB [4]. We were not able to verify IBPB, IBRS,
and STIBP on AMD as our machine does not support them.

Also, on current systems including Linux Kernel 4.20,
STIBP is not enabled [19]. There is a patch enabling it
if three conditions are met [55]: The CPU has to be vul-
nerable to Spectre-BTB; hyperthreading must be supported
and a sibling be online; and auto-selection of Spectre-BTB
defenses must be enabled, i.e., the default case. We veri-
fied whether a cross-address-space Spectre-BTB attack still
works on a patched Linux system and did not observe any
leakage, indicating that STIBP seems to work on Intel as
long as IBPB is also enabled.

In our tests, RSB stuffing only proved to be a reason-
able approach against Spectre-RSB from different processes.
Otherwise, we are able to circumvent it.

To use SSBD in user space, the process to be protected
must issue a prctl system call. If the kernel has been
compiled with seccomp support, SSBD is enabled for all
seccomp-enabled processes. Our tests showed that SSBD is
a functional defense for Spectre-STL. We searched projects
on GitHub but found none using this method except Linux
kernels. As only few projects support seccomp, we conclude
that SSBD is not commonly used. On ARM, we verfied that
SSBB works if it is explicitly added by the developer before
the data is used in the transient execution window.

Our experiments did not show any leakage after a bounds
check in the presence of a serializing instruction on AMD, as
opposed to observations on lfence on Intel [79]. For ARM,
we also observed no leakage following a barrier instruction
(CSDB) in combination with conditional selects or moves, but
on some ARM implementations, we were able to leak data
from a single memory access through the TLB after the DSB
SY+ISH instructions. As a result, the static analysis approach
of Microsoft and others is only a valid defense technique on
ARM if a CSDB in combination with conditional selects or
moves is emitted. As the observed leakage is only caused by
one access and the common Spectre-PHT sequence consists
of two loads, DSB SY+ISH still works in most cases. On
AMD, lfence is not serializing by default. Instead, an MSR
has to be set for the instruction to serialize [3].

Taint tracking [52] theoretically mitigates all forms of
Spectre-type attacks as data that has been tainted cannot be
used in a transient execution. Therefore, the data does not
enter a covert channel and can subsequently not be leaked.

Reducing the accuracy of timers [52] is only a partial solu-
tion as Schwarz et al. [78] have shown that different methods
can be used to generate a new, accurate timer. Additionally,

Table 9: Spectre-type defenses and what they mitigate.

Attack
Defense

In
vi

si
Sp

ec
[9

4]
Sa

fe
Sp

ec
[4

7]
D

AW
G

[4
9]

R
SB

St
uf

fin
g

[4
2]

R
et

po
lin

e
[8

8]
Po

is
on

Va
lu

e
[7

4]
In

de
x

M
as

ki
ng

[7
4]

Si
te

Is
ol

at
io

n
[8

6]
SL

H
[1

6,
22

]
Y

SN
B

[6
8]

IB
R

S
[3

, 4
3]

ST
IP

B
[3

, 4
3]

IB
PB

[3
, 4

3]
Se

ria
liz

at
io

n
[4

, 4
0]

Ta
in

t T
ra

ck
in

g
[5

2]
Ti

m
er

R
ed

uc
tio

n
[5

2]

Sl
ot

h
[5

0]
SS

B
D

/S
SB

B
[2

, 4
3,

6]

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not
mitigated (), theoretically mitigated (), theoretically impeded (), not
theoretically impeded (), or out of scope ().

it only makes it harder for an attacker to get the information,
but that can be circumvented by taking more measurements.

While the Sloth [50] family of defenses was initially pro-
posed to mitigate Spectre-PHT attacks, we argue that they
should also be able to theoretically mitigate Spectre-STL.
Meltdown Defenses. We verified whether we can still ex-
ecute Meltdown-type attacks on a fully-patched system. On
a Ryzen Threadripper 1920X, we were still able to execute
Meltdown-BND. On an i5-6200U (Skylake), an i7-8700K
(Coffee Lake), and an i7-8565U (Whiskey Lake), we were
able to successfully run a Meltdown-MPX, Meltdown-BND,
and Meltdown-RW attack. Additionally to those, we were
also able to run a Meltdown-PK attack on an Amazon EC2
C5 instance (Skylake-SP). Our results indicate that current
mitigations only prevent Meltdown-type attacks that do not
cross the current privilege level. We also tested whether
we can still successfully execute a Meltdown-US attack on
an Intel Whiskey Lake CPU without KPTI enabled as Intel
claims that it is no longer susceptible to it. Our results show
that it is indeed no longer possible to mount such an attack.

