
Winter Is Coming Back: Defeating the Most Advanced

Rowhammer Defense to Gain Root/Kernel Privileges

Yueqiang Cheng, Zhi Zhang, Surya Nepal, Zhi Wang

About the speakers

• Dr. Yueqiang Cheng @ Baidu X-Lab • Zhi Zhang @ University of New South Wales

• Dr. Surya Nepal @ CSIRO Data61, Australia • Dr. Zhi Wang @ Florida State University

Overview

•A brief introduction of rowhammer

• The most advanced rowhammer defense

•A proof-of-concept exploit

•Demo

•Mitigations

• Sound bytes

Frequently accessing

What is rowhammer?

DRAM rowRowhammer:

Hierarchical structure of DRAM

Diagram from Brasser et al.

Diagram from Kim et al.

Bank Layout Single Cell

Structure of DRAM bank

Each bank has rows
of cells

Each cell consists of
a capacitor and an
access-transistor

wordline connects all
cells within a row

bitline connects all
cells within a column

Memory access

‒ Activating/opening a row
‒ Accessing row buffer
‒ Deactivating/closing the row

DRAM refresh

‒ Capacitors of cells can lose charge over time

‒ A row of cells needs to be periodically charged/refreshed
(refreshing and opening a row are identical for charging a row)

‒ The refresh interval is typically 64 ms

Rowhammer bug

Kim et al. key observation (ISCA’14)

Frequently opening rows n+1
& n-1 cause bit flips in row n

Motivated by Kim et al.,
Seaborn et al. can compromise
a bug-free kernel (Blackhat’15)

Rowhammer bug

Kim et al. key observation (ISCA’14)

Code from Kim et al.

 Flush/Evict CPU cache (e.g., clflush)
 Clear row buffer (e.g., alternate access)

Rowhammer code

1 loop:

 2 mov (X), %eax

 3 mov (Y), %ebx

 4 clflush (X)

 5 clflush (Y)

6 mfence

7 jmp loop

Code from Kim et al.

 Flush/Evict CPU cache (e.g., clflush)
 Clear row buffer (e.g., alternate access)

Rowhammer code

1 loop:

 2 mov (X), %eax

 3 mov (Y), %ebx

 4 clflush (X)

 5 clflush (Y)

6 mfence

7 jmp loop

Existing rowhammer methods

‒ Double-sided hammer: hammer two rows on each side of the target row

‒ Single-sided hammer: randomly select multiple addresses and hammer them

‒ One-location hammer: randomly select one address and hammer it

1 loop:

2 mov (X), %eax

3 mov (Y), %ebx

4 clflush (X)

5 clflush (Y)

6 jmp loop

Double-sided hammer
‒ X and Y are adjacent to the target row

Single-sided hammer
‒ Either X or Y is adjacent to the target row

Existing rowhammer methods

Common
‒ X and Y must be in the same bank to clear row buffer

1 loop:

2 mov (X), %eax

3 mov (Y), %ebx

4 clflush (X)

5 clflush (Y)

6 jmp loop

One-location hammer
‒ X is adjacent to the target row
‒ DRAM controller actively clears the row buffer

Existing rowhammer methods

Previous rowhammer defenses

Hardware defenses

Increase row-refreshing frequency
‒ frequency is not high enough

Introduce Error correcting code (ECC) memory
‒ multiple bit flips occur

Apply probabilistic adjacent row activation (PARA)

Utilize a target row refresh (TRR) capability

Specify maximum Activation Count (MAC)
‒ hardware changes

Software defenses

Ad-hoc attempts
‒ limited to preventing specific rowhammer attacks

General solutions
‒ analysed rowhammer-based binary (Irazoqui et al.)

‒ blacklisted vulnerable memory (Brasser et al.)

‒ utilized performance counters (Aweke et al.)

The most advanced

rowhammer defense: CATT

Picture from http://gerimgq.pw/Ethical-Wildlife-Encounter-A-Tadoussac-Whale-Watching-Trip.html

At the time of our submission

CAn’t Touch This (CATT)

Picture from www.depositphotos.com

CATT’s idea

• The island is split into two halves

• One half is physically isolated

from the other

To be specific

CATT views the ownership of

each physical partition as single

Domain A
(Low Privilege)

Domain B
(High Privilege)

Partition A

Partition B

Single Ownership

Fundamental dictation

Diagram from Brasser et al.