6.4 Performance impact of countermeasures

There have been a number of reports on performance impacts
of selected countermeasures. As there is no standard bench-
mark used it is hard to quantify and compare the performance
impact of countermeasures. Some countermeasures, for in-
stance InvisiSpec [94], require hardware modifications that
are not available and it is therefore hard to verify the perfor-
mance loss. We show the results of our analysis in Table 10.

One observation is the large variance between different
countermeasures, ranging from a 0% decrease up to 74.8%.
Some countermeasures even seem to improve performance.
One countermeasure that stands out with a huge decrease in

Table 10: Reported performance impacts of countermeasures

Defense
Impact

Performance Loss Benchmark

InvisiSpec [94] 22% [94] SPEC
SafeSpec [47] 3% (improvement) [47] SPEC2017 on MARSSx86 [72]
DAWG [49] 2–12%, 1–15% [49] PARSEC [12], GAPBS [11]
RSB Stuffing [42] no reports
Retpoline [88] 5–10% [15] real-world workload servers
Site Isolation [86] only memory overhead [86]
SLH [16, 22] 36.4%, 29% [16] Google microbenchmark suite
YSNB [68] 60% [68] Phoenix [75]
IBRS [3, 43] 20–30% [87] two sysbench 1.0.11 benchmarks
STIPB [3, 43] 30– 50% [56] Rodinia OpenMP [17], DaCapo [13]
IBPB [3, 43] no individual reports
Serialization [4, 40] 62%, 74.8% [16] Google microbenchmark suite
SSBD/SSBB [2, 43, 6] 2–8% [20] SYSmark®2014 SE & SPEC integer
KAISER/KPTI [27] 0–2.6% [26] system call rates [25]
L1TF mitigations [90] -3–31% [41] various SPEC

performance is serialization and highlights the importance
of speculative execution to improve CPU performance. An-
other interesting countermeasure is KPTI. While it was ini-
tially reported to have a huge impact on performance, recent
work shows that the decrease is almost negligible on systems
that support PCID [25]. To mitigate Spectre and Meltdown,
current systems rely on a combination of countermeasures.
To show the overall decrease on a Linux 4.19 kernel with the
default mitigations enabled, Larabel [57] performed multiple
benchmarks to determine the impact. One of those bench-
marks was CompileBench, which is suitable to determine
the performance loss. On Intel, the slowdown was 7-16%
compared to a non-mitigated kernel, on AMD it was 3-4%.

Naturally, the question arises which countermeasures to
enable. For most users, the risk of exploitation is low and de-
fault software mitigations as provided by Linux, Microsoft,
or Apple likely are sufficient. This is likely the optimum
between potential attacks and reasonable performance. For
data centers, it is harder as it depends on the needs of their
customers and one has to evaluate this on an individual basis.

7 Conclusion

Transient instructions reflect unauthorized computations out
of the program’s intended code and/or data paths. We pre-
sented a consistent and extensible systematization of tran-
sient execution attacks. Our systematization uncovered 6
(new) transient execution attacks (Spectre and Meltdown
variants) which have been overlooked and have not been in-
vestigated so far. We demonstrated all these variants in prac-
tical proof-of-concept attacks and evaluated their applicabil-
ity to Intel, AMD, and ARM CPUs. We also presented a
short analysis and classification of gadgets as well as their
prevalence in real-world software. We also systematically
evaluated all defenses, discovering that some transient exe-
cution attacks are not successfully mitigated by the rolled out
patches and others are not mitigated because they have been
overlooked. Hence, we need to think about future defenses
carefully and plan to mitigate attacks and variants that are
yet unknown.

Acknowledgments

This work has been supported by the Austrian Research Pro-
motion Agency (FFG) via the K-project DeSSnet, which is
funded in the context of COMET – Competence Centers for
Excellent Technologies by BMVIT, BMWFW, Styria and
Carinthia. This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 681402). This research received funding from
the Research Fund KU Leuven, and Jo Van Bulck is sup-
ported by the Research Foundation – Flanders (FWO). Ev-
tyushkin acknowledges the start-up grant from the College
of William and Mary. Additional funding was provided by
generous gifts from ARM and Intel. Any opinions, findings,
and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the
views of the funding parties.

References
[1] ALDAYA, A. C., BRUMLEY, B. B., UL HASSAN, S., GARCÍA,

C. P., AND TUVERI, N. Port contention for fun and profit, https:
//eprint.iacr.org/2018/1060 2018.

[2] AMD. AMD64 Technology: Speculative Store Bypass Disable,
2018. https://developer.amd.com/wp-content/resources/

124441_AMD64_SpeculativeStoreBypassDisable_

Whitepaper_final.pdf Revision 5.21.18.

[3] AMD. Software techniques for managing speculation on AMD pro-
cessors, 2018.

[4] AMD. Software techniques for managing spec-
ulation on AMD processors, 2018. https://

developer.amd.com/wp-content/resources/90343-

B_SoftwareTechniquesforManagingSpeculation_WP_7-

18Update_FNL.pdf Revison 7.10.18.

[5] AMD. Spectre mitigation update, https://www.amd.com/en/

corporate/security-updates July 2018.

[6] ARM. Cache speculation side-channels, 2018. Version 2.4.

[7] ARM LIMITED. ARM Architecture Reference Manual. ARMv7-A and
ARMv7-R edition. ARM Limited, 2012.

[8] ARM LIMITED. ARM Architecture Reference Manual ARMv8. ARM
Limited, 2013.

[9] ARM LIMITED. ARM A64 Instruction Set Architecture (Beta),
https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_

a64_instruction_set_architecture.pdf Sep 2018.

[10] ARM LIMITED. Vulnerability of speculative processors to cache
timing side-channel mechanism, https://developer.arm.com/

support/security-update 2018.

[11] BEAMER, S., ASANOVIC, K., AND PATTERSON, D. A. The GAP
benchmark suite. arXiv:1508.03619 (2015).

[12] BIENIA, C. Benchmarking modern multiprocessors. 2011.

[13] BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG,
A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG,
D., FRAMPTON, D., GUYER, S. Z., ET AL. The dacapo benchmarks:
Java benchmarking development and analysis. In ACM Sigplan No-
tices (2006).

[14] CARPENTER, D. Smatch check for Spectre stuff, https://lwn.
net/Articles/752409/ Apr. 2018.

[15] CARRUTH, C., https://reviews.llvm.org/D41723 Jan. 2018.

[16] CARRUTH, C. RFC: Speculative Load Hardening (a Spectre vari-
ant #1 mitigation, https://lists.llvm.org/pipermail/llvm-
dev/2018-March/122085.html Mar. 2018.

[17] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W.,
LEE, S.-H., AND SKADRON, K. Rodinia: A benchmark suite for
heterogeneous computing. In International Symposium on Workload
Characterization (2009).

[18] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND LAI,
T. H. Sgxpectre attacks: Leaking enclave secrets via speculative exe-
cution. arXiv:1802.09085 (2018).

[19] CORBET, J. Strengthening user-space Spectre v2 protection, https:
//lwn.net/Articles/764209/ Sept. 2018.

[20] CULBERTSON, L. Addressing new research for side-channel analysis.
Intel.

[21] DONG, X., SHEN, Z., CRISWELL, J., COX, A., AND DWARKADAS,
S. Spectres, virtual ghosts, and hardware support. In Workshop on
Hardware and Architectural Support for Security and Privacy (2018).

[22] EARNSHAW, R. Mitigation against unsafe data speculation (CVE-
2017-5753), https://lwn.net/Articles/759438/ July 2018.

[23] EVTYUSHKIN, D., RILEY, R., ABU-GHAZALEH, N. C., ECE, AND
PONOMAREV, D. Branchscope: A new side-channel attack on direc-
tional branch predictor. In ASPLOS’18 (2018).

[24] FOG, A. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,
2016.

[25] GREGG, B. KPTI/KAISER Meltdown Initial Performance Re-
gressions, http://www.brendangregg.com/blog/2018-02-09/
kpti-kaiser-meltdown-performance.html 2018.

[26] GRUSS, D., HANSEN, D., AND GREGG, B. Kernel isolation: From
an academic idea to an efficient patch for every computer. USENIX
;login (2018).

[27] GRUSS, D., LIPP, M., SCHWARZ, M., FELLNER, R., MAURICE, C.,
AND MANGARD, S. KASLR is Dead: Long Live KASLR. In ESSoS
(2017).

[28] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MANGARD,
S. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR. In CCS (2016).

[29] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security Symposium (2015).