CATT’s implementation

Physical Isolation

CATT’s advantages

High practicality

‒ lightweight kernel patch

‒ neglectable performance overhead

High effectiveness

‒ mitigate previous rowhammer attacks

Picture from www.wallpapermania.eu

CATT’s advantages

High practicality

‒ lightweight kernel patch

‒ neglectable performance overhead

High effectiveness

‒ mitigate previous rowhammer attacks

Picture from www.wallpapermania.eu

 Fill up a victim row with sensitive data structures

 Position attacker-accessible rows adjacent to the victim row

 Rowhammer

Summary of a rowhammer exploit

 Fill up a victim row with sensitive data structures

 Rowhammer

Previous rowhammer defenses stop

Review of defenses

 Fill up a victim row with sensitive data structures

 Rowhammer

Previous rowhammer defenses stop

Review of defenses

 Position attacker-accessible rows adjacent to the victim row

CATT (i.e., physical isolation) stops

Bug-free kernel +

Enabled CATT +

Unknown victim-row locations +

Disabled pagemap

Threat model & Assumptions

Bug-free kernel +

Enabled CATT +

Unknown victim-row locations +

Disabled pagemap

Threat model & Assumptions

No way to
rowhammer kernel?

Picture from https://goo.gl/images/7B4hg4

Key steps & Challenges

000. Clearly identify CATT’s weakness
001. Stealthily position attacker-accessible memory adjacent to kernel objects
010. Efficiently perform hammering

011. Verify whether “exploitable” bit flips have occurred (Seaborn et al.)

100. If yes, kernel privilege
root privilege (scan kernel memory, flush tlb and
change uid to 0)

Domain A
(Low Privilege)

Domain B
(High Privilege)

Partition A

Partition B

Region X

Region Y

Region Z

Single Ownership Double Ownership

Clearly identify CATT’s weakness

In theory, single ownership
does hold

However, in real-world,
modern systems view the
ownership as dynamic

Domain A
(Low Privilege)

Domain B
(High Privilege)

Partition A

Partition B

Region X

Region Y

Region Z

Single Ownership Double Ownership

Clearly identify CATT’s weakness

In theory, single ownership
does hold

Region Z is “hammerable”

Region X

Region Z

User Domain
User Partition

Kernel Partition
Kernel Domain

Kernel-after-User Ownership

User-after-Kernel Ownership

Clearly identify CATT’s weakness

‒ Identify “hammerable” double-owned memory

• Challenge

• Properties
‒ Hammerable memory is initially owned by the kernel
‒ The user can access the memory

Clearly identify CATT’s weakness

Clearly identify CATT’s weakness

Picture from www.pinterest.com

Bridge interface is introduced to

counteract the physical isolation

For the split islands

mmap interface can
be abused to hammer the
kernel partitions

Region Z

User Domain
User Partition

Kernel Partition
Kernel Domain

User-after-Kernel Ownership

mmap allocate

Clearly identify CATT’s weakness

For the split partitions

The number of kernel mmap
operations increases significantly
as Linux kernel evolves.

Clearly identify CATT’s weakness

mmap distribution
(Linux kernel 4.17)

Clearly identify CATT’s weakness

Identify hammerable buffer

Clearly identify CATT’s weakness

Identify hammerable buffer

SCSI Generic buffer in the Linux SCSI subsystem

Clearly identify CATT’s weakness

Double-owned buffer makes it possible
to rowhammer the kernel again

Stealthily position hammerable

buffer and kernel page table

Double-owned buffer makes it possible
to rowhammer the kernel again

Stealthily position hammerable

buffer and kernel page table

Next, how to make the double-owned hammerable buffer exploitable

How to stealthily position the hammerable buffer
next to page tables

Double-owned buffer makes it possible
to rowhammer the kernel again

Stealthily position hammerable

buffer and kernel page table

Next, how to make the double-owned hammerable buffer exploitable

How to stealthily position the hammerable buffer
next to page tables

A new technique (memory ambush)

Memory ambush

Linux buddy allocator

A list of blocks

Memory ambush

If they share the same block

Are they adjacent to each other?

Two adjacent physical addresses do not imply
two adjacent dram rows

Say: 0x1000 and 0x0FFF are in the same row


Memory ambush

Two adjacent physical addresses do not imply
two adjacent dram rows

Say: 0x1000 and 0x0FFF are in the same row


Two row-aligned adjacent physical addresses indicate
two adjacent dram rows (Xiao et al.)

Say: b18 to b32 on Sandy Bridge, b18 to b31 on Ivy Bridge, b23

to b34 on Haswell are row indexes

Memory ambush

Target block must contain two
adjacent DRAM rows

Memory ambush

How to calculate target block size

Memory ambush

TargetBlockSize = RowsSizePerRowIndex 2

RowsSizePerRowIndex = DIMMs BanksPerDIMM RowSize

BanksPerDIMM = BanksPerRank RanksPerDIMM

Memory ambush

How to place more page-tables
on the target blocks

Abuse mmap to do page-table allocation (Seaborn et al.)

Memory ambush

How to place more page-tables
on the target blocks

Diagram from Seaborn et al.

Memory ambush

Page-table allocation
Mmap a file repeatedly

Memory ambush

Memory ambush

Memory ambush

No pagemap since Linux 4.0

Efficiently single-sided rowhammer

No pagemap since Linux 4.0

A timing channel (Moscibroda et al.)