[30] GÜLMEZOĞLU, B., INCI, M. S., EISENBARTH, T., AND SUNAR,
B. A Faster and More Realistic Flush+Reload Attack on AES. In
Constructive Side-Channel Analysis and Secure Design (2015).

[31] HEDAYATI, M., GRAVANI, S., JOHNSON, E., CRISWELL, J.,
SCOTT, M., SHEN, K., AND MARTY, M. Janus: Intra-process isola-
tion for high-throughput data plane libraries, 2018.

[32] HORN, J. speculative execution, variant 4: speculative store by-
pass, https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528 2018.

[33] HORN, JANN. Reading privileged memory with a side-channel,
https://googleprojectzero.blogspot.com/2018/01/

reading-privileged-memory-with-side.html Jan. 2018.

[34] INTEL. Intel Software Guard Extensions (Intel SGX), https://
software.intel.com/en-us/sgx 2016.

[35] INTEL. Intel 64 and IA-32 Architectures Software Developer′s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. Order
Number 325384.

[36] INTEL. Control-flow Enforcement Technology Preview, June
2017. https://software.intel.com/sites/default/files/

managed/4d/2a/control-flow-enforcement-technology-

preview.pdf Revision 2.0.

[37] INTEL. Intel Xeon Processor Scalable Family Technical Overview,
https://software.intel.com/en-us/articles/intel-

xeon-processor-scalable-family-technical-overview

Sept. 2017.

[38] INTEL. Intel 64 and IA-32 Architectures Optimization Reference
Manual, 2017.

[39] INTEL. Deep Dive: Intel Analysis of L1 Terminal Fault,
https://software.intel.com/security-software-

guidance/insights/deep-dive-intel-analysis-l1-

terminal-fault Aug. 2018.

[40] INTEL. Intel Analysis of Speculative Execution Side Channels , July
2018. https://software.intel.com/security-software-

guidance/api-app/sites/default/files/336983-Intel-

Analysis-of-Speculative-Execution-Side-Channels-

White-Paper.pdf Revision 4.0.

[41] INTEL. Resources and Response to Side Channel L1 Termi-
nal Fault, https://www.intel.com/content/www/us/en/

architecture-and-technology/l1tf.html Aug. 2018.

[42] INTEL. Retpoline: A Branch Target Injection Mitigation, June
2018. https://software.intel.com/security-software-

guidance/api-app/sites/default/files/Retpoline-A-

Branch-Target-Injection-Mitigation.pdf Revision 003.

[43] INTEL. Speculative Execution Side Channel Mitigations, May
2018. https://software.intel.com/sites/default/files/

managed/c5/63/336996-Speculative-Execution-Side-

Channel-Mitigations.pdf Revision 3.0.

[44] IONESCU, A. Twitter: Apple Double Map, https://twitter.com/
aionescu/status/948609809540046849 2017.

[45] IONESCU, A. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER)., https://twitter.com/aionescu/

status/930412525111296000 2017.

[46] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B. Wait
a minute! A fast, Cross-VM attack on AES. In RAID’14 (2014).

[47] KHASAWNEH, K. N., KORUYEH, E. M., SONG, C., EVTYUSHKIN,
D., PONOMAREV, D., AND ABU-GHAZALEH, N. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation.
arXiv:1806.05179 (2018).

[48] KING, R. ARM: spectre-v2: harden branch predictor on context
switches , https://patchwork.kernel.org/patch/10427513/
May 2018.

[49] KIRIANSKY, V., LEBEDEV, I., AMARASINGHE, S., DEVADAS, S.,
AND EMER, J. DAWG: A Defense Against Cache Timing Attacks in
Speculative Execution Processors. Cryptology ePrint Archive: Report
2018/418 (May 2018).

[50] KIRIANSKY, V., AND WALDSPURGER, C. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv:1807.03757 (2018).

[51] KOCHER, P. Spectre mitigations in microsoft’s
c/c++ compiler, https://www.paulkocher.com/doc/

MicrosoftCompilerSpectreMitigation.html 2018.

[52] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T.,
SCHWARZ, M., AND YAROM, Y. Spectre attacks: Exploiting specu-
lative execution. In S&P (2019).

[53] KOCHER, P. C. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In CRYPTO (1996).

[54] KORUYEH, E. M., KHASAWNEH, K., SONG, C., AND ABU-
GHAZALEH, N. Spectre returns! speculation attacks using the return
stack buffer. In WOOT (2018).

[55] KOSINA, JIRI. x86/speculation: Enable cross-hyperthread spectre
v2 STIBP mitigation, https://lore.kernel.org/patchwork/

patch/983954/ Sept. 2018.

[56] LARABEL, M. Bisected: The Unfortunate Reason Linux 4.20 Is
Running Slower, https://www.phoronix.com/scan.php?page=
article&item=linux-420-bisect&num=1 Nov. 2018.

[57] LARABEL, M. The performance cost of spectre / melt-
down / foreshadow mitigations on linux 4.19, https:

//www.phoronix.com/scan.php?page=article&item=linux-

419-mitigations&num=2 Aug. 2018.

[58] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND MAN-
GARD, S. ARMageddon: Cache Attacks on Mobile Devices. In
USENIX Security Symposium (2016).

[59] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security (2018).

[60] LUTOMIRSKI, ANDY. x86/fpu: Hard-disable lazy FPU mode,
https://lkml.org/lkml/2018/6/14/509 June 2018.

[61] LWN. The current state of kernel page-table isolation, https://
lwn.net/Articles/741878/ Dec. 2017.

[62] MAISURADZE, G., AND ROSSOW, C. ret2spec: Speculative execu-
tion using return stack buffers. In CCS (2018).

[63] MAURICE, C., WEBER, M., SCHWARZ, M., GINER, L., GRUSS,
D., ALBERTO BOANO, C., MANGARD, S., AND RÖMER, K. Hello
from the Other Side: SSH over Robust Cache Covert Channels in the
Cloud. In NDSS (2017).

[64] MICROSOFT EDGE TEAM. Mitigating speculative execution side-
channel attacks in Microsoft Edge and Internet Explorer, https:

//blogs.windows.com/msedgedev/2018/01/03/s Jan. 2018.

[65] MILLER, M. Mitigating speculative execution side channel hard-
ware vulnerabilities, https://blogs.technet.microsoft.com/
srd/2018/03/15/mitigating/ Mar. 2018.

[66] O’KEEFFE, DAN AND MUTHUKUMARAN, DIVYA AND AUBLIN,
PIERRE-LOUIS AND KELBERT, FLORIAN AND PRIEBE, CHRISTIAN
AND LIND, JOSH AND ZHU, HUANZHOU AND PIETZUCH, PETER.
Spectre attack against SGX enclave, https://github.com/lsds/
spectre-attack-sgx Jan. 2018.

[67] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., FELBER, P., AND
FETZER, C. Intel MPX explained: An empirical study of intel MPX
and software-based bounds checking approaches. arXiv:1702.00719
(2017).

[68] OLEKSENKO, O., TRACH, B., REIHER, T., SILBERSTEIN, M., AND
FETZER, C. You Shall Not Bypass: Employing data dependencies to
prevent Bounds Check Bypass. arXiv:1805.08506 (2018).

[69] OPEN SOURCE SECURITY INC. Respectre: The state of the art
in spectre defenses, https://www.grsecurity.net/respectre_
announce.php Oct. 2018.

[70] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA (2006).

[71] PARDOE, A. Spectre mitigations in msvc, https://blogs.msdn.
microsoft.com/vcblog/2018/01/15/spectre/ 2018.

[72] PATEL, A., AFRAM, F., CHEN, S., AND GHOSE, K. Marss: a full
system simulator for multicore x86 cpus. In Design Automation Con-
ference (2011).

[73] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND MAN-
GARD, S. DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks. In USENIX Security Symposium (2016).

[74] PIZLO, F. What Spectre and Meltdown mean for WebKit,
https://webkit.org/blog/8048/what-spectre-and-

meltdown-mean-for-webkit/ Jan. 2018.

[75] RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI, G.,
AND KOZYRAKIS, C. Evaluating mapreduce for multi-core and mul-
tiprocessor systems. In High Performance Computer Architecture
(HPCA) (2007).

[76] SCHWARZ, M., LIPP, M., AND GRUSS, D. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. In NDSS (2018).

[77] SCHWARZ, M., LIPP, M., GRUSS, D., WEISER, S., MAURICE,
C., SPREITZER, R., AND MANGARD, S. KeyDrown: Eliminating
Software-Based Keystroke Timing Side-Channel Attacks. In NDSS
(2018).

[78] SCHWARZ, M., MAURICE, C., GRUSS, D., AND MANGARD, S.
Fantastic Timers and Where to Find Them: High-Resolution Microar-
chitectural Attacks in JavaScript. In FC (2017).