Efficiently single-sided rowhammer

Efficiently single-sided rowhammer

‒ X and Y are in different rows of same
bank (i.e., DRSB), causing row conflict

‒ row conflict leads to higher

memory-access latency

Diagram from Kim et al.

1 loop:

2 mov (X), %eax

3 mov (Y), %ebx

4 clflush (X)

5 clflush (Y)

6 jmp loop

A timing channel

DRSB: different row same bank

Efficiently single-sided rowhammer

DRSB: different row same bank

Efficiently single-sided rowhammer

Demo

000. Clearly identify CATT’s weakness
001. Stealthily position attacker-accessible memory adjacent to kernel objects
010. Efficiently perform hammering

011. Verify whether “exploitable” bit flips have occurred (Seaborn et al.)

100. If yes, kernel privilege and then root privilege

Demo

Kernel Privilege Escalation

Root Privilege Escalation

Picture from https://cartooncharacters.fandom.com/wiki/Jerry_Mouse

SCSI Generic buffer is not alone

Disabling the SCSI Generic driver is enough?

SCSI Generic buffer is not alone

Disabling the SCSI Generic driver is enough?

Far from enough
Video buffer in Video4Linux subsystem is also exploitable

 /dev

 /sys

 …

Please help yourself

Mitigations

 Allocate double-owned buffer from user partition

 Separate data with two guarding rows (Konoth et al., published after our submission)

 Protect Page Tables from being rowhammered (Wu et al., published after our submission)

Weaknesses

 Allocate double-owned buffer from user partition
expose sensitive buffer to user space

 Separate data with two guarding rows (Konoth et al., published after our submission)

 Protect Page Tables from being rowhammered (Wu et al., published after our submission)

Mitigations

Weaknesses

 Allocate double-owned buffer from user partition
expose sensitive buffer to user

 Separate data with two guarding rows (Konoth et al., published after our submission)

suffer from dram row remapping & bit flips in multiple rows

 Protect Page Tables from being rowhammered (Wu et al., published after our submission)

Mitigations

Weaknesses
 Allocate double-owned buffer from user partition

expose sensitive buffer to user
 Separate data with two guarding rows (Konoth et al., published after our submission)

suffer from dram row remapping & bit flips in multiple rows
 Protect Page Tables from being rowhammered (Wu et al., published after our submission)

suffer from exploitable bit flips

Mitigations

Weaknesses
 Allocate double-owned buffer from user partition

expose sensitive buffer to user
 Separate data with two guarding rows (Konoth et al., published after our submission)

suffer from dram row remapping & bit flips in multiple rows
 Protect Page Tables from being rowhammered (Wu et al., published after our submission)

suffer from exploitable bit flips

Mitigations

Ongoing work Can we break all of them ???
Follow up our next rowhammer talk please 

Black Hat Sound Bytes

Physical isolation of different security domains is powerful against current
rowhammer attacks.

Physical isolation is hard to achieve in practice due to double-owned
buffers, which make rowhammer bug still exploitable.

The double-owned buffers are used for the sake of performance and
functionality and thus it will be challenging to remove them.

Our exploit is stealthy to gain root/kernel privileges given the presence of
physical isolation.

 Yueqiang Cheng (chengyueqiang@baidu.com)

 Zhi Zhang (zhi.zhang@data61.csiro.au)

 Surya Nepal (Surya.Nepal@data61.csiro.au)

 Zhi Wang (zwang@cs.fsu.edu)

Picture from https://www.pinterest.com.au/pin/683562049667100129/

mailto:chengyueqiang@baidu.com
mailto:zhi.zhang@data61.csiro.au
mailto:Surya.Nepal@data61.csiro.au
mailto:zwang@cs.fsu.edu

References

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” in ACM SIGARCH Computer Architecture News, 2014.

M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to gain kernel privileges,” in Black Hat’15.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t touch this: Software-only mitigation against rowhammer attacks targeting
kernel memory,” in USENIX Security Symposium, 2017.

K. A. Shutemov, “Pagemap: Do not leak physical addresses to nonprivileged userspace,” https://lwn.net/Articles/642074/, 2015.

T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service in multi-core systems,” in USENIX Security
Symposium, 2007.

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin, “ANVIL: Software-based protection against next-generation
Rowhammer attacks,” in International Conference on Architectural Support for Programming Languages and Operating Systems, 2016.

X. C. Wu, T. Sherwood, F. T. Chong and Y. J. Li, “ANVIL: Software-based protection against next-generation Rowhammer attacks,” In
International Conference on Architectural Support for Programming Languages and Operating Systems, 2019.

R. K. Konoth, M. Oliverio, A. Tatar, D. An-driesse, H. Bos, C. Giuffrida, and K. Razavi. 2018. ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks. In USENIX Symposium on Operating Systems Design and Implementation, 2018.