[79] SCHWARZ, M., SCHWARZL, M., LIPP, M., AND GRUSS, D. Net-
spectre: Read arbitrary memory over network. arXiv:1807.10535
(2018).

[80] SHACHAM, H. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In CCS (2007).

[81] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-sgx: Eradi-
cating controlled-channel attacks against enclave programs. In NDSS
(2017).

[82] SMITH, BEN. Enable SharedArrayBuffer by default on non-android,
https://chromium.googlesource.com/chromium/src/+/

4dbb4407b8a64dd9463ae34b1e9c19475acc1128 Aug. 2018.
[83] STECKLINA, J., AND PRESCHER, T. LazyFP: Leaking FPU Regis-

ter State using Microarchitectural Side-Channels. arXiv:1806.07480
(2018).

[84] SUSE. Security update for kernel-firmware, https://www.

suse.com/support/update/announcement/2018/suse-su-

20180008-1/ 2018.
[85] THE CHROMIUM PROJECT. https://www.chromium.org/Home/

chromium-security/sscaActions required to mitigate Speculative
Side-Channel Attack techniques.

[86] THE CHROMIUM PROJECTS. http://www.chromium.org/Home/

chromium-security/site-isolation Site Isolation.
[87] TKACHENKO, V. 20-30% Performance Hit from the Spectre Bug Fix

on Ubuntu, https://www.percona.com/blog/2018/01/23/20-
30/ Jan. 2018.

[88] TURNER, P. Retpoline: a software construct for preventing branch-
target-injection, 2018.

[89] VAHLDIEK-OBERWAGNER, A., ELNIKETY, E., GARG, D., AND
DRUSCHEL, P. ERIM: secure and efficient in-process isolation with
memory protection keys. arXiv:1801.06822 (2018).

[90] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y.,
AND STRACKX, R. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security Symposium (2018).

[91] VAN BULCK, J., PIESSENS, F., AND STRACKX, R. Nemesis:
Studying microarchitectural timing leaks in rudimentary CPU inter-
rupt logic. In CCS (2018).

[92] WAGNER, L. Mitigations landing for new class of tim-
ing attack, https://blog.mozilla.org/security/2018/01/

03/mitigations Jan. 2018.
[93] WEISSE, O., VAN BULCK, J., MINKIN, M., GENKIN, D., KASIKCI,

B., PIESSENS, F., SILBERSTEIN, M., STRACKX, R., WENISCH,
T. F., AND YAROM, Y. Foreshadow-NG: Breaking the Virtual Mem-
ory Abstraction with Transient Out-of-Order Execution, 2018.

[94] YAN, M., CHOI, J., SKARLATOS, D., MORRISON, A., FLETCHER,
C. W., AND TORRELLAS, J. InvisiSpec: Making Speculative Execu-
tion Invisible in the Cache Hierarchy. In MICRO (2018).

[95] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Sym-
posium (2014).

A Consistency of the Naming Scheme

While our naming and classification scheme (cf. Figure 1) is
based on the names of the microarchitectural elements and
the exceptions found on modern x86 processors, this does
not limit the generality or consistency of our systematization.
Generally, microarchitectural elements which have equiva-
lent functionality are equivalent in our classification scheme.
Other microarchitectural elements with different functional-
ity, e.g., other prediction mechanisms, can extend the given
classification scheme. Exception names are typically specific
to one architecture. However, ARM also has equivalent ex-
ceptions types, such as instruction aborts (formerly prefetch
aborts) and data aborts which correspond to the class of page
faults [7, 8]. Still, any exception which does not have a cor-
responding one in our classification scheme can be added
in a consistent way by following the existing classification
scheme up to the point where no alternative fits.

B Consistency of the Systematization

We can consistently classify all currently known Spectre and
Meltdown attacks. Our classification is easily extensible if a
new variant is discovered by answering the following three
questions: (1) What is the cause of the transient execution?
(2) Who/what is responsible? (3) Where does the adversary
influence whoever/whatever is responsible? As we were able
to do this for all currently known Meltdown- and Spectre-
type attacks, we claim that our systematization is correct and
consistent. Our decision is tree is easily extensible in case a
new variant is discovered.

C Exception Mnemonics

Table 11: Exceptions and their corresponding mnemonic.
Exception Description
#NM Device Not Available
#AC Alignment Check
#DE Divide Error
#PF Page Fault
#UD Invalid Opcode
#SS Stack-Segment Fault
#BR Bound Range Exceeded
#GP General Protection Fault

